
A Argument-Function Processing in Other Models486

In Section 3 we show that GPT2-Medium and Bloom promote the in-context ‘argument’ token to487

some function before promoting the answer to that function. In figure 8we show that this effect488

is present across other models as well in the three tasks we test. Qualitatively, we find that the489

pattern is more prominent in models that have more layers, likely because we are able to get more490

measurements after the FFN updates, so it is less likely that entire argument formation stage happens491

within a single layer (i.e., after the attention module update – we only take measurements after the492

FFN update for simplicity). In the extractive task setting, we would not expect the model to go493

through argument-function processing in order to reach the prediction, since it already appears in494

context (although this does not preclude it from doing so – it is still a valid way to retrieve the required495

information). We see that this X shaped pattern disappears when we plot the argument-answer curves496

for the extractive world capitals data, as shown next to the abstractive setting in Figure 9.497

We repeat the random tokens task on GPT-J using the same stimuli as in the main paper to select ~o498

vectors. We find that we can locate ~o vectors occurring in other models, however the success rate499

varies for the tasks that we evaluate in this work. Results are shown in Figure 10. Although the500

uppercasing function works very well, we get weaker responses for the past tense and world capitals501

mappings. One explanation could be that these tasks are not solved with an as-general solution as in502

GPT2, but the process for carrying out this intervention depends on hyperparameters which are often503

model-specific (i.e., the exact layer at which to perform the intervention), so future work is needed to504

understand where differences between these models lie.505

B Additional Results on Ablating FFNs506

We include the results for all six models we test for the FFN ablation study for both the colored507

objects task (Figure 11) and the world capitals task (Figure 12). We find that the trend of abstractive508

performance dropping off far before extractive performance is reflected across all models.509

B.1 +/-ocase Intervention on Colors510

As illustrated in the example in Figure ??, adding ocase to the residual stream (x19 + ocase) has the511

effect of capitalizing the first letter in the word ‘brown’. Similar to the results in Sections 2.2 and 2.2,512

we find that adding ocase to the residual stream has the effect of uppercasing the token prediction513

on arbitrary contextualized representations in the mid layers of GPT2-Medium. However, we also514

find that lowercasing the first letter can be accomplished by subtracting it. Qualitatively, this works515

much the same way as adding the ~o vectors previously discussed. We show this effect empirically, by516

showing the difference between replacing the FFN updates in GPT2-Medium with either positive or517

negative ocase (having the effect of adding or subtracting from the residual stream).518

We progressively remove FFNs from the top of the model, and show the effect of adding or subtracting519

ocase in Figure 13. In the abstractive case, we find that accuracy is greatly boosted when adding520

ocase which we identify as implementing an uppercasing function, and reflects the results in Sections521

2.2 and 2.2. We find that we can replace the top third of GPT2-Medium FFN layers (FFNs in layers522

16-24, around 20% of all parameters) with +ocase to gain 25% in total accuracy (from 4.5% to 29.5%)523

and recovering to 72% of the performance of the un-ablated model (41%). Conversely, if we subtract524

ocase in the abstractive setting to encourage lowercasing (i.e., encouraging the model to output a525

lowercased answer when the answer it should have a capital first letter), the model immediately hits526

0% performance. We see the opposite effect in the extractive setting, where adding ocase hurts527

performance to a greater degree than subtracting it. According to our results presented so far, we528

would expect FFNs to be unnecessary for solving the extractive dataset examples, which is possibly529

why performance is degraded in both cases we intervene, but we don’t test this idea in this work.530

C Effect on Zero-shot Performance531

We find that intervening on the model with ~o vectors has applications in controllable generation, that532

is, guiding the generation process towards some relevant text. We showed this was the case in Section533

4, but we can also apply this idea to the context of zero-shot learning. When we provide in-context534

examples, we are also providing the output format of the prompt. Consider the example “Q: What535

13

World Capitals Task Mapping to Uppercase Mapping Verbs to Past
Tense

Figure 8: Across several model architectures and tasks, we find evidence that on average, the argument
(which appears in context) rises to the top of the vocab distribution before crossing with the answer
to the task. We describe this as argument-function processing where the argument to some function is
represented in the residual stream before some update from the model is added to it to produce the
output of that function. Qualitatively, we observe that models with more layers display this pattern
more prominently.

14

Figure 9: The ‘X’ pattern of argument and answer tokens crossing in the course of the forward pass is
the characteristic pattern in argument-function processing. In the main text, we show how the models
we test use this type of processing to recall the capital cities of locations. When we make the task
extractive (by including the correct capital in the given context), the model does not have to setup
an argument and function in order to get the answer, and the pattern disappears. This highlights the
differences we describe in processing extractive and abstractive tasks. Both datasets are filtered for
examples where the models were correct.

Figure 10: We use the same stimuli to extract ~o vectors on GPT-J. Results are similar for the
uppercasing function, but only very weakly positive on the world capitals task.

Figure 11: Results of removing FFN sublayers for the colored objects task for all models.

15

Figure 12: Results of removing FFN sublayers for the world capitals task for all models.

Figure 13: Replacing FFN updates with +ocase helps recover accuracy in abstractive tasks where the
answer is expected to be uppercase compared to subtracting it or ablating the FFNs. In extractive
tasks, the task is primarily solved by attention modules and adding or subtracting ocase only hurts
performance.

16

Figure 14: By replacing FFN networks with the corresponding ~o vectors, we show that we can
improve zero-shot performance by taking advantage of the model going through argument formation
in the zero-shot setting.

is the capital of Poland? A:". unlike the one shot example given in Figure 2, there is no indication536

that the next word should be “ Warsaw" over continuing the generation as a complete sentence “The537

capital of Poland is Warsaw", which is what GPT2-Medium actually generates. If we decode at every538

layer, as is shown in Table C we can see that the model still goes through argument formation despite539

preferring to generate the full sentence. We can take advantage of this behavior by replacing the540

FFN layers in the later layers with ~ocity in order to guide the generation to the expected response of541

immediately generating the capital. We can perform this experiment on the past tensing task as well.542

Layer Top Token
0 (
1 A
2 A
3 A
4 A
5 A
6 A
7 A
8 A
9 The
10 The
11 The
12 The
13 The
14 The
15 The
16 The
17 The
18 Poland
19 Poland
20 Poland
21 Poland
22 Poland
23 The

Table 1: These are the top
tokens per layer in GPT2-
Medium on the example zero-
shot Poland example

Results on the zero-shot tasks are shown in Figure 14. We find that543

on the world capitals task, we can greatly improve the propensity of544

the model to output the expected answer by performing an ~o vector545

intervention, improving zero-shot performance from 5.6% to 33.0%.546

On the past tense mapping task, where perhaps the output format is547

more obvious from the prompt, the zero and one shot performances548

are about equal, but we still see a modest improvement over the one549

shot results of about 4.2%. Although the tasks are very simple, we550

achieve this by effectively ablating FFN layers (layers 19-23) and551

precomputing their activations, suggesting it might be possible to552

edit models extensively to limit their expressiveness to one type of553

output while also making them more efficient. We are optimistic554

about future work in this area.555

D Effect of Layer Choice on Intervention Results556

In the main text, we replace FFNs starting at either layer 18 or 19557

GPT2-Medium to the end (indexed at 0). We find that intervening558

on only one layer promotes the output token, but not to the top of559

the distribution. One possibility is that the model makes gradual560

updates that are pushing the token representation in generally the561

same direction [Jastrzebski et al., 2017]. In Figure 15, we show that562

adding any of the ~o vector interventions at any single layer at 18563

or afterwards, there is a roughly equivalent increase to the average564

reciprocal rank of the target word.565

E Effect566

of Tokenization on the Effectiveness of ~o Vectors567

The tokenizer can split one word into multiple subtokens, such as568

“Purple" into the tokens “Pur" and “ple". This occurs with words569

that were less frequent in the training data. We find that this process570

17

Figure 15: Replacing any individual FFN update is worse than replacing all of them. This supports
the idea that networks made gradual updates to their representations, and that the ~o vectors we extract
behave this way as well: multiple similar updates are made k layers in a row. Interestingly, the
average boost to the reciprocal rank is about the same regardless of which single layer we apply the
update at, suggesting that this range of FFNs are operating in same space.

has a generally negative effect on the performance of the intervention we perform. Intuitively, if we571

are trying to use ~oupper to capitalize the “purple" token into “Purple", it must map from “purple"572

(one token) to “Pur". It seems less obvious, then, that the embeddings would encode a linear573

relationship between these two, since “Pur" is a subtoken in many other words. We explore this574

specific phenomenon on the random tokens task from Section 4 with the ~oupper intervention. We take575

100 single token words that capitalize to a single token, and 100 others that capitalize to words that576

break down into multiple tokens. Our results can be seen in Figure 16. We find that tokens that get577

broken up into multiple tokens are less probable than for tokens that capitalize to single token forms.578

F Compute579

All models were run on NVidia RTX 3090s; Bloom was run locally on 3090s in float16 with CPU580

offloading.581

18

Figure 16: When the uppercase version of a word gets broken down into multiple subtokens, mapping
to that token becomes much less probable and is generally harder of an association for the model to
make.

19

	Intro
	Methods
	Early Decoding
	Tasks
	Models

	Stages of Processing in Predicting the Next Token
	Implementation of Context-Independent Functions in FFN Updates
	 Vector Interventions

	The Role of FFNs in Out-of-Context Retrieval
	Abstractive vs. Extractive Tasks
	Effect of Ablating FFNs

	Related Work
	Discussion
	Conclusion
	Argument-Function Processing in Other Models
	Additional Results on Ablating FFNs
	+/-ocase Intervention on Colors

	Effect on Zero-shot Performance
	Effect of Layer Choice on Intervention Results
	Effect of Tokenization on the Effectiveness of Vectors
	Compute

