1 Supplementary Materials

1.1 Baselines

* Quasi-static: [Pick & Place] and [Pick & Drag] are policies which uses a quasi-static “pick and
place” (similar to Lee et al. [1], visualized in Fig. 2b) and “pick and drag” (similar to Seita et al.,
with no lift step compared to pick and place) primitive respectively. [Stretch & Drag] is identical
to [Pick & Drag] with an extra stretch step (identical to FlingBot’s stretch) after picking. These
baselines are implemented with dual-arm set up, therefore provides the same physical reach range
as our dual-arm fling system.

* Dynamic manipulation: [FlingBot] is our policy which predicts the optimal two-arm grasp loca-
tions for a fixed stretching and flinging routine described in Sec. 3.2.

* Dynamic manipulation with fling speed prediction: [FlingBot-S] is identical to [FlingBot]
with an additional fling speed module, which predicts the fling speed within the range of
[0.1ms~% 1.0ms™!] from visual input of the cloth after stretching and lifting. This fling speed
module is trained using Deep Deterministic Policy Gradients (DDPG) [3] on the delta-coverage
rewards to maximize single-step returns (discount factor -y is set to 0), where the grasps are pre-
dicted by a converged and frozen [FlingBot] value network. However, despite the cloth physical
parameter variations in the training and testing dataset (Sec. 1.2), Tab. 1 and Fig. 5 (in main paper)
suggest that there aren’t significant performance gains for [FlingBot-S] over [FlingBot] within the
cloth parameter ranges tested (Sec. 1.2). These results justify [FlingBot]’s usage of a single fling
speed, even for varying cloth mass, stiffness, and size. Thus, we prefer the simpler [FlingBot]
approach for comparisons with baselines.

* Dynamic manipulation with fling parameter regression: [Fling-Reg] is identical to [FlingBot],
but directly predicts the action parameters (Cy, Cy, 6, w) from visual inputs instead of exploiting
the task’s equivariances. Its policy is trained using DDPG on delta-coverage rewards to maxi-
mize single-step returns. However, from Tab. 1, [Fling-Reg] completely fails to perform the task,
demonstrating the advantage of encoding inductive biases which leverage equivariances in the
problem structure.

1.2 Task Dataset Generation

Each task is specified by a cloth mesh, mass, stiffness, and initial configuration. The cloth mesh is
sampled from one of three types:

1. Normal Rect, which contains rectangular cloths with size within the reach range. Edge lengths
are sampled from [0.40m, 0.65m)].

2. Large Rect, which contains rectangular cloths with at least one edge larger than the reach range
(0.70m). Otherwise, edge sizes are sampled from [0.40m, 0.75m], which means the shorter edge
could still be smaller than the reach range.

3. Shirt, which contains a subset of shirts sampled from CLOTH3D’s [4] test split, all of which are
resized to be within the reach range. These shirts include tank tops, crop tops, short and long
sleeves.

The cloth mass is sampled from [0.2kg, 2.0kg] and an internal stiffness from [0.85kg/s?, 0.95kg /s?].
Finally, the cloth’s initial configuration is varied by holding a randomly grasped the cloth at a random
height between [0.5m, 1.5m] then dropping and allowing the cloth to settle (similar to Lee et al. and
tier-3 in Seita et al.), resulting in a severely crumpled configuration.

To calculate the normalized coverage, we use the maximum possible coverage of the cloths in their
flattened configurations. For rectangular cloths in simulation, the flattened configuration can be
analytically calculated using the undeformed vertex positions of the grid mesh, which means the
normalized coverage could still be higher if the cloth rests in a stretched position due to friction. For
shirts in simulation, we opted to calculate its maximum possible coverage as its outer surface area
divided by 2, since a qualitatively flattened T-shirt may not actually maximize coverage. While this



choice also makes it possible for the normalized coverage to be greater than 1, it will still preserve
performance rankings. For real world experiments, the flattened configurations are manually set.

We emphasize the difficulty of our unfolding tasks, where cloths in Normal Rect, Large Rect, and
Shirt have average initial coverages of 28.8%, 27.1%, and 46.4% in simulation respectively, and
26.1%, 33.6%, and 24.0% in the real world respectively. In contrast, simulated cloths from Seita
et al. start at 77.2%, 57.6%, and 42.0% for easy, medium, and hard tasks, while real world cloths
from Ganapathi et al. starts at 71.4% and 68.4% on two different real-world trials. Yet, the challeng-
ing cloth configurations found in our tasks (Fig. 4) are realistic and prevalent in typical households.

In simulation, the policy is trained on 2000 rectangular cloths sampled evenly between Normal Rect
and Large Rect, and evaluated on 600 novel tasks split evenly between Normal Rect, Large Rect,
and Shirt cloths. In real, the simulation policy is deployed to collect real world experience on 150
Normal Rect episodes (257 steps), optimized on both simulation and real world data, then evaluated
on 10 novel tasks in each cloth type.

1.3 Extra Qualitative Results

Init Step 1 Step 2 Step 1 Step 2
0 0.905 0.941

Fling

Normal Rect (Sim)

P&P

Fling

Large Rect (Sim)

P&P

1.000

0.562

Shirt (Sim)

P&P

Figure 1: Qualitative Results in Simulation Experiments.

1.4 Failure cases

For normal rectangular cloths, the most common failure case is when a dual-arm corner grasped is
slightly misaligned and becomes a single-arm grasp and fling instead, resulting in a low coverage
configuration. For large rectangular cloths, cloths could fold in half almost perfectly, thus appearing
completely unfolded, causing the policy to terminate the episode. For shirts, the self-discovered
dual-arm corner and edge grasp for flinging which is effective for rectangular cloths fail on shirts
in two main ways. First, if the sleeves of the shirt get stuck in the shirt’s collar, FlingBot will be
unable to pull the sleeves out. This failure case motivates future work on combining quasi-static
and dynamic actions for cloth manipulation. Second, dual arm grasps where one grasp is on the
outer surface and another grasp is on the inner surface of the shirt usually flings to low coverages.



While this failure case is expected to the differences between rectangular cloths and shirts (presence
of holes, inner/outer surfaces, etc.), FlingBot’s performance on shirts still suggested generalizable
cloth manipulation abilities.

Value map Transformed Obs Before action After action

0.383
0.704

Normal Rect

Large Rect

Shirt

Figure 2: Failure Cases in Simulation Experiments.

1.5 Real world fling parameter robustness

Another large sim2real problem was poor collision handling in simulation. There were cloth con-
figurations that the real world system experienced but was not observed in simulation, such as cloth
twisting. While Nvidia Flex is decent at preventing self penetration, it does so at the cost of un-
realistic collision handling. Qualitatively, this unrealistic collision handling means cloths untwist
themselves when twisted (or are in any other state with high self-collision). Another case where this
self-unfolding behavior was observed was for shirts due to the two layers of the shirts colliding with
each other. We hypothesize that poor collision handling is the main reason why performance for the
simulated shirt benchmark is higher across the board for all approaches, despite being unseen cloth

types.
1.6 Real world Failures

Grasping failures, where the policy specified a grasp point on the cloth but the grippers failed to
successful pinch grasp, constituted most of our real-world pipeline failure cases. Our real world



In designing our motion primitive, we optimized
fling parameters (waypoints, velocities, acceleration)
to maximize coverage assuming a good grasp (e.g.: e T B
a dual arm grasp on a normal rectangular cloth in a
stretched state). We observed that the real world fling-
ing setup system could robustly unfold the cloth us-
ing a wide range of fling parameters (i.e.: fling heights
and speeds) if manually given a good grasp (Fig 3),

o
)

Coverage (%)
IS
(=)}

while the simulated system was highly sensitive to such 04

parameters. This sim2real gap was bridged in our

work by tuning the simulated fling parameters such that 9277 1.2 1.4 1.6
flings from good grasps in simulation would also lead Fling speed

to high coverages like in the real system, which results Figure 3: Real world fling speed ro-
in a variable fling height and a different fling speed in  pystness. By flinging at speeds in the
simulation compared to a fixed fling height and speed range [1.0ms~!,1.7ms ] at 0.1m s~ in-

in real. Crucially, this gap underscores the importance  ervals, we observed that our fling primi-
of real world results for cloth manipulation as well as  (jye robustly achieves above 80% coverage

motivates future work on fast and accurate cloth simu-

) / if given two good grasps.
lation engines.

system uses its frontal RGBD view to detect grasp failures after the dual arm lifts the cloths up
and automatically discards these episodes. The average grasp success rate is 78.0%, 45.0%, and
75.8% for normal rectangular, large rectangular, and shirts respectively. We used a bath towel for
our large rectangular cloths, which is significantly thicker and stiffer than the tea towel and T-shirt
we used for normal rect and shirts. Therefore, pinch grasps with large cloths failed significantly
more. Additionally, even on successful grasps, the gripper may hold the cloth tight in its crumpled
state, rendering flings ineffective. However, we do not discard of these episodes.

Cloth grasping failure is a common problem when working with real world cloth manipulation. For
instance, Ganapathi et al. also observed that “the most frequent failure mode is an unsuccessful grasp
of the fabric which is compounded for tasks that require more actions”. However, we believe this
issue can be mitigated by using specialized gripper hardware (like in Ganapathi et al., Seita et al.) or
incorporating grasp success estimation.

In addition to grasping failures discussed in the main paper, we also observed occasional cloth stuck
errors, where cloths get stuck to the gripper after the gripper opens in an attempt to release the cloth.
To enable the system to automatically recover from this issue, after opening the gripper, the arms
move to a predefined height above the workspace. Then, we use the frontal RGB-D view (used
to implement the stretching primitive) to check whether the cloth is detected above a manually set
height threshold above the workspace.

Here, we summarize techniques for implementing a real-world cloth manipulation pipeline:

1. High friction gripper finger: In our dual-arm system, we used an OnRobot RG2 and
Schunk WGS50 gripper, where the former had a rubber tip, and the latter had a metal
tip. After observing a significantly lower pinch grasping success with the WSG50, we
added a rubber fingertip to the WSGS50, which improved its grasp successes significantly.
Alternatively, picking a gripper that can apply lots of pressure using its fingers, like the da
Vinci Research Kit surgical robot in Seita et al., should also help.

2. Soft Workspace: A successful pinch grasp should apply the right amount of pressure
between the cloth and the workspace. Too little pressure and the cloth will not get grasped,
while too much pressure could easily damage the cloth, gripper, and robot arm. Due to
noise in-depth sensing, the arms may be asked to grasp points slightly below the surface of
the workspace. Similar to prior works [6, 5], we found that using a firm and thin rubber
mattress was sufficient to address this problem.

3. Accurate depth sensing: Building on the previous point, hardware improvements on the
sensing side could help significantly. In our real world experiments, the Azure Kinect



X o2 Xe ®

(a) Crossover constraint (b) Grasp width constraint

Figure 4: To minimize collisions, arms should grasp points closer to their side (a) and be a reasonable
distance away from each other (b).

v3 has significantly less noisy and more accurate depth images than the Intel Realsense
D415. While the real world numbers we reported in this paper are only with Realsense
cameras, the codebase for our Kinect/Realsense real world setup is publicly accessible at
https://github.com/columbia-ai-robotics/flingbot.

4. 4 DOF Grasp success prediction: A grasp which is parallel to a small crease on the
cloth is more likely to result in a successful pinch grasp. Therefore, we hypothesize that
additionally considering gripper z-rotation, on top of the positional 3 DOFs we have in our
system, and learning the optimal pinch grasp z-rotation using a grasp success predictor may
result in higher overall grasp success. Future work could explore weighing task rewards
with such grasp success predictions.

1.7 Designing dynamic motion primitives

To achieve the highest speed at the end effector while respecting the torque limit of each joint,
the primitive must move upper joints (i.e.: wrist) more than the lower joints (i.e., base). We also
found that adding a blending radius between each target joint configuration gave a much smoother
flinging trajectory and cloth swinging, as opposed to a jerky cloth motion without blending radius.
In designing our motion primitive, we optimized fling dynamics parameters (waypoints, velocities,
acceleration) to maximize coverage assuming a dual arm grasp on a normal rectangular cloth in a
stretched state. Automatically discovering dynamic motion primitives, such as flinging, and simul-
taneously learning their parameters is an important and interesting direction for future work.

1.8 Why is learning fling speeds unhelpful?

We hypothesize that light and thin cloths, whose air resistive forces to momentum during flinging
ratio is significantly higher than the cloths tested, would require a higher fling speed. Therefore, fling
speed learning may be helpful when cloths in the task dataset contain a wider variance in density
and thickness. We also hypothesize that a successful fling speed prediction approach may require
extra information about the cloths’ physical parameters that could not be obtained through visual
observation alone, which would be out of scope for this work.

References

[1] R. Lee, D. Ward, A. Cosgun, V. Dasagi, P. Corke, and J. Leitner. Learning arbitrary-goal fabric
folding with one hour of real robot experience, 2020.


https://github.com/columbia-ai-robotics/flingbot

[2] D. Seita, P. Florence, J. Tompson, E. Coumans, V. Sindhwani, K. Goldberg, and A. Zeng. Learn-
ing to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter
Networks. In ICAR, 2021.

[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[4] H.Bertiche, M. Madadi, and S. Escalera. Cloth3d: Clothed 3d humans. In European Conference
on Computer Vision, pages 344-359. Springer, 2020.

[5] D. Seita, A. Ganapathi, R. Hoque, M. Hwang, E. Cen, A. K. Tanwani, A. Balakrishna,
B. Thananjeyan, J. Ichnowski, N. Jamali, K. Yamane, S. Iba, J. F. Canny, and K. Goldberg.
Deep imitation learning of sequential fabric smoothing policies. CoRR, abs/1910.04854, 2019.
URL http://arxiv.org/abs/1910.04854.

[6] A.Ganapathi, P. Sundaresan, B. Thananjeyan, A. Balakrishna, D. Seita, J. Grannen, M. Hwang,
R. Hoque, J. E. Gonzalez, N. Jamali, K. Yamane, S. Iba, and K. Goldberg. Learning dense
visual correspondences in simulation to smooth and fold real fabrics, 2020.


http://arxiv.org/abs/1910.04854

	Supplementary Materials
	Baselines
	Task Dataset Generation
	Extra Qualitative Results
	Failure cases
	Real world fling parameter robustness
	Real world Failures
	Designing dynamic motion primitives
	Why is learning fling speeds unhelpful?


