486

487

489
490
491
492
493
494

496
497

498
499
500
501
502
503

505

506

508
509

510

511
512
513
514
515
516
517
518

519
520
521
522

524
525
526
527
528
529
530

531

532
533
534
535

A Argument-Function Processing in Other Models

In Section 3 we show that GPT2-Medium and Bloom promote the in-context ‘argument’ token to
some function before promoting the answer to that function. In figure [§we show that this effect
is present across other models as well in the three tasks we test. Qualitatively, we find that the
pattern is more prominent in models that have more layers, likely because we are able to get more
measurements after the FFN updates, so it is less likely that entire argument formation stage happens
within a single layer (i.e., after the attention module update — we only take measurements after the
FFN update for simplicity). In the extractive task setting, we would not expect the model to go
through argument-function processing in order to reach the prediction, since it already appears in
context (although this does not preclude it from doing so — it is still a valid way to retrieve the required
information). We see that this X shaped pattern disappears when we plot the argument-answer curves
for the extractive world capitals data, as shown next to the abstractive setting in Figure [9]

We repeat the random tokens task on GPT-J using the same stimuli as in the main paper to select &
vectors. We find that we can locate o vectors occurring in other models, however the success rate
varies for the tasks that we evaluate in this work. Results are shown in Figure[TI0. Although the
uppercasing function works very well, we get weaker responses for the past tense and world capitals
mappings. One explanation could be that these tasks are not solved with an as-general solution as in
GPT?2, but the process for carrying out this intervention depends on hyperparameters which are often
model-specific (i.e., the exact layer at which to perform the intervention), so future work is needed to
understand where differences between these models lie.

B Additional Results on Ablating FFNs

We include the results for all six models we test for the FFN ablation study for both the colored
objects task (Figure[1T)) and the world capitals task (Figure[T2). We find that the trend of abstractive
performance dropping off far before extractive performance is reflected across all models.

B.1 +/-0.45. Intervention on Colors

As illustrated in the example in Figure ??, adding o.4s. to the residual stream (219 + 0¢qs¢) has the
effect of capitalizing the first letter in the word ‘brown’. Similar to the results in Sections[2.2/and 2.2,
we find that adding 0., to the residual stream has the effect of uppercasing the token prediction
on arbitrary contextualized representations in the mid layers of GPT2-Medium. However, we also
find that lowercasing the first letter can be accomplished by subtracting it. Qualitatively, this works
much the same way as adding the & vectors previously discussed. We show this effect empirically, by
showing the difference between replacing the FFN updates in GPT2-Medium with either positive or
negative o.ase (having the effect of adding or subtracting from the residual stream).

We progressively remove FFNs from the top of the model, and show the effect of adding or subtracting
Ocase in Figure [[3 In the abstractive case, we find that accuracy is greatly boosted when adding
0Ocase Which we identify as implementing an uppercasing function, and reflects the results in Sections
[2.2]and[2.2] We find that we can replace the top third of GPT2-Medium FFN layers (FFNs in layers
16-24, around 20% of all parameters) with +0.4se to gain 25% in total accuracy (from 4.5% to 29.5%)
and recovering to 72% of the performance of the un-ablated model (41%). Conversely, if we subtract
Ocase 1N the abstractive setting to encourage lowercasing (i.e., encouraging the model to output a
lowercased answer when the answer it should have a capital first letter), the model immediately hits
0% performance. We see the opposite effect in the extractive setting, where adding ocase hurts
performance to a greater degree than subtracting it. According to our results presented so far, we
would expect FFNs to be unnecessary for solving the extractive dataset examples, which is possibly
why performance is degraded in both cases we intervene, but we don’t test this idea in this work.

C Effect on Zero-shot Performance

We find that intervening on the model with o' vectors has applications in controllable generation, that
is, guiding the generation process towards some relevant text. We showed this was the case in Section
[, but we can also apply this idea to the context of zero-shot learning. When we provide in-context
examples, we are also providing the output format of the prompt. Consider the example “Q: What

13

Argument-Function Processing in the Last Token

across Task/Models

Mapping Verbs to Past

World Capitals Task Mapping to Uppercase
Tense
Bloom
1.00 A 1.00 A 1.00 A
0o —e— Argument oo —e— Argument 0o —e— Argument
0.75 1 — Answer 0.75 1 — Answer 0.75 1 — Answer
0.50 A 0.50 A 0.50 A
0.25 A 0.25 A 0.25 A
0.00 ¢ - 10.001¢ - > 10.00 1 ¢ - .
0 35 70 0 35 70 0 35 70
GPT-J
1.00 A 1.00 - 1.00 -
—e— Argument —e— Argument —e— Argument
0.75 1 — Answer —— Answer —— Answer
0.50 A
0.25 A
000- T T T T T T T T
0 14 28 0 14 28 0 14 28
GPT2-XL
1.00 A 1.00 - 1.00 -
—e— Argument —e— Argument —e— Argument
0.75 1 — Answer 0.75 1 — Answer 0.75 1 — Answer
v
c p i]
< 0.50 0.50 0.50
o
— 0.2514 0.25 A 0.25 A
©
S 0.00- 0.004¢ ' 0.004 ' '
o 0 24 48 0 24 48
'8 GPT2-Large
o 1007 Argument 100y Argument L0071 Argument
% 0.75 1 —— Answer 0.75 1 —— Answer 0.75 1 —— Answer
)]
= 050 0.50 A 0.50 A
0.25 A 0.25 A 0.25 A
0.00 A 0.00 e - 10.00 e . .
0 18 36 0 18 36
GPT2-Medium
1.00 A 1.00 A 1.00 A
—e— Argument —e— Argument —e— Argument
0.75 4 —— Answer 0.75 4 —— Answer 0.75 4 —— Answer
0.50 0.50 0.50
0.25 0.25 0.25
0.00 0.00 e . 0.00 4 ° ’
4 0 12 24 0 12 24
GPT2-Small
1.00 A 1.00 A 1.00 A
oo —e— Argument oo —e— Argument 0o —e— Argument
0.754 — Answer 0.75 4 — Answer 0.75 4 — Answer
0.50 0.50 0.50
0.25 0.25 A 0.25
0.00 ° ° 0.00 ° ° 0.00 A ° ;
0 6 12 0 6 12 0 6 12

Layer

Figure 8: Across several model architectures and tasks, we find evidence that on average, the argument
(which appears in context) rises to the top of the vocab distribution before crossing with the answer
to the task. We describe this as argument-function processing where the argument to some function is
represented in the residual stream before some update from the model is added to it to produce the
output of that function. Qualitatively, we observe that models with more layers display this pattern

more prominently.

14

Comparison of Abstractive and Extractive Versions of the World Capitals Task

GPT2-Small

GPT2-Medium GPT2-Large GPT2-XL GPT- Bloom
1.0 1.0 1.0 1.0 1.0 1.0
—— Argument
0.8 0.8 0.8 0.8 0.8 0.8 — Answer
EXtraCthe 0.6 0.6 0.6 0.6 0.6 0.6
0.4 0.4 0.4 0.4 0.4 0.4
< 0.2 0.2 0.2 0.2 0.2 0.2
©
< 0.0 0.0 0.0 0.0 0.0 0.0
5® 0 6 12 o0 12 24 0 18 EC 24 8 0 14 28 0 35 70
oY
=2
G 10 1.0 1.0 1.0 1.0 1.0 Argument
-4 0.8 0.8 0.8 0.8 0.8 0.8~ Answer
Abstractive®6 0.6 0.6 0.6 0.6 0.6
0.4 0.4 0.4 0.4 0.4 0.4
0.24 0.24 0.2 0.24 0.24 0.2
0.0 0.0 0.0 0.0 0.0 0.0
0 6 12 0 12 24 0 18 36 0 24 48 0 14 28 0 35 70
Layer

Figure 9: The ‘X’ pattern of argument and answer tokens crossing in the course of the forward pass is
the characteristic pattern in argument-function processing. In the main text, we show how the models
we test use this type of processing to recall the capital cities of locations. When we make the task
extractive (by including the correct capital in the given context), the model does not have to setup
an argument and function in order to get the answer, and the pattern disappears. This highlights the
differences we describe in processing extractive and abstractive tasks. Both datasets are filtered for
examples where the models were correct.

Mapping Locations to their Capital Cities

Uppercasing

Intervention from Poland -> Warsaw

Intervention from brown -> Brown

Mapping Verbs to Past Tense
Intervention from abolish -> abolished

—— Control World Capitals 0.81 —— Control Color Words —— Control Regular+Irregular Verbs
0.12{ —=— Ociy Intervention —e— Oupper Intervention —e— Opast Intervention
0.7 0.20
<
0.10 S 0.6
% o
] 1
X 0.08 805 0.15
g Soa
2 0.06 ° 0.10
S o}
§ 03
& o004 5 o2
= 0.05
0.02 01
0.00 0.0 0.00
o nor) ° nor
SENNINSNRARRIRILCR SONNINRNRARRINILECR SONDIASRRARNNNNALR
Layer Layer

Figure 10: We use the same stimuli to extract o' vectors on GPT-J. Results are similar for the
uppercasing function, but only very weakly positive on the world capitals task.

GPT2-Small GPT2-Medium GPT2-Large
40 A 40
20
10 - 201 207
O L T T 0 L T T O L T T
0 0 0.5 1 0 0.5 1 0 0.5 1
©
5 GPT2-XL GPT-) Bloom (176B)
8 40 1 75 1 —@— Extractive
< 40 - ~¥— Abstractive
50
20
20 25
O L T T 0 L T T O L
0 0.5 1 0 0.5 1 0 0.5 1

Proportion of FFNs Intact

Figure 11: Results of removing FFN sublayers for the colored objects task for all models.

15

GPT2-Small GPT2-Medium GPT2-Large

100 100 A
20 A 50 50 A
0 : 0- : 015 -
0 0 0.5 0 0.5 0 0.5
©
5 GPT2-XL GPT-J Bloom
o] r J
o 100 100 100 —@— Extractive
< -~ Abstractive
50 A 50 1 50 |
0 - i 0 i 0 -
0 0.5 0 0.5 0 0.5

Proportion of FFNs Intact

Figure 12: Results of removing FFN sublayers for the world capitals task for all models.

Effect of Ablating FFNs, or Replacing them with +/- 0ypper

40 Abstractive ,/’_:.
-@- Abs. +0case . 3
301 ..@- AbS. -Ocase o
/
20 4 /
/
/
/
10 /
- <
> -
% 0 @ - @ Teerenans @ erererann @erernrens @errrinane)
~
5 0 0.5 1
9
< 40 1 _e— Extractive

-®- Ext. +0case
301 .9

EXt. -Ocase
201

10

& /

0] &“mmnm ik et Tt .
0 05 1
Proportion of FFN Layers Affected

Figure 13: Replacing FFN updates with +o.4s. helps recover accuracy in abstractive tasks where the
answer is expected to be uppercase compared to subtracting it or ablating the FFNs. In extractive
tasks, the task is primarily solved by attention modules and adding or subtracting 0., se only hurts
performance.

16

536

538
539
540
541
542
543
544
545
546
547
548
549
550

552
553
554
555

556

557
558
559
560
561
562
563
564
565

566

567

568
569
570

World Capitals Task Past Tense Mapping Task

Accuracy
=}
2
w

©
h
o

0.05 4

0.00 -
0 Shot 1 Shot

0.351

0.30

0.251

0.20 1

0.151

0.101

0.05 1

0.00 -
0 Shot +ogity 0 Shot 1 Shot 0 Shot +0past

Figure 14: By replacing FFN networks with the corresponding ¢ vectors, we show that we can
improve zero-shot performance by taking advantage of the model going through argument formation

in the zero-shot setting.

is the capital of Poland? A:". unlike the one shot example given in Figure 2, there is no indication
that the next word should be “ Warsaw" over continuing the generation as a complete sentence “The
capital of Poland is Warsaw", which is what GPT2-Medium actually generates. If we decode at every
layer, as is shown in Table[C| we can see that the model still goes through argument formation despite
preferring to generate the full sentence. We can take advantage of this behavior by replacing the
FFN layers in the later layers with oy, in order to guide the generation to the expected response of
immediately generating the capital. We can perform this experiment on the past tensing task as well.

Layer | Top Token
0 (

1 A

2 A

3 A

4 A

5 A

6 A

7 A

8 A

9 The
10 The

11 The

12 The

13 The

14 The

15 The

16 The

17 The

18 Poland
19 Poland
20 Poland
21 Poland
22 Poland
23 The

Table 1: These are the top
tokens per layer in GPT2-
Medium on the example zero-
shot Poland example

Results on the zero-shot tasks are shown in Figure[T4] We find that
on the world capitals task, we can greatly improve the propensity of
the model to output the expected answer by performing an ¢ vector
intervention, improving zero-shot performance from 5.6% to 33.0%.
On the past tense mapping task, where perhaps the output format is
more obvious from the prompt, the zero and one shot performances
are about equal, but we still see a modest improvement over the one
shot results of about 4.2%. Although the tasks are very simple, we
achieve this by effectively ablating FFN layers (layers 19-23) and
precomputing their activations, suggesting it might be possible to
edit models extensively to limit their expressiveness to one type of
output while also making them more efficient. We are optimistic
about future work in this area.

D Effect of Layer Choice on Intervention Results

In the main text, we replace FFNs starting at either layer 18 or 19
GPT2-Medium to the end (indexed at 0). We find that intervening
on only one layer promotes the output token, but not to the top of
the distribution. One possibility is that the model makes gradual
updates that are pushing the token representation in generally the
same direction [Jastrzebski et al} [2017]. In Figure[T3] we show that
adding any of the ¢ vector interventions at any single layer at 18
or afterwards, there is a roughly equivalent increase to the average
reciprocal rank of the target word.

E Effect
of Tokenization on the Effectiveness of o Vectors

The tokenizer can split one word into multiple subtokens, such as
“Purple"” into the tokens “Pur" and “ple". This occurs with words
that were less frequent in the training data. We find that this process

17

571
572
573
574
575

577
578

579

580

World Capitals Past Tense

0.8 —— Control ' 0.8 4 —e— Control '
Intervention 18 | Intervention 18 |
0.7 — Intervention 19 | 0.7 — Intervention 19 |
" | —— Intervention 20 ! " | —— Intervention 20 !
—— Intervention 21 : —— Intervention 21 :
0.6 1 —— Intervention 22] 0.61 —— Intervention 22]
Intervention 23 i Intervention 23 i
0.5 —— Intervention 18-23 : 0.51 —— Intervention 18-23 :
1 1
1 1
1 1
0.44 i 0.44 i
1 1
1 1
1 1
! 03 !
1 1
~ | |
0.24
[= i ;
© | Vy
o 01
© 001
U T
E 01234567 8 91011121314151617181920212223
Q.
8 Uppercasing Color Words Uppercasing Words Tokenized as One Token
o 0.8 —— Control 0.9 —— Control

Intervention 18
—— Intervention 19
—e— Intervention 20

Intervention 18
Intervention 19

— 0.8
—e— Intervention 20

0.74

Intervention 21
Intervention 22
Intervention 23
0.5 —— Intervention 18-23

Intervention 21
Intervention 22
0.6 Intervention 23
—e— Intervention 18-23

0.74
0.6 1

0.5
0.4
0.4
0.3
0.3 1
0.2
0.2
1
1
4 1
0.1 0.14 |
1
1
0.0 0.0 1 !
012345678 91011121314151617181920212223 01234567 891011121314151617181920212223
Layer

Figure 15: Replacing any individual FFN update is worse than replacing all of them. This supports
the idea that networks made gradual updates to their representations, and that the ¢ vectors we extract
behave this way as well: multiple similar updates are made k layers in a row. Interestingly, the
average boost to the reciprocal rank is about the same regardless of which single layer we apply the
update at, suggesting that this range of FFNs are operating in same space.

has a generally negative effect on the performance of the intervention we perform. Intuitively, if we
are trying to use o,pper to capitalize the “purple” token into “Purple", it must map from “purple”
(one token) to “Pur". It seems less obvious, then, that the embeddings would encode a linear
relationship between these two, since “Pur" is a subtoken in many other words. We explore this
specific phenomenon on the random tokens task from Section [4{ with the 0.y, intervention. We take
100 single token words that capitalize to a single token, and 100 others that capitalize to words that
break down into multiple tokens. Our results can be seen in Figure[I6. We find that tokens that get
broken up into multiple tokens are less probable than for tokens that capitalize to single token forms.

F Compute

All models were run on NVidia RTX 3090s; Bloom was run locally on 3090s in float16 with CPU
offloading.

18

Probability and MRR Differences when Uppercasing words which are Broken into One vs Multiple Tokens

—&— Control - >1 Token —&— Control - >1 Token
0.51 —— Intervention - >1 Token 087 —— Intervention - >1 Token
—— Control - 1 Token « 0.74 —— Control - 1 Token
—— Intervention - 1 Token < —=— Intervention - 1 Token
0.4 T
o 0.6
> w©
= 03l Q051
50 S
2 S o044
<] Q
& 02 < 034
c
302
0.1 =
0.19
0.04 0.0 AdbhAhhAhh
012345678 91011121314151617181920212223 0123456 7 891011121314151617181920212223
Layer Layer

Figure 16: When the uppercase version of a word gets broken down into multiple subtokens, mapping
to that token becomes much less probable and is generally harder of an association for the model to
make.

19

	Intro
	Methods
	Early Decoding
	Tasks
	Models

	Stages of Processing in Predicting the Next Token
	Implementation of Context-Independent Functions in FFN Updates
	 Vector Interventions

	The Role of FFNs in Out-of-Context Retrieval
	Abstractive vs. Extractive Tasks
	Effect of Ablating FFNs

	Related Work
	Discussion
	Conclusion
	Argument-Function Processing in Other Models
	Additional Results on Ablating FFNs
	+/-ocase Intervention on Colors

	Effect on Zero-shot Performance
	Effect of Layer Choice on Intervention Results
	Effect of Tokenization on the Effectiveness of Vectors
	Compute

