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Abstract

Bilevel optimization has been shown to be a powerful framework for formulating
multi-task machine learning problems, e.g., reinforcement learning (RL) and meta-
learning, where the decision variables are coupled in both levels of the minimization
problems. In practice, the learning tasks would be located at different computing
resource environments, and thus there is a need for deploying a decentralized
training framework to implement multi-agent and multi-task learning. We develop
a stochastic linearized augmented Lagrangian method (SLAM) for solving general
nonconvex bilevel optimization problems over a graph, where both upper and lower
optimization variables are able to achieve a consensus. We also establish that the
theoretical convergence rate of the proposed SLAM to the Karush-Kuhn-Tucker
(KKT) points of this class of problems is on the same order as the one achieved by
the classical distributed stochastic gradient descent for only single-level nonconvex
minimization problems. Numerical results tested on multi-agent RL problems
showcase the superiority of SLAM compared with the benchmarks.

1 Introduction

In this paper, we consider the following general decentralized bilevel optimization (DBO) framework
with applications to machine learning problems. Suppose that there are n nodes over a connected
graph G = {E ,V}, where E and V represent the edges and vertices. Let Ni denote the set of
neighboring nodes for node i. Then the goal of DBO is to have these nodes jointly minimize two
levels of optimization problems. More formally, DBO is expressed as

min
x1,...,xn

1

n

n∑
i=1

fi(xi,y
∗
i,1(xi), . . . ,y

∗
i,m(xi)) (1a)

s.t. xi = xj , j ∈ Ni,∀i ∈ [n] (1b)

y∗
k(x) = arg min

y1,k,...,yn,k

1

n

n∑
i=1

gi,k(xi,yi,k) s.t. yi,k = yj,k, j ∈ Ni,∀k ∈ [m], (1c)

where vector xi is the upper level (UL) optimization variable at each node i, vector yi,k denotes
the lower level (LL) decision variable for the kth learning task at node i, fi(; ) is a (smooth) UL
loss function and possibly nonconvex with respect to (w.r.t.) both the UL and LL variables, gi,k(, )
denotes the LL objective function of the kth task at node i, m represents the total number of LL
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optimization problems, the consensus constraints xi = xj ,yi,k = yj,k, j ∈ Ni,∀i ∈ [n],∀k ∈ [m],
enforce the model agreements at each level of the problems and for each LL learning task, and y∗

k =
[y∗

1,k, . . . ,y
∗
n,k]

T is the optimal solutions of the kth LL problem under the consensus constraints.

Applications of Bilevel Optimization. Many machine learning problems can be formulated math-
ematically as a form of bilevel optimization or, more precisely, a special case of problem (1), e.g.,
meta-learning or meta reinforcement learning (RL), actor-critic (AC) schemes in RL, hyperparameter
optimization (HPO), and so on.

Classical bilevel optimization is referred to as the case where there is no consensus constraint but
with only two levels of the minimization subproblems, i.e., minx f(x,y

∗(x)), s.t. y∗(x) =
argminy g(x,y), which is also known as Stackelberg games [1] with the UL decision variable as
the leader and the LL decision variable as the follower. It turns out that this class of optimization
problems is useful in formulating a wide range of hierarchical or nested structured machine learning
problems. For example, one of the most popular domain adaption learning models, model-agnostic
meta-learning (MAML) [2, 3], can be written as a special case of bilevel programming [4], where
the UL model provides a good initialization for accelerating learning procedures by implementing
the LL algorithms. The idea behind the model design is that the UL model is considered as the meta
learner that searches for a permutation-invariant subspace over multiple task-specific learners at the
LL so that the performance of the MAML model can be generalized well for unseen or testing data
samples. The theoretical analysis of the generalization performance of this class of bilevel problems
has shown that MAML can indeed decrease the generalization error as the number of tasks increases,
at least for strongly convex loss functions [5]. Subsequently, a thorough ablation study from the
latent representation perspective shows that feature reuse is the actual dominant factor in improving
the generalization performance of MAML [6], and the authors propose a neural network-oriented
algorithm with almost no inner loop (ANIL) that splits the neural network parameters into two
parts corresponding to the UL and LL optimization problems, respectively. Extensive numerical
experiments illustrate that ANIL achieves almost the same accuracy as the classical MAML but
with significant computational savings. This example further strengthens the necessity of variable
splitting in the learning structure by optimizing two levels of objective functions to enhance the
generalization performance. Beyond the traditional supervised meta-learning scenarios, MAML has
also been applied to increasing the generalization ability of agents in RL problems by replacing the
(stochastic) gradient with the (natural) policy gradient (PG) [3] under the same two-level structure.

Besides meta-learning problems, AC structure in RL is another class of common learning frameworks
that can be formulated by a bilevel optimization problem in nature [7, 8, 9], where the actor step at
the UL aims at optimizing the policy while the critic step at the LL is responsible for value function
evaluation. In addition, as the expressiveness of neural networks increased sharply over the past
decades, the reuse of large models with adaptation to multi-task learning problems presents promising
solutions by leveraging the pre-train and fine-tune strategy, such as in applications of HPO [10, 11]
where the hyperparameters are trained at the UL problem so that the downstream learning tasks are
learned with low costs including the expense of both computation and memory.

Applications of Multi-agent Settings. When multiple computational resources are available and
connected, it is well motivated that exploring them solves distributed large-scale problems with
a reduced amount of training time or performs multi-task learning. The bilevel structure of the
meta-learning (ML) is a good fit in this scenario as either UL/LL or both levels may need to access
the networked data samples rather than local ones. For example, a federated learning setting of
MAML [12] and bilevel optimization [13] have been built up over multiple nodes recently, where the
meta/UL learner finds an initial shared model while the local/LL learners leverage it for adapting data
distributions of individual users. In such a way, the federated MAML model can realize personalized
learning without sharing heterogeneous data over numerous clients. Once there is no central controller
for coordinating the model aggregation, a diffusion-based MAML (Dif-MAML) [14] is proposed
by spreading the model parameters over a network, where the UL parameter is updated by one step
of stochastic gradient descent (SGD) based on a combination of the parameters of neighbors as the
initialization for local model updates.

Decentralized hierarchical structured learning is even more stringent in the multi-agent RL (MARL)
setting [15] as the learning tasks are essentially located at scattered sensors and/or controllers.
Under this setting, MARL problem becomes a multi-objective optimization problem under provided
(approximate) value functions, where the policy of each agent needs to be learned locally by certain
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efficient iterative methods, such as multi-agent deep deterministic policy gradient (MADDPG) [16],
trust region methods [17], optimal baseline based variance reduced policy gradient [18], and/or
improved by more advanced techniques, e.g., constrained policy optimization [19] and large sequence
models [20]. In such a way, the total reward can be maximized over the distributed agents through
optimizing the networked policy. In a fully collaborative setting, the team-based value function
is even required to be shared over all the agents such that each agent is able to improve its policy
based on the estimated total reward. For example, the decentralized AC (DAC) scheme has been
investigated widely [15, 21, 22], where each agent uses the actor step to optimize its policy while the
critic step performs one step [23] or multiple steps of temporal difference learning with mini-batch
sampling (MDAC) [22, 24] and communications so that the team-based reward over the network is
obtained by each agent. It turns out that DAC can be formulated as a special case of problem (1)
as there is no consensus at the UL. Recently, it has been revealed that if there exists homogeneity
of the state and action spaces, decentralized policy consensus (or a partial policy parameter sharing
strategy) provides significant merits to the centralized training and decentralized execution paradigm
in terms of learning scalability and efficiency[23, 25], which motivates the consensus process at both
UL and LL DBO problems.

Related Theoretical Works. Given the fruitful results across these many applications, the corre-
sponding theoretical analysis has been developing very fast as well for variants of bilevel optimization
problems. For example, the convergence behaviors of classical inexact MAML (iMAML) methods
have been quantified for both convex [26, 27] and nonconvex [28] cases of the UL loss function,
where the LL algorithm only performs one step of stochastic gradient descent (SGD) based on the LL
objective functions as the adaptation step. Moreover, the iteration complexity of ANIL with multiple
iterations for minimizing the LL problems have been studied in [29], which justifies the significant
computational advantages of ANIL compared with MAML in theory. Furthermore, the finite-time
analysis of AC algorithms has shown [30] that, once the learning rates at both the actor and critic sides
are chosen properly, a two timescale AC algorithm can achieve an O(ϵ−2.5) iteration complexity for
finding the first-order stationary points (FOSPs) of general nonconvex reward functions.

Besides these theoretical analyses in a specific learning setting, the algorithm design and correspond-
ing convergence analysis for general bilevel optimization solvers have been recently advancing at a
rapid pace under certain assumptions that the UL objective function is general nonconvex while the LL
objective functions are strongly convex, which covers the existing convergence results shown for AC
algorithms. The typical algorithms include those with double-loop structure, those with two timescale
or single timescale but single-loop, and those with error-correction or accelerated/variance-reduction.
To be more specific, double-loop algorithms, such as bilevel stochastic approximation (BSA) methods
[31] and stochastic bilevel optimizers (stoBiO) [32], mainly request an inner loop to solve the LL
problem up to a certain error tolerance or with a certain number of iterations and then switch back
to optimize the UL problem, which can achieve an O(ϵ−2) convergence rate to the ϵ-FOSPs. In
practice, single-loop algorithms are implemented more efficiently in terms of computational com-
plexity and hyperparameter tuning compared to double-loop algorithms. A two-timescale stochastic
approximation (TTSA) was analyzed in [33], but it is shown that TTSA needs O(ϵ−2.5) number of
iterations to achieve the ϵ-FOSPs. Later, an error correction method, named the Single-Timescale
stochAstic BiLevEl optimization (STABLE) method [34], improves the convergence rate of the
single-loop algorithm to O(ϵ−2) and a tighter analysis for ALternating Stochastic gradient dEscenT
(ALSET) shows that the single-loop algorithm can also achieve a convergence of O(ϵ−2) without the
error correction technique. When more advanced momentum-assisted or variance reduction methods
are adopted in the algorithm design, the subsequent works, such as the momentum-based recursive
bilevel optimizer (MRBO) [35] and the single-timescale double-momentum stochastic approximation
(SUSTAIN) [36] and the variance reduced BiAdam (VR-BiAdam) [37], can sharpen the convergence
rate of bilevel algorithms to O(ϵ−1.5).

For the theoretical works on MAML/MARL, it is shown in [22, 24] that when the critic side is
allowed the consensus step at each agent to approximate the networked rewards, MDAC algorithms
can achieve an O(ϵ−2) convergence rate to FOSPs, but both of them require an inner loop procedure
for the LL problem which makes the algorithms double loop. Dif-MAML [14] is able to perform
the UL consensus-based meta learning, but iMAML considered in Dif-MAML is only a very special
case of bilevel. Thus, the applicability of Dif-MAML is restrictive. One of the closest works to ours
is coordinated AC (CAC) [23], which can realize the consensus on both UL and LL problems with
O(ϵ−2.5) number of iterations and is only for DAC problems. A theoretical comparison between our
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Table 1: A comparison with closely related prior work on (decentralized) bilevel optimization learning.
“Comm.” refer to whether the algorithm only needs one round of communication at either UL or LL
per iteration; “Alg.” refs to the types of the basic stochastic algorithms adopted in the method.

Prior work Consensus Method Rate Comm. Alg. Setting
UL LL

Ghadimi et al. [31] BSA O(1/ϵ2) - SGD bilevel
Hong et al.[33] TTSA O(1/ϵ2.5) - SGD bilevel
Chen et al. [43] ALSET O(1/ϵ2) - SGD bilevel

Khanduri et al. [36] SUSTAIN O(1/ϵ1.5) - Momentum bilevel
Kayaalp et al. [14] ✓ Dif-MAML O(1/ϵ2) ✓ SGD iMAML
Kaiqing et al. [15] ✓ DAC - ✓ PG MARL

Chen et al. [22] ✓ MDAC O(1/ϵ2) PG MARL
Hairi et al. [24] ✓ MDAC O(1/ϵ2) PG MARL
Zeng et al. [23] ✓ ✓ CAC O(1/ϵ2.5) ✓ PG MARL

This work ✓ ✓ SLAM O(1/(nϵ2)) ✓ SGD/PG bilevel

work and closely related previous works on bilevel programming is shown in Table 1. There is a
line of independent work on decentralized optimization. But the existing works are only suitable for
single-level minimization of only nonconvex problems, such as distributed SGD [38, 39], stochastic
gradient tracking [40, 41] and stochastic primal dual algorithm [42], which can achieve an O(1/(nϵ2))
convergence rate to FOSPs for general nonconvex objective function optimization problems.

Main Contributions of This Work. In this work, we consider a very general DBO setting, where
both UL and LL problems can include a consensus constraint for model parameter sharing and there
would be multiple LL problems coupled with the UL problem. To solve this problem efficiently in a
fully decentralized way, we propose a Stochastic Linearized Augmented Lagrangian Method (SLAM)
for dealing with both of the two levels of the optimization processes and the consensus constraints at
each level. Leveraging the linearized augmented Lagrangian function as a surrogate, the design of
SLAM is simple and easily implemented as it is a single-loop algorithm with only step sizes to be
tuned for convergence. We make the standard assumptions on Lipschitz continuity and convexity
for both the UL and LL optimization problems as shown in the existing literature. We establish the
conditions of SLAM w.r.t. convergence to ϵ-Karush-Kuhn-Tucker (KKT) points of problem (1) at a
rate of O(1/(nϵ2)), matching the standard convergence rate achieved by decentralized SGD type of
algorithm to FOSPs for only single-level nonconvex minimization problems. Remarkably, through
numerical experiments on MARL problems, it is observed that SLAM can converge faster than the
existing MARL methods and even achieve higher rewards in most cases.

To summarize, the main contributions of this work are highlighted as follows:

▶ Our proposed SLAM algorithm is generic, and thus generalizes the single agent-based bilevel
algorithms to the multi-agent setting and is amnable to be specialized to solve multiple consensus-
based DBO problems.

▶ SLAM is a single-timescale and single-loop algorithm that can find the ϵ-KKT points at a rate
of O(1/(nϵ2)), which shows a linear speedup w.r.t. the number of nodes. To the best of our
knowledge, this is the first work that shows a decentralized stochastic algorithm can achieve
this rate under the constraints where any level or both levels of the DBO problem requires the
consensus process.

▶ Numerical results that illustrate the proposed SLAM outperforms the state-of-the-art MARL
algorithms over heterogeneous networks in terms of both convergence speed and achievable
rewards.

Due to space limitations, all technical proofs are deferred to the supplement.

2 Decentralized Bilevel Optimization Framework

Problem formulation of DBO. One of the main motivations for performing decentralized joint
learning is dealing with large-scale dataset or scattered data samples. At each node, the loss func-
tion can be written as fi(xi,y

∗
i,1(xi), . . . ,y

∗
i,m(xi)) ≜ Eξ∈DU

i
[Fi(xi,y

∗
i,1(xi), . . . ,y

∗
i,m(xi); ξ)],

where DU
i denotes the local data distributions at the UL optimization problem, and

Fi(xi,y
∗
i,1(xi), . . . ,y

∗
i,m(xi); ξ) represents the estimation error of the UL learning model on
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data ξ ∈ DU
i . Similarly, the LL learning tasks also include randomly sampled data from a

local distribution DL
i,k for task k, so the LL cost function at each node can be expressed as

gi,k(xi,yi,k) ≜ Eζ∈DL
i,k
[Gi,k(xi,yi; ζ)],∀k, where Gi,k denotes the estimation error of the LL

learning model over yk,i on data ζ ∈ DL
i,k. It is well known that SGD is one of the most efficient

algorithms for tackling large amounts of data samples. Before showing the algorithm design, we
first reformulate problem (1) in a concise and compact way from a global view of the variables. Let
x ≜ [x1, . . . ,xn]

T and yk ≜ [y1,k, . . . ,yn,k]
T . Then, problem (1) can be rewritten by concatenated

variables as

min
x

f(x,y∗
k(x)) ≜

1

n

n∑
i=1

fi(xi,y
∗
i,k(xi)) (2a)

s.t. Ax = 0, (2b)

y∗
k(x) = argmin

yk

gk(x,yk) ≜
1

n

n∑
i=1

gi,k(xi,yi,k) s.t. Ayk = 0,∀k ∈ [m], (2c)

where gk(x,yk) denotes the kth LL loss function, A ∈ R|E|×n represents the incidence matrix1 and
fi(xi,y

∗
i,k(xi)) abbreviates fi(xi,y

∗
i,1(xi), . . . ,y

∗
i,m(xi)) for notational brevity.

Algorithm Design. Towards this end, it is straightforward to construct a variant of the classical
augmented Lagrangian function for the UL optimization problem as

Lργ(x,λ) = f(x,y∗
k(x)) + γ⟨λ,Ax⟩+ ργ

2
∥Ax∥2, (3)

where λ denotes the dual variable (Lagrangian multiplier) for the consensus constraint, ρ > 0, and γ
is a scaling factor (which will be determined later).

Motivated by the primal-dual optimization framework [44], one step of gradient descent based on the
linearized objective function with a following gradient ascent step is sufficient for the minimization
of the general nonconvex loss function under the linear constraints, which means that there is no need
to solve an inner optimization problem before updating the Lagrangian multiplier as is done in the
classical augmented Lagrangian method.

When both the UL and LL objective functions are differentiable and the inverse of the Hessian
matrix at the LL problem exists, i.e., ∇2

ykyk
gk(x,y

∗
k(x)) is invertible, then there exists a closed

form for ∇fi(xi,y
∗
i,k(xi)). Following the existing works on bilevel algorithm designs, replacing

y∗
i,k(xi) by yi,k in the gradient of fi(xi,y

∗
i,k(xi)) w.r.t. xi can serve as an efficient surrogate

for the stochastic gradient estimate. However, in the decentralized setting, only individual loss
functions are observable at each agent, therefore, the local UL implicit gradient is computed through
replacing gk(x,yk) by gi,k(xi,yi,k), denoted as ∇fi(xi,yi,k). Let hr

g,k and hr
f respectively denote

the distributed stochastic gradient estimate of the LL and UL objective functions at points (xr,yr
k)

and (xr,yr+1
k ),∀k, w.r.t. yk and x, where r represents the index of iterations. Thus, our proposed

SLAM can be expressed as

yr+1
k = argmin

yk

⟨hr
g,k + γAT (ωr

k + ρAyr
k),yk − yr

k⟩+
β

2
∥yk − yr

k∥2, ∀k, (4a)

ωr+1
k = ωr

k +
ρ

γ
Ayr+1

k , ∀k, (4b)

xr+1 = argmin
x

⟨hr
f + γAT (λr + ρAxr),x− xr⟩+ α

2
∥x− xr∥2, (4c)

λr+1 = λr +
ρ

γ
Axr+1, (4d)

where ωk is the dual variable for ensuring the LL consensus process for each learning task, α and β
are the parameters of the quadratic penalization terms, and ρ/γ here is the step-size for the updates
of the dual variables.

Implementation of SLAM. Noting that the objective functions in each subproblem, i.e., (4a) and
(4c), are quadratic, we can easily have the updates of both UL and LL optimization variables as

1Here, we assume the problem dimension is 1, without loss of generality, to simplify the notation.
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yr+1
k = yr

k − 1

β

(
hr
g,k + γATωr

k + ργATAyr
k

)
,∀k, (5a)

xr+1 = xr − 1

α

(
hr
f + γATλr + ργATAxr

)
, (5b)

where 1/α and 1/β serve as the step-sizes of updating both UL and LL learning models.
Subtracting the equality with the same one from the previous iteration for both (5a) and (5b) ends up
with efficient model updates of both the UL and LL learning problems as follows:

yr+1
k =2Wgy

r
k −W′

gy
r−1
k − 1

β

(
hr
g,k − hr−1

g,k

)
, ∀k, (6a)

xr+1 =2Wfx
r −W′

fx
r−1 − 1

α

(
hr
f − hr−1

f

)
, (6b)

where the mixing matrices, with τg = β/γ and τf = α/γ, are defined as

Wg ≜ I− (1 + γ−1)ρ

2τg
ATA, W′

g ≜ I− ρ

τg
ATA, (7a)

Wf ≜ I− (1 + γ−1)ρ

2τf
ATA, W′

f ≜ I− ρ

τf
ATA. (7b)

According to (6a) and (6b), it can be readily observed that SLAM is amenable to a fully decentralized
implementation. The detailed algorithm description is provided in Algorithm 1 from a local view of
the model update, where [W]ij denotes the ijth entry of matrix W, [hr

g]i,k is the gradient estimate
of ∇gi,k(x

r
i ,y

r
i,k) (i.e., hr

g,k = [[hr
g]1,k, . . . , [h

r
g]n,k]

T ), and similarly [hr
f ]i is the local gradient

estimate of ∇fi(x
r
i ,y

r+1
i,k ) (i.e., hr

f = [[hr
f ]1, . . . , [h

r
f ]n]

T ).

Algorithm 1 Decentralized implementation of SLAM

Initialization: α, β, γ, x1
i ,y

1
i,k,∀i, k, and set λ1 = ω1

k = 0,∀k;
1: for r = 1, 2, · · · , T do
2: for i = 1, 2, · · · , n in parallel over the network do
3: Estimate gradient ∇gi,k(x

r
i ,y

r
i,k) for each task and ∇fi(x

r
i ,y

r+1
i,k ) locally

4: yr+1
i,k = 2

∑
j∈Ni

[Wg]ijy
r
j,k − [W′

g]ijy
r−1
j,k − β−1

(
[hr

g]i,k − [hr−1
g ]i,k

)
▷ LL models

5: xr+1
i = 2

∑
j∈Ni

[Wf ]ijx
r
j − [W′

f ]ijx
r−1
j − α−1

(
[hr

f ]i − [hr−1
f ]i

)
▷ UL model

6: end for
7: end for

Besides, if there is a consensus requirement at only one level of the optimization problem, then the
problem at the other level becomes one with multiple objective functions. Our proposed SLAM
can also be applied for solving any of these problems by a minor revision of the generic SLAM
formulation. To be more specific, we provide the following discussion.

A Special Case of DBO (1) (with only consensus in the LL problems). If there is only a need for
consensus of LL model parameters, then problem (2) reduces to the following DBO problem. For
example, in solving multi-agent actor-critic RL problems, the UL optimization problem consists of
improving the policy for each agent while the LL problem requires all the agents to jointly evaluate
the value function over the whole network. The DBO problem is then expressed as

min
xi

fi(xi,y
∗
i,k(xi)), ∀i ∈ [n] (8a)

s.t. y∗
k(x) = argmin

yk

gk(x,yk) ≜
1

n

n∑
i=1

gi,k(xi,yi,k) s.t. Ayk = 0,∀k ∈ [m]. (8b)

The major difference between problem (2) and (8) is that the UL optimization problem includes
multiple objectives over the model parameters xi,∀i ∈ [n]. In this case, the updating rule of
variable x in (6b) reduces to xr+1 = xr − hr

f/α by forgoing the dual update w.r.t. λ. The detailed
implementation is summarized in Algorithm 2, where we name this special case of SLAM by
SLAM-L as the LL consensus process is the main feature in this setting.
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Algorithm 2 Decentralized implementation of SLAM-L
Initialization: α, β, γ, x1

i ,y
1
i,k,∀i, k, and set ω1

k = 0,∀k;
1: for r = 1, 2, · · · , T do
2: for i = 1, 2, · · · , n in parallel over the network do
3: Estimate gradient ∇gi,k(x

r
i ,y

r
i,k) for each task and ∇fi(x

r
i ,y

r+1
i,k ) locally

4: yr+1
i,k = 2

∑
j∈Ni

[Wg]ijy
r
j,k − [W′

g]ijy
r−1
j,k − β−1

(
[hr

g]i,k − [hr−1
g ]i,k

)
▷ LL models

5: xr+1
i = xr

i − α−1[hr
f ]i,∀i ▷ UL models

6: end for
7: end for

A Special Case of DBO (1) (with only consensus in the UL problem). The other special is
analogous to the first one with the difference being the absence of the LL consensus process in
comparison to (2), which is written as follows:

min
x

f(x,y∗
k(x)) ≜

1

n

n∑
i=1

fi(xi,y
∗
i,k(xi)) (9a)

s.t. Ax = 0, y∗
i,k(xi) = argmin

yi,k

gi,k(xi,yi,k),∀i ∈ [n],∀k ∈ [m], (9b)

where there are multiple objectives in the LL optimization problems. Problem (9) also covers a wide
range of applications in machine learning, e.g., multi-task and/or personalized learning, and so on. In
this case, the update of variable yk shown in (5a) is changed to yr+1

k = yr
k − hr

g/β as there is no
consensus constraint involved. Analogous to the previous case, the implementation of this algorithm
is presented in Algorithm 3 and termed as SLAM-U.

Algorithm 3 Decentralized implementation of SLAM-U

Initialization: α, β, γ, x1
i ,y

1
i,k,∀i, k, and set λ1 = 0,∀k;

1: for r = 1, 2, · · · , T do
2: for i = 1, 2, · · · , n in parallel over the network do
3: Estimate gradient ∇gi,k(x

r
i ,y

r
i,k) for each task and ∇fi(x

r
i ,y

r+1
i,k ) locally

4: yr+1
i,k = yr

i,k − β−1[hr
g]i,k ▷ LL models

5: xr+1
i = 2

∑
j∈Ni

[Wf ]ijx
r
j − [W′

f ]ijx
r−1
j − α−1

(
[hr

f ]i − [hr−1
f ]i

)
▷ UL model

6: end for
7: end for

3 Theoretical Convergence Results

Before showing the theoretical results about the convergence guarantees of SLAM, we first need five
main classes of assumptions used in showing the descent of some quantifiable function so that SLAM
can reach the ϵ-KKT points of the DBO problems. More detailed definitions and properties regarding
these assumptions are deferred to the supplement.

3.1 Assumptions

Our theoretical results are based on the following assumptions on the properties of the loss functions
in both the UL and LL optimization problems, which are mainly related to the continuity of the
objective function and stochasticity of the gradient estimates.

A1. (Lipschitz continuity of both UL and LL objective functions) Assume that functions
fi(·),∇fi(·, ), ∇gi,k(·), ∇2gi,k(·),∀i, are (block-wise) Lipschitz continuous with constants
Lf,0, Lf,1, Lg,1, Lg,2 for both x and yk,∀k, and ∇2

xiyi,k
gi,k(·),∀i are bounded by Cxy .

A2. (Connectivity of graph G) The communication graph G is assumed to be well-connected,
i.e., 1TL = 0 where L = ATA, and the second-smallest eigenvalue of L is assumed to be
strictly positive, i.e., σ̃min(A

TA) > 0.
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A3. (Quality of the stochastic gradient estimate) The stochastic estimates of ∇fi(xi,yi,k),
∇yi

gi,k(xi,yi,k),∀i, k, are unbiased and their variances are bounded by σ2
f , σ

2
g .

A4. Assume that the UL objective functions fi(xi,y
∗
i,k(xi)),∀i, k are lower bounded.

A5. (Strong convexity of gi,k(·) w.r.t. yi,k) Function gi,k(·) is µg-strongly convex w.r.t.
yi,k,∀i, k.

Note that these assumptions are commonly used in the convergence analysis for bilevel and decen-
tralized optimization algorithms. Given these assumptions, we are now in a position to provide the
following theoretical convergence guarantees.

3.2 Convergence Rates of SLAM

Theorem 1. (Convergence rate of SLAM to ϵ-KKT points) Suppose that A1-A5 hold and assume
∥∇2

yiyi
gi,k(·,yi) − n−1

∑n
i=1 ∇2

yiyi
gi,k(·,y′

i)∥ ≤ Lg∥yi − y′
i∥,∀i, k if ∇2gi,k(·),∀i, k are re-

quired in computing the UL implicit gradient. When step-sizes are chosen as 1/α ∼ 1/β ∼
O(

√
n/T ), τf , τg ≥ O(ρσmax(A

TA)), the mini-batch size of hr
f is O(log(nT )), then the iterates

{xr,λr,yr
k,ω

r
k,∀k, r} generated by SLAM satisfy

UL:
1

T

T∑
r=1

E[∥∇f(1xr,y∗
1(1x

r), . . . ,y∗
m(1xr))∥2] ∼ 1

T

T∑
r=1

E[∥Axr∥2] ∼ O(1/
√
nT ), (10a)

LL:
1

T

T∑
r=1

E[∥yr
k − y∗

k(x
r)∥2] ∼ 1

T

T∑
r=1

E[∥Ayr
k∥2] ∼ O(1/

√
nT ), ∀k, (10b)

where x = n−1
1

Tx, and T denotes the total number of iterations.

Remark 1. It is noted in Theorem 1 that the convergence rate achieved by SLAM to find the ϵ-
approximate KKT points of (1) (including both the first-order stationarity of the solutions and the
violation of constraints) is on the order of 1/(nϵ2). Therefore, it follows that a linear speedup w.r.t. the
number of learners can be achieved by SLAM for DBO, matching the classical results of distributed
SGD for only single-level general nonconvex problems.

Remark 2. In comparison with existing bilevel algorithms, SLAM is a single timescale algorithm
since the learning rates can be chosen as 1/α ∼ 1/β, which is consistent with ALSET [43].

Remark 3. The major novelty of obtaining these theoretical results relies on the developed variant
of the augmented Lagrangian function and subsequently derived recursion of the successive dual
variables, which quantify well the consensus errors resulting from both UL and LL optimization
processes in terms of primal variables. Note that this is distinct from the existing theoretical analysis
of stochastic algorithms, such as distributed SGD [38, 39], stochastic gradient tracking [40, 41],
stochastic primal-dual algorithms [42, 45], etc.
Corollary 1. (Convergence rate of SLAM-L to ϵ-KKT points) Suppose that A1-A5 hold and assume
∥∇2

yiyi
gi,k(xi,yi) −∇2

yygk(x,y
′
i)∥ ≤ Lg∥yi − y′

i∥,∀i, k if ∇2gi,k(·),∀i, k are required in com-
puting the UL implicit gradient. When step-sizes are chosen as 1/α ∼ O(1/

√
T ), 1/β ∼ O(

√
n/T ),

τf , τg ≥ O(ρσmax(A
TA)), ρ ≥ n, the mini-batch size of hr

f is O(log(nT )), the iterates
{xr,yr

k,ω
r
k,∀k, r} generated by SLAM-L satisfy

UL:
1

T

T∑
r=1

E[∥∇fi(x
r
i ,y

∗
i,1(x

r
i ), . . . ,y

∗
i,m(xr

i )∥2],∀i ∼ O(n/
√
T ) and LL: (10b).

Remark 4. Different from Theorem 1, the stationarity of the UL model parameters requires the
shrinkage of the gradient size over each individual UL problem as shown in Corollary 1, so there is
no speedup on the convergence rate guarantee at UL.
Corollary 2. (Convergence rate of SLAM-U to ϵ-KKT points) Suppose that A1-A5 hold. Given
the conditions on 1/α, 1/β, τf , τg and the mini-batch size of hr

f shown in Theorem 1, the iterates
{xr,λr,yr

k,∀k, r} generated by SLAM-U satisfy

UL: (10a) and LL:
1

T

T∑
r=1

E[∥yr
k − y∗

k(x
r)∥2] ∼ O(1/

√
nT ),∀k.
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Figure 1: The averaged reward versus the learning process on the cooperative navigation task.
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Figure 2: The averaged reward versus the learning process on the pursuit-evasion game. (Consensus with one
layer of the actor neural nets and all layers of the critic neural nets.)

4 Numerical Results

In this section, we evaluate our proposed algorithm using two MARL environments: 1) the cooperative
navigation task [16], which is built on the OpenAI Gym platform [46]; and 2) the pursuit-evasion
game [47], which is built on the PettingZoo platform [48]. Detailed experimental settings and
additional numerical results are provided in the supplement.

Cooperative Navigation Task. In this game, we consider that the n agents are aiming to jointly reach
n different landmarks as soon as possible, where the Erdos Renyi Graph is used. We assume that each
agent can observe the global state and has 5 possible actions: stay, left, right, up, and down. This
task consists of a shared common goal of avoiding collision among the agents while they navigate to
the targeting landmarks. In the simulations, each agent locally maintains two fully connected neural
networks as the actor network (at UL w.r.t. xi) and the critic network (at LL w.r.t. yi), respectively.
Moreover, each agent shares its critic network with its neighbors to cooperatively estimate the global
value function and independently train its actor network to complete its local task.

We compare the performance of our proposed SLAM with application to the DAC setting, named
SLAM-AC, with two benchmark algorithms: DAC [15] and mini-batch DAC (MDAC) [22]. Theoret-
ically, MDAC needs an O(ϵ−1 ln ϵ−1) batch size in its inner loop to update critic parameters before
each update in policy parameters, which is not practical. Here, we set a small batch B = 10 in the
inner loop for MDAC to achieve fast convergence. The simulation results on this coordination game
are presented in Figure1, where the performance is averaged over 5 independent Monte Carlo (MC)
trials for each algorithm.

Pursuit-Evasion Game. In the pursuit-evasion game, there are two groups of nodes: pursuers
(agents) and evaders. The agents are connected through a ring graph. Pursuers could observe the
global state of the video game. An evader is considered caught if two pursuers simultaneously arrive
at the evader’s location. As each pursuer should learn to cooperate with other pursuers to catch the
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evaders, the pursuers share certain similarities with each other since they need to follow similar
strategies to achieve their local tasks: simultaneously catching an evader with other pursuers.

We follow the experimental set up in [23], where all agents partially share their actor networks with
neighbors for collaborations in their policy spaces and fully share their critic network to cooperatively
learn the global value function. In Figure 2, we compare SLAM-AC with two benchmarks, CAC [23]
and MDAC [22], with 5 MC trials again. To ensure a fair comparison, all algorithms use the same
parameter sharing scheme mentioned above. Note that CAC [23] is a variant of DAC [15] and the
only difference is that CAC can partially share its policy parameters while the policy parameters are
not shared in DAC. In the experiment, each agent maintains two convolutional neural networks, one
for the actor and one for the critic (Please refer to the supplement for detailed structures).

5 Concluding Remark
In this paper, we studied a generic form of the DBO problem, which is shown to have three major
variants that formulate multiple hierarchical machine learning problems. Targeting these DBO
problems, we proposed SLAM – a simple and elegant algorithm to solve DBO in a fully decentralized
way. Under mild conditions, we establish theoretical results showing that our proposed SLAM is
able to find the ϵ-KKT points with a convergence rate of O(1/(nϵ2)), which matches the standard
convergence rate achieved by the classical distributed SGD algorithms for solving only single-level
general nonconvex optimization problems. We tested the performance of SLAM numerically on a
MARL scenario and found that SLAM outperformed the traditional AC algorithms w.r.t. convergence
speed and (in most cases) achievable rewards.

Societal impact. To the best of our knowledge, we do not see any ethical or negative immediate
societal consequence of this work.
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Supplementary Material

A Preliminaries

In this section, we provide some technical preliminaries for the proofs of the lemmas and theorems claimed
in the main body of this paper, including parameter definitions and supporting results. First, let us define the
filtrations

Fr ={xr,yr,λr,ωr
k, ξ

r−1, ζr−1, . . . , x0,λ0}, (11)

F ′r ={xr,yr+1,λr,ωr
k, ξ

r−1, ζr, . . . , x0,λ0}, (12)

which will often be used in the proofs when taking conditional expectation.

Inequalities used in the proof include

1. Quadrilateral identity:〈
xr+1 − xr,xr − xr−1〉 = 1

2

(
∥xr+1 − xr∥2 + ∥xr − xr−1∥2 − ∥wr+1∥2

)
(13)

where
wr+1 ≜ xr+1 − xr − (xr − xr−1). (14)

2. Young’s inequality with parameter θ > 0:

⟨x,y⟩ ≤ 1

2θ
∥x∥2 + θ

2
∥y∥2, ∀x,y. (15)

3. Given vectors x1, . . . ,xn, the convexity of norm ∥∥2 and a trivial application of Jensen’s inequality
yields the following inequality ∥∥∥∥∥ 1n

n∑
i=1

xi

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥xi∥2. (16)

4. Given that x is a random vector, then

E
[
∥x∥2

]
= ∥E[x]∥2 + E

[
∥x− E[x]∥2

]
. (17)

Lemma 1.
Under A1, A2 and A5, the gradient of fi(xi,y

∗
i,k(x)) is given by

∇fi(xi,y
∗
i,k(x)) = ∇xifi(xi,y

∗
i,k(x))

−
m∑

k=1

∇2
xiyk

gi,k(xi,y
∗
k(x))

[
∇2

ykyk
gk(x,y

∗
k(x))

]−1 ∇yi,kfi(xi,y
∗
i,k(x)), (18)

where ∇xifi(xi,y
∗
i,k(x)) denotes the gradient of the objective function w.r.t. the first argument.

Proof. In order to remove the ambiguity of the notation, we first define Fi(x) ≜ fi(xi,y
∗
i,k(x)). Following the

classical proving steps [43, Proposition 1], we obtain the closed form of the implicit gradient by the chain rule:

∇xiFi(x) = ∇xifi(xi,y
∗
i,k(x)) +

m∑
k=1

∇xiy
∗
i,k(x)

T∇yi,kfi(xi,y
∗
i,k(x)). (19)

Based on the definition of y∗
k(x), it follows that

∇ykgk(x,y
∗
k(x)) = 0, Ay∗

k(x) = 0, (20)

and thus we have

∇xi

(
1

n

n∑
i=1

∇ykgi,k(x,y
∗
i,k(x))

)
= 0, Ay∗

k(x) = 0. (21)

Therefore, we obtain

∇2
xiyk

gi,k(xi,y
∗
k(x)) +∇xiy

∗
i,k(x)

T∇2
ykyk

gk(x,y
∗
k(x)) = 0. (22)

According to A5, the inverse of the Hessian matrix exists. Substituting (22) back into (19) directly yields the
desired result.
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Note that ∇fi(xi,yi,k) denotes the surrogate gradient at UL through replacing y∗
i,k(x) in (18) yi,k with the

local loss function, i.e.,

∇fi(xi,yi,k) = ∇xifi(xi,yi,k)

−
m∑

k=1

∇2
xiyi,k

gi,k(xi,yi,k)
[
∇2

yi,kyi,k
gi,k(xi,yi,k)

]−1

∇yi,kfi(xi,yi,k). (23)

It has been shown in [31, Lemma 3.2] and [33, Lemma 1] that, when the gradient estimator is constructed in a
certain way, we can have

∥∇fi(xr
i ,y

r+1
i,k )− Ehf,i∥ ≜ br,i ≤ O (bmb) , ∀i, (24)

due to the independence among the LL tasks, where 0 < b < 1 and mb ≥ r denotes the mini-batch size.
Therefore, we only need to choose mb = O(log(nT )) to obtain b2r ≤ O(1/

√
nT ), where br ≜

∑n
i=1 br,i.

Lemma 2.
Under A1 and A5, y∗

k(x) is Lipschitz continuous, namely
∥y∗

k(x)− y∗
k(x

′)∥ ≤ Ly∥x− x′∥, ∀k, (25)

where Ly ≜ Cxy

µg
, and ∇y∗

k(x) is also Lipschitz continuous, namely

∥∇y∗
k(x)−∇y∗

k(x
′)∥ ≤ Lxy∥x− x′∥, ∀k, (26)

where Lxy ≜
√
2Lg,2

µg
(1 + Ly + Cxy(1 + Ly)µ

−1
g ).

Proof. First Part. According to (20) and (22), we have

∥∇xiy
∗
i,k(x)∥ ≤ ∥∇2

ykyk
gk(x,y

∗
k(x))

−1∇xiykgk(x,y
∗
k(x))

T∥ ≤ Cxy

µg
, (27)

where we use A1 and A5. Therefore, we obtain ∥∇xy
∗
k(x)∥ ≤ Lg,2/µg and

∥y∗
k(x)− y∗

k(x
′)∥ ≤ Cxy

µg
∥x− x′∥. (28)

Second Part. Next, we can have

∥∇xy
∗
k(x)−∇xy

∗
k(x

′)∥
=∥∇2

xyk
gk(x,y

∗
k(x))[∇2

ykyk
gk(x,y

∗
k(x))]

−1 −∇2
xyk

gk(x,y
∗
k(x

′))[∇2
ykyk

gk(x
′,y∗

k(x
′))]−1∥ (29)

≤ 1

µg
∥∇2

xyk
gk(x,y

∗
k(x))−∇2

xyk
gk(x

′,y∗
k(x

′))∥+ Cxy

µ2
g

∥∇2
ykyk

gk(x,y
∗
k(x))−∇2

ykyk
gk(x

′,y∗
k(x

′))∥

(a)

≤
√
2Lg,2

µg

(
∥x− x′∥+ ∥y∗

k(x)− y∗
k(x

′)∥
)
+

√
2CxyLg,2

µ2
g

(
∥x− x′∥+ ∥y∗

k(x)− y∗
k(x

′)∥
)

(30)

≤
√
2Lg,2

µg

(
1 + Ly +

Cxy(1 + Ly)

µg

)
∥x− x′∥ (31)

where in (a) we use

∥∇2
xyk

gi,k(xi,y
∗
i,k(xi))−∇2

xyk
gi,k(x

′
i,y

∗
i,k(x

′
i))∥ ≤ Lg,2

(
∥xi − x′

i∥+ ∥y∗
i,k(xi)− y∗

i,k(x
′
i)∥
)

(32a)

∥∇2
ykyk

gi,k(xi,y
∗
k(xi))−∇2

ykyk
gi,k(x

′
i,y

∗
k(x

′
i))∥ ≤ Lg,2

(
∥xi − x′

i∥+ ∥y∗
i,k(xi)− y∗

i,k(x
′
i)∥
)

(32b)

by directly applying A1 and (25).

Lemma 3.

Under A1 and A5, there exists a constant Lf,y such that function ∥∇fi(xi,yi,k) − ∇fi(xi,y
′
i,k)∥ is

upper bounded by the sum of ∥yi,k − y′
i,k∥, namely

∥∇fi(xi,y1,k, . . . ,ym,k)−∇fi(xi,y
′
1,k, . . . ,y

′
m,k)∥ ≤ Lf,y

m∑
k=1

∥yi,k − y′
i,k∥, (33)

and there also exists a constant Lf,x such that ∥∇fi(xi,yi,k) − ∇fi(x′
i,yi,k)∥ is upper bounded by

∥x− x′∥, namely

∥∇fi(xi,y1,k, . . . ,ym,k)−∇fi(x′
i,y1,k, . . . ,ym,k)∥ ≤ mLf,x∥xi − x′

i∥, (34)

where Lf,x, Lf,y are only dependent on the parameters defined in A1 and A5.
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Proof. First Part. Suppose assumptions A1 and A5 hold. From (23) and [31, Lemma 2.2.], we have

∥∇2
xiyi,k

gi,k(xi,yi,k)
[
∇2

yi,kyi,k
gi,k(xi,yi,k)

]−1

∇yi,kfi(xi,yi,k)

−∇2
xiyi,k

gk(xi,y
′
i,k)

[
∇2

yi,kyi,k
gi,k(xi,y

′
i,k)
]−1

∇yi,kfi(xi,y
′
i,k)∥ (35)

≤
(
Lf,1Cxy

µg
+ Lf,0

(
Lg,2

µg
+
Lg,2Cxy

µ2
g

))
∥yi,k − y′

i,k∥. (36)

Based on the block-wise gradient Lipschitz continuity, we have∥∥∇xifi(xi,yi,k)−∇xifi(xi,y
′
i,k)
∥∥ ≤

m∑
k=1

Lf,1∥yi,k − y′
i,k∥. (37)

Combing (23) with (36) and (37) gives the desired result immediately.

Second Part. Similarly, under A1 and A5, we can also get∥∥∇fi(xi,yi,k)−∇fi(x′
i,yi,k)

∥∥
≤Lf,1∥xi − x′

i∥+
m

µg

(
Lf,1Cxy + Lf,0

(
Lg,2 +

Lg,2Cxy

µg

))
∥xi − x′

i∥ (38)

From (2a), we can get the desired result by requiring Lf,x ≥ (Lf,1 + mµ−1
g (Lf,1Cxy + Lf,0(Lg,2 +

Lg,2Cxyµ
−1
g )))/m.

B Convergence Analysis

We now present the proofs, related results, and technical details that establish the lemmas and theorems of our
convergence analysis.

We first show that the difference between two successive iterates in Lemma 4 is upper bounded on the order of
1/T . Then, we begin to quantify the process where one step of the variable updates would make: 1) Lemma 5
measures the closeness from the iterates yr to its optimal counterpart given the UL variable fixed; 2) Lemma 6
essentially gives the upper bound of the consensus violations from both UL and LL sides or the maximum ascent
achieved by the dual update. As the byproducts of Lemma 6, recursion functions in terms of the successive
differences of the UL and LL variables are derived in Lemma 7 and Lemma 8 based on the optimality conditions
of the UL and LL optimization problems respectively, which serve as the critical role of establishing the potential
functions that can evaluate the process of the sequence generated by SLAM to KKT points. Finally, all the above
properties are used in the proof of Theorem 1.

B.1 Upper Bounds of Successive Primal Variables

Lemma 4.
Under A1, A3, A4, suppose that the iterates {xr,yr

k, ∀k, r} are generated by (5a) and (5b) and the step
sizes are chosen to be α = α0

√
T and β = β0

√
T . Then, there exist constants Dx, Dy such that, when

α0 ≥2ρσmax(A
TA)

√
Cx, (39a)

β0 ≥max{1/µg, τg}, (39b)

τg ≥ρσmax(A
TA)

1− 1/
√
T

, (39c)

τf ≥ρσmax(A
TA), (39d)

the following inequalities hold

E∥xr+1 − xr∥2 ≤ Dx

α2
, ∀r, (40a)

1

T

T∑
r=1

E∥yr+1
k − yr

k∥2 ≤ Dy

β2
, ∀k, r, (40b)
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where the constants are given by

Cx =
2(1 + θ−1)

(1− (1 + θ)
(
1− ρσ̃min(A

TA)
τf

)2
)
, (41a)

Dx =
4Cxσ

2
f

n
+ 4(Lf,0 + σ2

f ) + 2Cxρ
2σ2

max(A
TA)Bx, (41b)

Dy =
σ2
g

n
+

(Dxµ
−2
g + µgρ∥y1∥2α0)β

2
0

α2
0

+
σ2
g

nµgβ0
, (41c)

and

0 < θ <
1

(1− ρσ̃min(A
TA)

τf
)2

− 1, (42)

Bx ≜max

{
∥x1∥2,

σ2
f (2 + 2/θ) + n(Lf,0 + σ2

f )(1− (1 + θ)(1− ρσ̃min(A
TA)

τ
)2)

n(2 + 2/θ)ρ2σ2
max(ATA)

}
. (43)

Proof. First Part. From (6b) and A3, we know that

xr+1 − xr = xr − xr−1 +
1

α
(hr

f − hr−1
f ), (44)

where

x ≜
1

n
1

Tx, h ≜
1

n
1

Th. (45)

We then derive, from (5b) and (6b), that

∥xr+1 − xr − (1xr+1 − 1xr)∥
(6b),(44)
≤

∥∥∥∥(I− (1 + γ−1)
ρATA

τ

)
(xr − 1xr)−

(
I− ρATA

τf

)(
xr−1 − 1xr−1)∥∥∥∥

+
1

α

∥∥hr
f − 1hr

f − (hr−1
f − 1hr−1

f )
∥∥ (46)

≤
∥∥∥∥(I− ρATA

τf

)(
xr − 1xr −

(
xr−1 − 1xr−1))∥∥∥∥+ 1

α
∥ρATAxr∥

+
1

α

∥∥hr
f − 1hr

f − (hr−1
f − 1hr−1

f )
∥∥

(a)

≤
(
1− ρσ̃min(A

TA)

τf

)∥∥xr − 1xr −
(
xr−1 − 1xr−1)∥∥+ 1

α
∥ρATAxr∥

+
1

α

∥∥hr
f − 1hr

f − (hr−1
f − 1hr−1

f )
∥∥ ,

where (a) holds because 1T (xr − 1xr) = 0, ∀r, and σ̃min(A
TA) denotes the minimum nonzero eigenvalue

of matrix ATA. From the definition of hr
f and A3, we have

E∥hr
f − 1hr

f∥2 =

n∑
i=1

E∥hr
f,i − Ehr

f + Ehr
f − hr

f∥2 ≤
2σ2

f

n
. (47)

Next, we use mathematical induction to prove the boundedness of the variable xr . When r = 1, the size of x1 is
bounded by a constant, i.e., ∥x1∥2. Applying Young’s inequality, we obtain that, for θ > 0,

E∥xr+1 − xr − (1xr+1 − 1xr)∥2

≤ (1 + θ)

(
1− ρσ̃min(A

TA)

τf

)2

E
∥∥xr − 1xr −

(
xr−1 − 1xr−1)∥∥2

+

(
1 +

1

θ

)
2

α2

(
2σ2

f

n
+ ρ2σ2

max(A
TA)∥xr∥2

)
. (48)

Define

ηx ≜ (1 + θ)

(
1− ρσ̃min(A

TA)

τf

)2

, and let τf ≥ ρσ̃min(A
TA). (49)
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When
θ <

1

(1− ρσ̃min(A
TA)

τf
)2

− 1, (50)

it is obvious that ηx < 1. Then, we obtain

E∥xr+1 − xr − (1xr+1 − 1xr)∥2

≤ ηxE
∥∥xr − xr−1 −

(
1xr − 1xr−1)∥∥2 + (1 + 1

θ

)
2

α2

(
2σ2

f

n
+ ρ2σ2

max(A
TA)B1

)
(51)

≤
(
1 + 1

θ

)
2
α2

1− ηx

(
2σ2

f

n
+ ρ2σ2

max(A
TA)B1

)
=

Cx

(
2σ2

f

n
+ ρ2σ2

max(A
TA)B1

)
α2

, (52)

where we assume that ∥xr∥2 ≤ B1 and define Cx ≜ 2
1+ 1

θ
(1−ηx)

. Further, from (5b) and (4d), we have

xr+1 = xr − 1

α
hr
f (53)

due to 1TATA = 0, which yields

∥1xr+1 − 1xr∥ =
1

α
∥1hr

f∥, (54)

and thus we obtain

∥1xr+1 − 1xr∥2 ≤ 1

α2

(
2∥hr

f − Ehr
f∥2 + 2∥Ehr

f∥2
)
≤ 2

σ2
f + L2

f,0

nα2
(55)

under A1 and A3.

Therefore, combing (52) and (55) renders

E∥xr+1 − xr∥2 =E∥xr+1 − 1xr+1 + 1xr+1 − 1xr + 1xr − xr∥2

≤2E∥xr+1 − 1xr+1 − (xr − 1xr)∥2 + 2E∥1xr+1 − 1xr∥2 (56)

≤2

Cx

(
2σ2

f

n
+ ρ2σ2

max(A
TA)B1

)
+ 2(L2

f,0 + σ2
f )/n

α2
(57)

=2
2Cxσ

2
f + 2(Lf,0 + σ2

f )

nα2
+

2Cxρ
2σ2

max(A
TA)B1

α2
∼ O

(
1

α2

)
, (58)

and thus we have

∥xr+1∥2 ≤ r
∑
r

∥xr∥2 ≤ T

T∑
r=1

∥xr∥2 ≤ 2
2Cxσ

2
f + 2(Lf,0 + σ2

f )

nα2
0

+
2Cxρ

2σ2
max(A

TA)B1

α2
0

(59)

where we choose α = α0

√
T . To show ∥xr+1∥2 ≤ B1, we only need

2Cxρ
2σ2

max(A
TA)

α2
0

≤ 1

2
and

4Cxσ
2
f + 4(Lf,0 + σ2

f ))

nα2
0

≤ B1, (60)

which means that

α0 ≥ 2ρσmax(A
TA)

√
Cx and B1 ≥

Cxσ
2
f + (Lf,0 + σ2

f )

nρ2σ2
max(ATA)Cx

. (61)

Therefore, combining the case where r = 1, we conclude that, when

α0 ≥ 2ρσmax(A
TA)

√√√√√ 2 + 2
θ(

1− (1 + θ)
(
1− ρσ̃min(A

TA)
τ

)2) , (62)

then

∥xr+1∥2 ≤ max

∥x1∥2,
σ2
f +

(Lf,0+σ2
f )(1−(1+θ)(1− ρσ̃min(AT A)

τ
)2)

2+2/θ

nρ2σ2
max(ATA)

 ≜ Bx. (63)
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This directly implies

E∥xr+1 − xr∥2 ≤

≜Dx︷ ︸︸ ︷
4(Cxσ

2
f + Lf,0 + σ2

f ) + 2Cxρ
2σ2

max(A
TA)Bx

α2
∼ O

(
1

α2

)
. (64)

Second Part. From (6a), we have

E[yr+1
k − yr

k] = E
[(

I− ρ

τg
ATA

)
yr
k −

(
I− ρ

τg
ATA

)
yr−1
k − ρ

β
ATAyr

k − 1

β

(
hr
g,k − hr−1

g,k

)]
.

(65)
Multiplying E[yr+1

k − yr
k] on both sides of (65) yields

∥Eyr+1
k − yr

k∥2 =⟨E[yr
k − yr−1

k ],E[yr+1
k − yr

k]⟩ −
ρ

τg
⟨ATA(E[yr

k − yr−1
k ],E[yr+1

k − yr
k]⟩

− ρ

β
⟨ATAE[yr

k],E[yr+1
k − yr

k]⟩ −
1

β
⟨gk(xr,yr

k)− gk(x
r−1,yr−1

k ),E[yr+1
k − yr

k]⟩

≤
∥E[yr

k − yr−1
k ]∥2

2
+

∥E[yr+1
k − yr

k]∥
2

−
∥E[vr+1

k ]∥2

2

− ρ

τg

(
∥AE[yr

k − yr−1
k ]∥2

2
+

∥AE[yr+1
k − yr

k]∥2

2
−

∥AE[vr+1
k ]∥2

2

)
− ρ

β

(
∥AE[yr+1

k ]∥2

2
− ∥AE[yr

k]∥2

2
−

∥AE[yr+1
k − yr

k]∥2

2

)
+

E∥xr − xr−1∥2

µgβ
+
µg∥E[yr+1

k − yr
k]∥2

4β
− µg

β
∥E[yr

k − yr−1
k ]∥2

+

√
T

2β2
E∥yr

k − yr−1
k ∥2 + 1

2
√
T
∥E[vr+1

k ]∥2,

where

− 1

β
⟨g(xr−1,yr

k)− g(xr−1,yr−1
k ),E[yr

k − yr−1
k + vr+1

k ]⟩

(a)

≤ −µg

β
∥E[yr

k − yr−1
k ]∥2 +

√
T

2β2
E∥yr

k − yr−1
k ∥2 + 1

2
√
T
∥Evr+1

k ∥2. (66)

Here (a) follows the strong convexity of function gk, Young’s inequality, and (17).

Note that
ρ

τg
− ρ

β
≥ 0, (67)

when β ≥ τg , i.e, β0
√
T ≥ τg or β0 ≥ τg . Moreover, we know that

Eζr
[
∥yr+1

k − yr
k∥2|Fr]

= ∥Eζr [y
r+1
k − yr

k]|Fr∥2 + Eξr
[
∥yr+1

k − yr
k − Eξr [y

r+1
k − yr

k]∥2|Fr] (68)

= ∥Eζr [y
r+1
k − yr

k]|Fr∥2 + Eξr

[∥∥∥∥ 1α (Ehr
g,k − hr

g,k

)∥∥∥∥2 |Fr

]
(69)

≤ ∥Eζr [y
r+1
k − yr

k]|Fr∥2 +
σ2
g

nβ2
. (70)

Therefore, we obtain(
1

2
− µg

4β

)
∥E[yr+1

k − yr
k]∥2

≤
(
1

2
+

√
T

2β2
− µg

β

)
∥E[yr

k − yr−1
k ]∥2 −

(
1

2
− 1

2
√
T

− ρσmax(A
TA)

2τg

)
∥E[vr+1

k ]∥2

+
E∥xr − xr−1∥2

µgβ
− ρ

β

(
∥AE[yr+1

k ]∥2

2
− ∥AE[yr

k]∥2

2

)
+
σ2
g

√
T

2nβ4
.
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When
√
T/β ≤ µg , i.e., β0 ≥ 1/µg , we have

√
T

2β2 − µg

β
≤ −µg

2β
; further, we need τg ≥ ρσmax(A

TA)

1−1/
√
T

. Then,
we obtain

∥Eyr+1
k − yr

k∥2 ≤
1− 2µg

β

1− µg

β

∥Eyr
k − yr−1

k ∥2 + E∥xr − xr−1∥2

µgβ
(71)

− ρ

β

(
∥AEyr+1

k ∥2

2
− ∥AEyr

k∥2

2

)
+
σ2
g

√
T

2nβ4
. (72)

Applying the telescoping sum on both sides of (72) yields

1

T

T∑
r=1

∥Eyr+1
k − yr

k∥2 ≤
(
1− µg

β − µg

)
1

T

T∑
r=1

∥Eyr
k − yr−1

k ∥2 + Dx

µgβα2
+
ρ∥y1

k∥2

Tβ
+
σ2
g

√
T

nβ4
, (73)

and thus there exists a contraction property for the sum of ∥E[yr
k − yr−1

k ]∥2. Define S ≜ 1
T

∑T
r=1 ∥Ey

r
k −

yr−1
k ∥2. When (

1− µg

β − µg

)
S +

Dx

µgβα2
+
ρ∥y1

k∥2

Tβ
+
σ2
g

√
T

nβ4
≤ S, (74)

namely

S ≥ β − µg

µg

(
Dx

µgβα2
+
ρ∥y1∥2

Tβ
+
σ2
g

√
T

nβ4

)
, (75)

then the sum of ∥E[yr − yr−1]∥2 is upper bounded.

Choosing

S =
β

µg

(
Dx

µgβα2
+
ρ∥y1

k∥2

Tβ

)
=

Dx

µ2
gα2

+
µgρ∥y1

k∥2

T
+
σ2
g

√
T

nµgβ3
, (76)

and applying (70) yield

1

T

T∑
r=1

E∥yr+1
k − yr

k∥2 ≤ Dx

µ2
gα2

+
µgρ∥y1

k∥2α0

α2
+

σ2
g

nµgβ0β2
+

σ2
g

nβ2
(77)

=
Dx/µ

2
g + µgρ∥y1

k∥2α0

α2
+

(
1

µgβ0
+ 1

)
σ2
g

nβ2
. (78)

Combining this with (78) renders

1

T

T∑
r=1

E∥yr+1
k − yr

k∥2 ≤ Dy

β2
, ∀k, (79)

where Dy ≜ (Dx/µ
2
g + µgρ∥y1

k∥2α0)β
2
0/α

2
0 + ( 1

µgβ0
+ 1)σ2

g/n.

B.2 Contraction of the LL iterates

Now, we will show the contraction property of the recurrence in the LL optimization process. The proof is
adapted from [43, Lemma 3], where the main difference is that we evaluate the iterates in the consensus space.
To be more precise, we establish the following result.

Lemma 5.
Under A1, A3, A5. Suppose that sequence {xr,yr

k,λ
r
k,ω

r
k, ∀k, r} is generated by SLAM. Then, when

β > 2(µg + Lg,1)
−1, we have

E∥yr+1
k − y∗

k(x
r)∥2 ≤

(
1− ρg

β

)
E∥yr

k − y∗
k(x

r)∥2 +
σ2
g

nβ2
, (80)

and there exist constants θ′, ϑ > 0 such that

E∥yr+1
k − y∗

k(x
r+1)∥2 ≤

(
1 + θ′ +

ϑLxyDx

4α2

)
E∥yr+1

k − y∗
k(x

r)∥2

+

(
L2

y +
L2

y

4θ′
+
Lxy

4ϑ

)
∥E[xr+1 − xr]∥2 +

(
Lxy

4ϑ
+ L2

y

)
σ2
f

nα2
. (81)
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Proof. First, we expand the error term in the lower level optimization problem as

∥yr+1
k − y∗

k(x
r+1)∥2 =∥yr+1

k − y∗
k(x

r)∥2 + ∥y∗
k(x

r+1)− y∗
k(x

r)∥2

+ 2
〈
yr+1
k − y∗

k(x
r),y∗

k(x
r)− y∗

k(x
r+1)

〉
. (82)

Then, we will give the upper bound for each term in (82).

E
[
∥yr+1

k − y∗
k(x

r)∥2Fr]
(5a)
=E

[∥∥∥∥yr+1
k − 1

β
hr
g,k − y∗

k(x
r)

∥∥∥∥2 Fr

]
(83)

=∥yr
k − y∗

k(x
r)∥2 − 2

β

〈
yr
k − y∗

k(x
r),E[hr

g,k]|Fr〉+ 1

β2
E[∥hr

g,k∥2|Fr] (84)

(a)

≤∥yr
k − y∗

k(x
r)∥2 − 2

β
⟨yr

k − y∗
k(x

r), gk(x
r,yr

k)⟩+
1

β2
∥∇gk(xr,yr

k)∥2 +
σ2
g

nβ2
(85)

(b)

≤
(
1− ρg

β

)
∥yr

k − y∗
k(x

r)∥2 +
σ2
g

nβ2
(86)

where in (a) we use A3, (b) follows the µg-strong convexity of function gk(x,yk) [49, Theorem 2.1.11], i.e.,

− ⟨yr
k − y∗

k(x
r), gk(x

r,yk)⟩ ≤ − µgLg,1

µg + Lg,1
∥yr

k − y∗
k(x

r)∥2

− 1

µg + Lg,1
∥∇gk(xr,yr

k)−∇gk(xr,y∗
k(x

r))∥2 (87)

and we choose β ≥ 2
µg+Lg,1

with ρg ≜ 2µgLg,1

µg+Lg,1
.

Taking the full expectation over Fr , we have

E∥yr+1
k − y∗

k(x
r)∥2 ≤

(
1− ρg

β

)
E∥yr

k − y∗
k(x

r)∥2 +
σ2
g

nβ2
. (88)

Next, we split the cross term into two parts〈
yr+1
k − y∗

k(x
r),y∗

k(x
r)− y∗

k(x
r+1)

〉
= −

〈
yr+1
k − y∗

k(x
r),∇y∗

k(x
r)(xr+1 − xr)

〉
−
〈
yr+1
k − y∗

k(x
r),y∗

k(x
r+1)− y∗

k(x
r)−∇y∗

k(x
r)(xr+1 − xr)

〉
. (89)

The first part can be upper bounded by

− E
[
⟨yr+1

k − y∗
k(x

r),∇y∗
k(x

r)(xr+1 − xr)⟩
]

=− E
[
⟨yr+1

k − y∗
k(x

r),∇y∗
k(x

r)E[xr+1 − xr]⟩|F ′r] (90)
(25)
≤LyE∥yr+1

k − y∗
k(x

r)∥∥Exr+1 − xr∥ (91)
(a)

≤ θ′E∥yr+1
k − y∗

k(x
r)∥2 +

L2
y

4θ′
∥Exr+1 − xr∥2. (92)

where in (a) we apply Young’s inequality.

The second part can be upper bounded by

−
〈
yr+1
k − y∗

k(x
r),y∗

k(x
r+1)− y∗

k(x
r)−∇y∗

k(x
r)(xr+1 − xr)

〉
≤E∥yr+1

k − y∗
k(x

r)∥∥y∗
k(x

r+1)− y∗
k(x

r)−∇y∗
k(x

r)(xr+1 − xr)∥ (93)
(a)

≤ Lxy

2
E∥yr+1

k − y∗
k(x

r)∥E
[
∥xr+1 − xr∥2|F ′r] (94)

≤ϑLxy

4
E
[
∥yr+1

k − y∗
k(x

r)∥2E
[
∥xr+1 − xr∥2|F ′r]]+ Lxy

4ϑ
E
[
∥xr+1 − xr∥2|F ′r] (95)

(b)

≤ ϑDxLxy

4α2
E
[
∥yr+1

k − y∗
k(x

r)∥2
]
+
Lxy

4ϑ

([
∥Exr+1 − xr∥2

]
+

σ2
f

nα2

)
(96)
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where (a) follows the Lipschitz continuity of ∇y∗
k(x) shown in (26), in (b) we apply Lemma 4, and

Eξr
[
∥xr+1 − xr∥2|F ′r]

=∥Eξr [x
r+1 − xr]|F ′r∥2 + Eξr

[
∥xr+1 − xr − Eξr [x

r+1 − xr]∥2|F ′r] (97)

=∥Eξr [x
r+1 − xr]|F ′r∥2 + Eξr

[∥∥∥∥ 1α (Ehr
f − hr

f

)∥∥∥∥2 |F ′r

]
(98)

≤∥Eξr [x
r+1 − xr]|F ′r∥2 +

σ2
f

nα2
. (99)

Combining (92) and (96), we can have

E∥yr+1
k − y∗

k(x
r+1)∥2 ≤

(
1 + θ′ +

ϑLxyDx

4α2

)
E∥yr+1

k − y∗
k(x

r)∥2

+

(
L2

y +
L2

y

4θ′
+
Lxy

4ϑ

)
∥E
[
xr+1 − xr] ∥2 + (Lxy

4ϑ
+ L2

y

)
σ2
f

nα2
. (100)

where we use the gradient Lipschitz continuity, i.e., E∥y∗
k(x

r+1)− y∗
k(x

r)∥2 ≤ L2
yE∥xr+1 − xr∥2.

B.3 Upper Bound of Successive Dual Variables

In what follows, we will show the ascent part after one round of the dual variable update.

Lemma 6.

Under A1-A5, define D ≜ αI− ργATA. Suppose that the sequence {xr,yr
k,λ

r,ωr
k, ∀k} is generated

by SLAM. Then, we have

γ

ρ
∥Eλr+1 − λr∥2 ≤

4m2L2
f,xDx

n2ργα2σ̃min(ATA)
+

4
∥∥Ewr+1

∥∥2
DTD

ργσ̃min(ATA)

+
4mL2

f,y

∑m
k=1 E

∥∥yr+1
k − yr

k

∥∥2
n2ργσ̃min(ATA)

+
4(br + br−1)

2

ργσ̃min(ATA)
, (101a)

γ

ρ
∥Eωr+1

k − ωr
k∥2 ≤

3
∥∥Evr+1

k

∥∥2
DTD

ργσ̃min(ATA)
+

3L2
g,1Dx

n2ργα2σ̃min(ATA)
+

3L2
g,1E

∥∥yr+1
k − yr

k

∥∥2
n2ργσ̃min(ATA)

(101b)

where wr+1 ≜ (xr+1 − xr)− (xr − xr−1) and vr+1
k ≜ (yr+1

k − yr
k)− (yr

k − yr−1
k ), ∀k.

Proof. First Part. First, by utilizing the optimality condition of (5b), we have

hr
f + γATλr+1 + ργATA(xr − xr+1) + α(xr+1 − xr) = 0. (102)

Subtracting the above equality with the same one from the previous iteration, we obtain

hr
f − hr−1

f + γAT (λr+1 − λr) + ργATA
(
(xr − xr+1)− (xr−1 − xr)

)
+ α

(
(xr+1 − xr)− (xr − xr−1)

)
= 0. (103)

Let wr+1 ≜ (xr+1 − xr)− (xr − xr−1). We can easily write (103) concisely as

hr
f − hr−1

f + γAT (λr+1 − λr) + (α− ργATA)wr+1 = 0. (104)

According to A3, taking expectation on both sides of the above equation, we have

∇f(xr,yr+1
k )−∇f(xr,yr

k) + b′r + b′r−1 +∇f(xr,yr
k)−∇f(xr−1,yr

k)

+ E[γAT (λr+1 − λr)] + E[(α− ργATA)wr+1] = 0 (105)

where 0 < b′r ≤ br, 0 < b′r−1 ≤ br−1.

Utilizing the fact that λr+1 − λr lies in the column space of A, we have ∥AT (λr+1 − λr)∥2 ≥
σ̃min(A

TA)∥λr+1 − λr∥2. After applying the triangle inequality, it is easy to see that the following in-
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equality is true
γ

ρ
∥Eλr+1 − λr∥2

≤ 4

ργσ̃min(ATA)

∥∥E[∇f(xr,yr
k)−∇f(xr−1,yr

k)]
∥∥2 + 4

ργσ̃min(ATA)

∥∥Ewr+1
∥∥2
DTD

+
4

ργσ̃min(ATA)

∥∥E[∇f(xr,yr+1
k )−∇f(xr,yr

k)]
∥∥2 + 4(b′r + b′r−1)

2

ργσ̃min(ATA)
(106)

(a)

≤
4m2L2

f,x

n2γρσ̃min(ATA)
E
∥∥xr − xr−1

∥∥2 + 4

ργσ̃min(ATA)

∥∥Ewr+1
∥∥2
DTD

+
4L2

f,ym

n2ργσ̃min(ATA)

m∑
k=1

E
∥∥yr+1

k − yr
k

∥∥2 + 4(b′r + b′r−1)
2

ργσ̃min(ATA)

(b)

≤
4m2L2

f,xDx

n2ργα2σ̃min(ATA)
+

4
∥∥Ewr+1

∥∥2
DTD

ργσ̃min(ATA)
+

4mL2
f,y

∑m
k=1 E

∥∥yr+1
k − yr

k

∥∥2
n2ργσ̃min(ATA)

+
4(br + br−1)

2

ργσ̃min(ATA)

where in (a) we use gradient Lipschitz continuity of the UL loss function w.r.t. x and yk, i.e., (33) and (34), and
(b) is true by applying Lemma 4.

Second Part. Utilizing the optimality condition of (5a), we have

hr
g,k + γATωr+1

k + ργATA(yr
k − yr+1

k ) + α(yr+1
k − yr

k) = 0. (107)

Similarly, we have

∇gk(xr,yr+1
k )−∇gk(xr,yr

k) +∇gk(xr,yr
k)−∇gk(xr−1,yr

k)

+ γE[AT (ωr+1
k − ωr

k)] + E[(β − ργATA)vr+1
k ] = 0. (108)

where we have defined vr+1
k ≜ (yr+1

k − yr
k)− (yr

k − yr−1
k ).

Following (106), we have
γ

ρ

∥∥E [ωr+1
k − ωr

k

]∥∥2
≤ 3

ργσ̃min(ATA)

∥∥E[∇gk(xr,yr
k)−∇gk(xr−1,yr

k)]
∥∥2 + 3

ργσ̃min(ATA)

∥∥Evr+1
k

∥∥2
DTD

+
3

ργσ̃min(ATA)

∥∥E[∇gk(xr,yr+1
k )−∇gk(xr,yr

k)]
∥∥2 (109)

(a)

≤
3L2

g,1

n2ργσ̃min(ATA)
E
∥∥xr − xr−1

∥∥2 + 3

ργσ̃min(ATA)

∥∥Evr+1
k

∥∥2
DTD

+
3L2

g,1

n2ργσ̃min(ATA)
E
∥∥yr+1

k − yr
k

∥∥2 ,
which gives (101b) directly by applying Lemma 4.

B.4 Recursive Functions

Now, the ascent part measured by the successive difference of the dual variables is upper bounded w.r.t.
∥E[wr+1]∥2. Using (5b), we can construct the following recursion that establishes descent w.r.t. ∥E[wr+1]∥2.

Lemma 7.
Under A1-A4, suppose that the sequence is generated by SLAM. Then, there exists a constant ϑ > 0 such
that

Qr+1
w −Qr

w ≤− 1

2
∥E[wr+1]∥2D +

(
Lf,x + 1

2n
+
Lf,xm

2

n

)
∥E[xr+1 − xr]∥2

+
mL2

f,y

Lf,xn

m∑
k=1

E∥yr+1
k − yr

k∥2 +
n(br + br−1)

2

2
+
Lf,xm

2σ2
f

nα2
(110)

where

Qr
w ≜

ρ

2
√
γ
∥AE[xr]∥2 + 1

2
∥E[xr − xr−1]∥2D +

Lf,xm
2

n
E∥xr − xr−1∥2 ≥ 0. (111)
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Proof. We have the following optimality condition for the x-update step:

E[hr
f + γATλr + ργATAxr + α(xr+1 − xr)] = 0, (112a)

E[hr−1
f + γATλr−1 + ργATAxr−1 + α(xr − xr−1)] = 0. (112b)

Hence, we have
hr
f + γATE[λr] + ργATAE[xr] + αE[xr+1 − xr] = 0, (113a)

hr−1
f + γATE[λr−1] + ργATAE[xr−1] + αE[xr − xr−1] = 0. (113b)

Although hr
f is a biased gradient estimate, we can have

∇f(xr,yr+1
k ) + b′r + γATE[λr] + ργATAE[xr] + αE[xr+1 − xr] = 0, (114a)

∇f(xr−1,yr
k) + b′r−1 + γATE[λr−1] + ργATAE[xr−1] + αE[xr − xr−1] = 0. (114b)

Multiplying E[xr − xr+1] on both sides of (113a), we get

∇f(xr,yr+1
k )E[xr − xr+1] + γATE[λr]E[xr − xr+1] + b′rE[xr − xr+1]

+ ργATAE[xr]E[xr − xr+1] + αE[xr+1 − xr]E[xr − xr+1] = 0, (115)

and similarly multiplying E[xr+1 − xr] on both sides of (113b), we can further have

∇f(xr−1,yr
k)E[xr+1 − xr] + γATE[λr−1]E[xr+1 − xr] + b′r−1E[xr+1 − xr]

+ ργATAE[xr−1]E[xr+1 − xr] + αE[xr − xr−1]E[xr+1 − xr] = 0. (116)
Plugging (4d) into the above two inequalities, we obtain

ρ
√
γ
⟨ATAE[xr],E[xr+1 − xr]⟩

=γ⟨ATE[λr − λr−1],E[xr+1 − xr]⟩ (117)

≤⟨∇f(xr−1,yr
k)−∇f(xr,yr+1

k )−DE[wr+1],E[xr+1 − xr]⟩+ (b′r − b′r−1)E[xr − xr+1],

which gives
ρ
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√
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√
γ
∥AE[xr]∥2 + 1

2
∥E[xr − xr−1]∥2D − 1

2
∥E[wr+1]∥2D

+ ⟨∇f(xr−1,yr
k)−∇f(xr,yr+1

k ),E[xr+1 − xr]⟩+ (b′r − b′r−1)E[xr − xr+1] (118)
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+
n

2Lf,x
E∥∇f(xr−1,yr
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2n
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(a)

≤ ρ

2
√
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2
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+
Lf,xm

2

n
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nLf,x

m∑
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E∥yr+1
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k∥2 +
Lf,x

2n
∥E[xr+1 − xr]∥2

+
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2

2
+

∥E[xr − xr+1]∥2

2n
(119)

where (a) follows gradient Lipschitz continuity.

Therefore, we have
ρ

2
√
γ
∥AE[xr+1]∥2 + 1

2
∥E[xr+1 − xr]∥2D +

Lf,xm
2

n
E∥xr+1 − xr∥2

≤ ρ

2
√
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∥AE[xr]∥2 + 1

2
∥E[xr − xr−1]∥2D +

Lf,xm
2

n
E∥xr − xr−1∥2

− 1

2
∥E[wr+1]∥2D +

(
Lf,x + 1

2n
+
Lf,xm

2

n

)
∥E[xr+1 − xr]∥2 +
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f,y

nLf,x
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+
n(br + br−1)

2

2
+
Lf,xm

2σ2
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(120)

where we use (99) and (17).
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Lemma 8.
Under A1-A4, suppose that the sequence is generated by SLAM. Let

Qr
v,k ≜

ρ

2
√
γ
∥AE[yr

k]∥2 +
1

2
∥E[yr

k − yr−1
k ]∥2D +

Lg,1

2n
E∥xr − xr−1∥2 + Lg,1

2n
E∥yr

k − yr−1
k ∥2 ≥ 0,

(121)
then, the following is true,

Qr+1
v,k −Qr

v,k ≤ Lg,1

2n
∥xr+1 − xr∥2 + 3Lg,1

2n
E∥yr+1

k − yr
k∥2 −

1

2
∥E[vr+1

k ]∥2D, ∀k. (122)

Proof. Following steps from (112) to (117), we can similarly obtain the following series of inequalities for
sequence {yr

k,∀k}.
ρ

2
√
γ
∥AE[yr+1

k ]∥2 + 1

2
∥E[yr+1

k − yr
k]∥2D

≤ ρ

2
√
γ
∥AE[yr

k]∥2 +
1

2
∥E[yr

k − yr−1
k ]∥2D − 1

2
∥E[vr+1

k ]∥2D

+ ⟨∇gk(xr−1,yr−1
k )−∇gk(xr,yr

k),E[yr+1
k − yr

k]⟩

≤ ρ
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√
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∥AE[yr
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2
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(a)

≤ ρ

2
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∥AE[yr

k]∥2 +
1

2
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2n
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n
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k ∥2 (124)

where in (a) we use Young’s inequality

⟨∇gk(xr−1,yr−1
k )−∇gk(xr,yr−1

k ),E[yr+1
k −yr

k]⟩ ≤
Lg,1

2n
E∥xr−xr−1∥2+Lg,1

2n
∥Eyr+1

k −yr
k∥2, (125)

and gradient Lipschitz g(·,y)

⟨∇gk(xr,yr−1
k )−∇gk(xr,yr

k),E[yr+1
k − yr

k]⟩ ≤
Lg,1

2n
E∥yr

k − yr−1
k ∥2 + Lg,1

2n
∥Eyr+1

k − yr
k∥2.

B.5 Proof of Theorem 1

Proof. In this subsection, we will show the convergence rate regarding the stationarity, optimality, and consensus
violation w.r.t. both UL and LL optimization variables generated by SLAM as follows.

B.5.1 Consensus Violation of the UL Variables

Using the fact E[X2] = E[X]2 + Var[X] (17) gives

E
[
∥λr+1 − λr∥2|F ′r]− ∥E[λr+1 − λr]|F ′r∥2

=E
[
∥λr+1 − λr − E[λr+1 − λr]|F ′r∥2|F ′r] = ρ2

γ2
E
[
∥Axr+1 − EAxr+1∥2|F ′r] (126)

≤ ρ2

γ2α2
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TA)E∥hr
f − Ehr
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ρ2σmax(A

TA)σ2
f
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From (101a), we have
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f

nα2
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ρ

4
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∥∥2
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+
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2

ρ2σ̃min(ATA)
+
σmax(A

TA)σ2
f

nα2
. (129)
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Considering the recursion derived in (110), we can obtain that there is a constant C such that

E∥ATxr+1∥2 ≤γ
ρ

(
CQr

w − CQr+1
w − E[wr+1]T

(
CD

2
− 4DTD

ργσ̃min(ATA)

)
E[wr+1]

)
+

(
γ

ρ

(
Lf,1 + 1

2n
+
Lf,xm

2

n

)
+

4L2
f,xm

2

n2ρ2σ̃min(ATA)

)
Dx

α2

+
mL2

f,y

n

(
γ

ρ

1

Lf,x
+

4

nρ2σ̃min(ATA)

) m∑
k=1

E
∥∥yr+1

k − yr
k

∥∥2
+
γ

ρ

(
n(br + br−1)

2

2
+
Lf,xm

2σ2
f

n2α2

)
+

4(br + br−1)
2

ρ2σ̃min(ATA)
+
σmax(A

TA)σ2
f

nα2
(130)

To show the descent of the right-hand side of the above inequality, we need

CD

2
− 4DTD

ργσ̃min(ATA)
≻ 0, (131)

so, it is sufficient to show
C

2

(
αI− ργATA

)
− 4

ργσ̃min(ATA)

(
αI− ργATA

)T (
αI− ργATA

)
≻ 0 (132)

⇒C

2

(
αI− ργATA

)
− 4α2I

ργσ̃min(ATA)
+

8αATA

σ̃min(ATA)
− 4ργ(ATA)2

σ̃min(ATA)
≻ 0 (133)

⇒C

2
αI− 4α2I

ργσ̃min(ATA)
− 4ργ(ATA)2

σ̃min(ATA)
≻ 0 and

8αATA

σ̃min(ATA)
− C

2
ρATA ≻ 0 (134)

⇒C

2
αI− 4α2I

ργσ̃min(ATA)
− 4ργ(ATA)2

σ̃min(ATA)
≻ 0 and

8αATA

σ̃min(ATA)
− C

2
ρATA ≻ 0 (135)

⇒C

2
α− 4α

σ̃min(ATA)

(
α

ργ
+
ργσ2

max(A
TA)

α

)
≥ 0 and α ≥ Cσ̃min(A

TA)

16
, (136)

which means
τf
ρ

+
ρσ2

max(A
TA)

τf
≤ σ̃min(A

TA)C

8
and α ≥ Cσ̃min(A

TA)

16
. (137)

Applying (131) and the telescoping sum, we have

1

T

T∑
r=1

E∥ATxr+1∥2 ≤CγQ
1
w

Tρ
+

(
γ

ρ

(
Lf,x + 1

2n
+
Lf,xm

2

n

)
+

4L2
f,xm

2

n2ρ2σ̃min(ATA)

)
Dx

α2

+

(
γ

ρ

mL2
f,y

nLf,x
+

4L2
f,ym

n2ρ2σ̃min(ATA)

)
Dy

β2

+
γ

ρ

(
n(br + br−1)

2

2
+
Lf,xm

2σ2
f

nα2

)
+

4(br + br−1)
2

ρ2σ̃min(ATA)
+
σmax(A

TA)σ2
f

nα2

∼ O
(

1√
nT

)
(138)

where we choose α = α0

√
T/n, β = β0

√
T/n.

B.5.2 Consensus Violation of the LL Optimization Variables

From Lemma 8, we know that Qr
v,k is lower bounded by 0. According to (122), we have

Qr+1
v,k −Qr

v,k ≤ Lg,1

n

(
Dx

2α2
+

3

2
E∥yr+1

k − yr
k∥2
)
− 1

2
∥E[vr+1

k ]∥2D. (139)

Multiplying (139) by constant C and adding (101b) together, we have

γ

ρ
∥Eωr+1

k − ωr
k∥2 ≤ CQr

v,k − CQr+1
v,k − E[vr+1

k ]T
(
CD

2
− 3DTD

ργσ̃min(ATA)

)
E[vr+1

k ]

+
CLg,1

n

(
Dx

2α2
+

3

2
E∥yr+1

k − yr
k∥2
)
+

3L2
g,1

n2ργσ̃min(ATA)

(
Dx

α2
+ E

∥∥yr+1
k − yr

k

∥∥2) . (140)
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Note that

E
[
∥ωr+1

k − ωr
k∥2|F ′r]− ∥E[ωr+1

k − ωr
k]|F ′r∥2

=E
[
∥ωr+1

k − ωr
k − E[ωr+1

k − ωr
k]|F ′r∥2|F ′r] = ρ2

γ2β2
E
[
∥Ayr+1

k − EAyr+1
k ∥2|F ′r] (141)

≤ ρ2

γ2β2
σmax(A

TA)∥hr
g,k − Ehr

g,k∥2 ≤
ρ2σmax(A

TA)σ2
g

nγ2β2
. (142)

From (4b), we have

E∥Ayr+1
k ∥2

(4b)
≤ γ2

ρ2
E∥ωr+1

k − ωr
k∥2 (143)

(142)
≤ γ2

ρ2
∥Eωr+1

k − ωr
k∥2 +

σmax(A
TA)σ2

g

nβ2
(144)

(140)
≤ γ

ρ

(
CQr

v,k − CQr+1
v,k − E[vr+1

k ]T
(
CD

2
− 3DTD

ργσ̃min(ATA)

)
E[vr+1

k ]

)
+
σmax(A

TA)σ2
g

nβ2

+
γ

ρn

(
CLg,1

2
+

3L2
g,1

nργσ̃min(ATA)

)
Dx

α2
+
γ

ρ

(
3CLg,1

2n
+

3L2
g,1

n2ργσ̃min(ATA)

)
E
∥∥yr+1

k − yr
k

∥∥2
(131),(137)

≤ γ

ρ

(
CQr

v,k − CQr+1
v,k

)
+
γ

ρ

(
3CLg,1

2n
+

3L2
g,1

n2ργσ̃min(ATA)

)
E
∥∥yr+1

k − yr
k

∥∥2 +N1 (145)

where

N1 ≜
CγLg,1Dx

2nρα2
+
σmax(A

TA)σ2
g

nβ2
+

3L2
g,1Dx

n2ρ2α2σ̃min(ATA)
. (146)

Applying telescoping sum, we can get

1

T

T∑
r=1

E∥Ayr+1
k ∥2

≤
CγQ1

v,k

Tρ
+N1 +

γ

ρ

(
3CLg,1

2n
+

3L2
g,1

n2ργσ̃min(ATA)

)
1

T

T∑
r=1

E
∥∥yr+1

k − yr
k

∥∥2 (147)

≤
CγQ1

v,k

Tρ
+N1 +

γ

ρ

(
3CLg,1

2n
+

3L2
g,1

n2ργσ̃min(ATA)

)
Dy

β2
(148)

∼O
(

1√
nT

)
, (149)

when γ ∼ β ∼ α ∼ O(
√
T/n).

B.5.3 Stationarity of the UL Optimization Variable

From (5a) and (5b), we have

xr+1 = xr − 1

α
hr
f , yr+1

k = yr
k − 1

β
hr
g,k. (150)

Note that y∗
k(1x

r) = 1y∗
k(1x

r) due to (2c). From the notations shown in (2), we know that

f(1x,1y∗
k(1x)) ≜

1

n

n∑
i=1

fi(x,y
∗
i,k(x)), (151a)

gk(1x,1yk) ≜
1

n

n∑
i=1

gi,k(x,yk), ∀k ∈ [m]. (151b)

To simply the notations, we ignore 1. For example, we just use f(x,y∗
k(x)) and gk(x,yk) as the abbreviations

of f(1x,1y∗
k(1x)) and gk(1x,1yk) in the following derivation in this proof. Similarly, we have

∇f(x,yk) ≜
1

n

n∑
i=1

∇fi(xi,yi,k). (152)
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Then, we can have the descent at the consensus space as follows

Eξr
[
f(xr+1,y∗

k(x
r+1))|F ′r]

(a)

≤f(xr,y∗
k(x

r)) + E
[〈
∇f(xr,y∗

k(x
r)),xr+1 − xr〉 |F ′r]+ E

[
Lf

2
∥xr+1 − xr∥2|F ′r

]
(153)

=f(xr,y∗
k(x

r)) +
〈
∇f(xr,y∗

k(x
r)),E[xr+1 − xr]|F ′r〉

+
Lf

2
∥E[xr+1 − xr]∥2 + Lf

2
E
[
∥xr+1 − xr − E[xr+1 − xr]∥2|F ′r] (154)

(b)

≤f(xr,y∗
k(x

r))− 1

2α
∥∇f(xr,y∗

k(x
r))∥2 −

(
α

2
− Lf

2

)
∥E[xr+1 − xr]∥2

+
1

2α
∥∇f(xr,y∗

k(x
r))− hr

f∥2 +
Lf

2α2
E
[
∥hr

f − Ehr
f∥2F ′r] (155)

(c)

≤f(xr,y∗
k(x

r))− 1

2α
∥∇f(xr,y∗

k(x
r))∥2 −

(
α

2
− Lf

2

)
∥E[xr+1 − xr]∥2

+

(
2(m+ 1)L2

f

αn2
+

10(m+ 1)

αn2

(
CxyLf,0Lg,2

µ2
g

)2

+
8(m+ 1)L2

y,cL
2
y

αn

)
∥xr − 1xr∥2

+

m∑
k=1

8(m+ 1)L2
y,c

nα
∥yr

k − y∗
k(x

r)∥2 +

(
4(mL2

f,y + (m+ 1)L2
y,c)

αn2

)
∥yr

k − 1yr
k∥2

+
2mL2

f,y

n2α

m∑
k=1

E∥yr+1
k − yr

k∥2 +
2b2r
nα

+
Lfσ

2
f

2nα2
(156)

where (a) follows the gradient Lipschitz continuity of the UL loss function with constant Lf at the consensus
space (which is the same as the centralized case, e.g., [31, Lemma 2.2.]), (b) is true because〈

∇f(xr,y∗
k(x

r)),E[xr+1 − xr]|F ′r〉
=− 1

α

〈
∇f(xr,y∗

k(x
r)),Ehr

f

〉
=− 1

2α
∥∇f(xr,y∗

k(x
r))∥2 − 1

2α
∥Ehr

f∥2 +
1

2α
∥∇f(xr,y∗

k(x
r))− Ehr

f∥2,

and in (c) we use the following steps: 1) the difference between the UL gradient and its distributed stochastic
estimate can be quantified by

∥∇f(xr,y∗
k(x

r))− Ehr
f∥2

(a.1)

≤ 4∥∇f(xr,y∗
k(x

r))−∇f(xr,y∗
k(x

r))∥2 + 4∥∇f(xr,y∗
k(x

r))−∇f(xr,yr
k)∥2

+ 4∥∇f(xr,yr
k)−∇f(xr,yr+1

k )∥2 + 4∥∇f(xr,yr+1
k )− Ehr

f∥2

≤

(
4(m+ 1)L2

f

n2
+

10(m+ 1)

n2

(
CxyLf,0Lg,2

µ2
g

)2
)
∥xr − 1xr∥2

+
m∑

k=1

4(m+ 1)L2
y,c

n2
∥y∗

k(x
r)− yr

k∥2 +
4mL2

f,y

n2
∥yr

k − 1yr
k∥2

+
4mL2

f,y

n2

m∑
k=1

E∥yr+1
k − yr

k∥2 +
4b2r
n

(a.2)

≤

(
4(m+ 1)L2

f

n2
+

10(m+ 1)

n2

(
CxyLf,0Lg,2

µ2
g

)2

+
16(m+ 1)L2

y,cL
2
y

n

)
∥xr − 1xr∥2

+

m∑
k=1

16(m+ 1)L2
y,c

n
∥y∗

k(x
r)− yr

k∥2 +

(
8(mL2

f,y + (m+ 1)L2
y,c)

n2

)
∥yr

k − 1yr
k∥2

+
4mL2

f,y

n2

m∑
k=1

E∥yr+1
k − yr

k∥2 +
4b2r
n
, (157)

and in (a.1) the Lipschitz continuity of ∇fi(xr
i ,y

∗
i,k(x

r
i )) w.r.t. xi with a constant (defined as Lf here) follows

the centralized case directly (which has been shown in [31, Lemma 2.2.]); 2) constant Ly,c is computed as
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follows

∥∇f(x,y∗
k(x

r))−∇f(x,yr
k)∥2

≤m+ 1

n2

m∑
k=1

∥∥∥∥∥
n∑

i=1

∇xfi(xi,yi,k)−∇xfi(xi,y
∗
i,k(x))

∥∥∥∥∥
2

+
m+ 1

n2

∥∥∥∥ n∑
i=1

∆
(1)
i,k +∆

(2)
i,k +∆

(3)
i,k +∆

(4)
i,k +∆

(5)
i,k

∥∥∥∥2
≤m+ 1

n2

m∑
k=1

L2
f,1 + 5

(
Lf,0Lg,2

µg

)2

+ 5

(
CxyLf,0Lg

µ2
g

)2

+ 5

(
CxyLf,1

µg

)2

︸ ︷︷ ︸
≜L2

y,c

∥yk − y∗
k(x)∥

2

+
10(m+ 1)

n2

(
CxyLf,0Lg,2

µ2
g

)2

∥xr − 1xr∥2 , (158)

and terms ∆(1)
i,k ,∆

(2)
i,k ,∆

(3)
i,k ,∆

(4)
i,k ,∆

(5)
i,k are defined as

∆
(1)
i,k ≜

[
∇2

xiyi,k
gi,k(xi,yi,k)−∇2

xiyi,k
gi,k(xi,y

∗
i,k(x))

] [
∇2

yi,kyi,k
gi,k(x,yi,k)

]−1

∇yi,kfi(xi,yi,k),

∆
(2)
i,k ≜∇2

xiyi,k
gi,k(xi,y

∗
i,k(x))

[[
∇2

yi,kyi,k
gi,k(xi,yi,k)

]−1

−
[
∇2

ykyk
gi,k(x,yi,k

]−1
]
∇yi,kfi(xi,yi,k),

∆
(3)
i,k ≜∇2

xiyi,k
gi,k(xi,y

∗
i,k(x))

[[
∇2

yi,kyi,k
gi,k(x,yi,k)

]−1

−
[
∇2

ykyk
gk(x,y

∗
k(x))

]−1
]
∇yi,kfi(xi,yi,k),

∆
(4)
i,k ≜∇2

xiyi,k
gi,k(xi,y

∗
i,k(x))

[[
∇2

ykyk
gk(x,y

∗
k(x)

]−1 −
[
∇2

ykyk
gk(x,y

∗
k(x))

]−1
]
∇yi,kfi(xi,yi,k),

∆
(5)
i,k ≜∇2

xiyi,k
gi,k(xi,y

∗
i,k(x))

[
∇2

ykyk
gk(x,y

∗
k(x))

]−1 [∇yi,kfi(xi,yi,k)−∇yi,kfi(xi,y
∗
i,k(x))

]
;

3) and in (a.2) we apply the triangle inequality and the fact that

∥y∗
k(x

r)− yr
k∥2 ≤ 2∥y∗

k(x
r)− yr

k∥2 + 2∥y∗
k(xk)− y∗

k(xk)∥2 (159)

≤ 2∥y∗
k(x

r)− yr
k∥2 + 2L2

y∥xr − 1xr∥2 (160)

based on (25).

Further, from Lemma 5, we know that

∥yr+1
k − y∗

k(x
r+1)∥2 ≤

(
1− ρg

β

)(
1 +

2(m+ 1)nL2
y

α
+
ϑLxyDx

4α2

)
∥yr

k − y∗
k(x

r)∥2

+

(
L2

y +
α

8(m+ 1)n
+
Lxy

4ϑ

)∥∥E [xr+1 − xr]∥∥2
+

(
1 +

2(m+ 1)nL2
y

α
+
ϑLxyDx

4α2

)
σ2
g

nβ2
+

(
Lxy

4ϑ
+ L2

y

)
σ2
f

nα2
(161)

where we choose θ′ ≜ 2(m+ 1)nL2
y/α.

Next, let us define potential function at the consensus space as

Pr
c = E [f(xr,y∗

k(x
r))|Fr] +

m+ 1

n

m∑
k=1

∥yr
k − y∗

k(x
r)∥2. (162)
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Subsequently, we can have

Pr+1
c − Pr

c

≤− 1

2α
∥∇f(xr,y∗

k(x
r))∥2 −

(
α

2
−
(
Lf

2
+
m+ 1

n
L2

y +
α

8n2
+

(m+ 1)Lxy

4nϑ

)
︸ ︷︷ ︸

≜C1

)
∥E[xr+1 − xr]∥2

+
m+ 1

n

8L2
y,c

α
+

(
1− ρg

β

)(
1 +

2n(m+ 1)L2
y

α
+
ϑLxyDx

4α2

)
− 1︸ ︷︷ ︸

≜C2


m∑

k=1

∥yr
k − y∗

k(x
r)∥2

+

(
2(m+ 1)L2

f

αn2
+

10(m+ 1)

αn2

(
CxyLf,0Lg,2

µ2
g

)2

+
8(m+ 1)L2

y,cL
2
y

αn

)
∥xr − 1xr∥2

+

(
4(mL2

f,y + (m+ 1)L2
y,c)

αn2

)
m∑

k=1

∥yr
k − 1yr

k∥2 +
2mL2

f,y

n2α

m∑
k=1

E∥yr+1
k − yr

k∥2

+
m+ 1

n

((
1 +

2(m+ 1)nL2
y

α
+
ϑLxyDx

4α2

)
σ2
g

nβ2
+

(
Lxy

4ϑ
+ L2

y

)
σ2
f

nα2

)
+

4b2r
nα

+
Lfσ

2
f

2nα2︸ ︷︷ ︸
≜N2∼O

(
1

nα2

)
.

1) to show C1 > 0: we need

α

2
−
(
Lf

2
+
m+ 1

n
L2

y +
α

8n2
+

(m+ 1)Lxy

4nϑ

)
> 0, (163)

which requires

α > 4

(
Lf

2
+
m+ 1

n
L2

y +
(m+ 1)Lxy

4nϑ

)
. (164)

2) to show C2 < 0: we need

2L2
y,c

α
+

(
1− ρg

β

)(
1 +

2(m+ 1)nL2
y

α
+
ϑLxyDx

4α2

)
≤ 1, (165)

which is

β <

ρg

(
1 +

2(m+1)nL2
y

α
+

ϑLxyDx

4α2

)
1
α
(8L2

y,c + 2(m+ 1)L2
y) +

ϑLxyDx

4α2

=
ρg(α

2 + 2(m+ 1)nαL2
y + ϑLxyDx/4)

2α((m+ 1)L2
y + 4L2

y,c) + ϑLxyDx/4
(166)

≤
ρg(α+ 2(m+ 1)nL2

y +
ϑLxyDx

4α
)

2(L2
y + 4L2

y,c)
. (167)

From (164) and (167), we can have constants C1 > 0 and C2 < 0 such that

Pr+1
c − Pr

c ≤ − 1

2α
∥∇f(xr,y∗

k(x
r))∥2 − C1∥E[xr+1 − xr]∥2 + m+ 1

n
C2

m∑
k=1

∥yr
k − y∗

k(x
r)∥2 +N2

+

(
2(m+ 1)L2

f

αn2
+

10(m+ 1)

αn2

(
CxyLf,0Lg,2

µ2
g

)2

+
8(m+ 1)L2

y,cL
2
y

αn

)
∥xr − 1xr∥2

+

(
4(mL2

f,y + (m+ 1)L2
y,c)

αn2

)
m∑

k=1

∥yr
k − 1yr

k∥2 +
2mL2

f,y

n2α

m∑
k=1

E∥yr+1
k − yr

k∥2. (168)

Note that the consensus errors have been quantified in (138) and (149). Let x̃ ≜ x− 1x. Then, we can have

σ̃min(A
TA)∥x− 1x∥2 ≤∥A(x− 1x)∥2 = x̃TATAx̃ =

∑
i,j

∥x̃i − x̃j∥2 (169)

=
∑

j∈Ni,∀i

∥xi − xj∥2 = xTATAx = ∥Ax∥2, (170)
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Applying the telescoping sum, we have

1

T

T∑
r=1

∥∇f(xr,y∗
k(x

r))∥2

≤ 2α
P1

c − Pc

T
+

4mL2
f,y

n2

m∑
k=1

E∥yr+1
k − yr

k∥2 +

(
8(mL2

f,y + (m+ 1)L2
y,c)

n2

)
m∑

k=1

∥yr
k − 1yr

k∥2

+ 2

(
2(m+ 1)L2

f

n2
+

10(m+ 1)

n2

(
CxyLf,0Lg,2

µ2
g

)2

+
8(m+ 1)L2

y,cL
2
y

n

)
∥xr − 1xr∥2 + 2αN2

∼ O
(

1√
nT

)
, (171)

since N2 ∼ O(1/(nα2)), where Pc denotes the lower bound of Pc.

B.5.4 Optimality of the LL Optimization Variables

From (165) and condition β ≥ 2(µg + Lg,1)
−1, we know that −1 < C2 < 0. Combining (80) and (81) with

θ′ = 2(m+ 1)nL2
y/α, so we can have

(1 + C2)E∥yr
k − y∗

k(x
r)∥2

≤E∥yr
k − y∗

k(x
r)∥2 − E∥yr+1

k − y∗
k(x

r+1)∥2 +
(
L2

y +
α

8(m+ 1)n
+
Lxy

4ϑ

)∥∥E [xr+1 − xr]∥∥2
+

(
1 +

2(m+ 1)nL2
y

α
+
ϑLxyDx

4α2

)
σ2
g

nβ2
+

(
Lxy

4ϑ
+ L2

y

)
σ2
f

nα2
. (172)

Applying the telescoping sum on (172), we have

1

T

T∑
r=1

E∥yr
k − y∗

k(x
r)∥2

≤∥y1
k − y∗

k(x
1)∥2

T (1 + C2)
+

1

1 + C2

(
L2

y +
α

8(m+ 1)n
+
Lxy

4ϑ

)
1

T

T∑
r=1

E
∥∥xr+1 − xr

∥∥2
+

1

1 + C2

(
1 +

2(m+ 1)nL2
y

α
+
ϑLxyDx

4α2

)
σ2
g

nβ2
+

1

1 + C2

(
Lxy

4ϑ
+ L2

y

)
σ2
f

nα2
(173)

≤∥y1
k − y∗

k(x
1)∥2

T (1 + C2)
+

1

1 + C2

(
L2

y +
α

8(m+ 1)n
+
Lxy

4ϑ

)
Dx

α2

+
1

1 + C2

(
1 +

2(m+ 1)nL2
y

α
+
ϑLxyDx

4α2

)
σ2
g

nβ2
+

1

1 + C2

(
Lxy

4ϑ
+ L2

y

)
σ2
f

nα2
∼ O

(
1√
nT

)
,

(174)

since we choose α ∼ β ∼ O(
√
T/n).

B.6 Proof of Corollary 1

In this case, we have

xr+1 = xr −
hr
f

α
. (175)

Then, Lemma 4 holds because

E∥xr+1 − xr∥2 ≤ 2

α2

(
∥hr

f − Ehr
f∥2 + ∥Ehr

f∥2
)
≤ n

≜Dx︷ ︸︸ ︷
2σ2

f + 2Lf,0

α2
. (176)

B.6.1 Consensus Violation of the LL Optimization Variables

From (176), we know that E∥xr+1 − xr∥2 ≤ nDx/α
2. Following (139) to (149), we can still have

1
T

∑T
r=1 E∥Ayr

k∥2 ∼ O
(

1√
nT

)
when ρ ≥ n.
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B.6.2 Stationarity of the UL Optimization Variables

Note that there will be n objective functions corresponding to {xi, ∀n}. We will show the convergence of
SLAM-L for each one of them. According to the gradient Lipschitz continuity and by following (156), we have

n∑
i=1

Eξr
[
fi(x

r+1
i ,y∗

i,k(x
r+1
i ))|F ′r]

≤
n∑

i=1

fi(x
r
i ,y

∗
i,k(x

r
i )) + E

[〈
∇fi(xr

i ,y
∗
i,k(x

r
i )),x

r+1
i − xr

i

〉
|F ′r]+ E

[
Lf,1

2
∥xr+1

i − xr
i ∥2|F ′r

]

=

n∑
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fi(x
r
i ,y

∗
i,k(x

r
i )) +

〈
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i ,y
∗
i,k(x

r
i )),E[xr+1

i − xr
i ]|F ′r〉+ Lf,1

2
∥E[xr+1

i − xr
i ]∥2

+
Lf,1

2
E
[
∥xr+1

i − xr
i − E[xr+1

i − xr
i ]∥2|F ′r] (177)

(a)

≤
n∑

i=1

fi(x
r
i ,y

∗
i,k(x

r
i ))−

1

2α
∥∇fi(xr

i ,y
∗
i,k(x

r
i ))∥2 −

(
α

2
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2

)
∥E[xr+1
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+
1
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∗
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r
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f ]i∥2 +
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E
[
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f ]i − E[hr
f ]i∥2F ′r] (178)

(b)

≤
n∑

i=1

fi(x
r
i ,y

∗
i,k(x

r
i ))−

1

2α
∥∇fi(xr

i ,y
∗
i,k(x

r
i ))∥2 −

(
α

2
− Lf,1

2

)
∥E[xr+1 − xr]∥2

+
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α
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L2
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r)∥2 +
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α

m∑
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+
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α

m∑
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k∥2 +
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α

+
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2
f
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(179)

where (a) is true because〈
∇fi(xr

i ,y
∗
i,k(x

r
i )),E[xr+1

i − xr
i ]|F ′r〉 = − 1

α

〈
∇fi(xr

i ,y
∗
i,k(x

r
i )),E[hr

f ]i
〉

=− 1

2α
∥∇fi(xr

i ,y
∗
i,k(x

r
i ))∥2 −

1

2α
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f ]i∥2 +
1

2α
∥∇fi(xr

i ,y
∗
i,k(x

r
i ))− E[hr

f ]i∥2, (180)

and in (b) we apply the following facts,

n∑
i=1

∥∇fi(xr
i ,y

∗
i,k(x

r
i ))− E[hr

f ]i∥2

≤
n∑

i=1

4∥∇fi(xr
i ,y

∗
i,k(x

r
i ))−∇fi(xr

i ,y
r
k)∥2 + 4∥∇fi(xr

i ,y
r
k)−∇fi(xr

i ,y
r
i,k)∥2

+ 4∥∇fi(xr
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r
i,k)∥2 + 4∥∇fi(xr

i ,y
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i,k )− E[hr

f ]i∥2 (181)

≤4n(m+ 1)

m∑
k=1

L2
y,l∥yr

k − y∗
k(x

r)∥2 + 4mL2
f,y∥yr

k − 1yr
k∥2

+ 4mL2
f,y

m∑
k=1

E∥yr+1
k − yr

k∥2 + 4b2r, (182)

and constant Ly,l is computed as follows:

n∑
i=1

∥∇fi(xi,yk)−∇fi(xr
i ,y

∗
k(x))∥2

≤(m+ 1)

m∑
k=1

n∑
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2
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)2

+

(
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2
,
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and terms ∆′(1)
i,k ,∆

′(2)
i,k ,∆

′(3)
i,k are defined as

∆
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i,k ≜ ∇2
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Let us define potential function as
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n∑
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r
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∗
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∥yr
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r)∥2. (183)

Then, we can have
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l
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2
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1) to show C1 > 0: we need
α

2
−
(
Lf,1

2
+ n(m+ 1)L2

y +
α

8
+
n(m+ 1)Lxy

4ϑ

)
> 0, (184)

which requires

α > 4

(
Lf,1

2
+ n(m+ 1)L2

y +
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4ϑ

)
. (185)

2) to show C2 < 0: we need
2L2

y,l

α
+

(
1− ρg

β
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y

α
+
ϑLxyDx
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)
≤ 1, (186)

which is

β <
ρg(α+ 2(m+ 1)nL2

y +
ϑLxyDx

4α
)

2(L2
y + L2

y,l)
. (187)

Then, we can have constants C1 > 0 and C2 < 0 such that

Pr+1
l − Pr

l ≤ − 1

2α
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∗
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r
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Applying the telescoping sum, we can obtain

1

T

T∑
r=1

E∥∇fi(xr
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∗
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(40b)
≤
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Dy

β2
+ αN3 ∼ O

(
n√
T

)
, (189)

where Pl denotes the lower bound of Pl, which gives the result shown in Corollary 1.

B.6.3 Optimality of the LL Optimization Variables

We know that −1 < C2 < 0 based on (187) and condition β ≥ 2(µg + Lg,1)
−1, and

Eξr

[∥∥ 1
α

(
Ehr

f − hr
f

)∥∥2 |F ′r
]

≤ nσ2
f/α in Lemma 5. Following (172) to (174) and choosing θ′ =

2(m+ 1)n3/2L2
y/α, we have

1

T
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k(x
r)∥2 ∼ O

(
1√
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)
, (190)

when α ∼ O(
√
T ), β ∼ O(

√
T/n), and T ≫ n.

B.7 Proof of Corollary 2

In this case, (5a) reduces to

yr+1
k = yr

k −
hr
g

β
(191)

where hr
g is the stochastic estimate of [g1,k(xr

1,y
r
1,k), . . . , gn,k(x

r
n,y

r
n,k)]

T .

B.7.1 Consensus Violation of the UL Variables

Following (138), we have 1
T

∑T
r=1 E∥A

Txr∥2 ≤ O(1/
√
nT ), where α ∼ O(

√
T/n) and β ∼ O(

√
T/n).

B.7.2 Stationarity of the UL Optimization Variables

Based on (191), (80) becomes
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and there exist θ′, ϑ > 0 such that
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Therefore, (161) becomes
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where θ′ = 2mnL2
y/α.
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According to the gradient Lipschitz continuity of the UL objetive function, we can have

Eξr
[
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where (a) follows the gradient Lipschitz continuity of the UL loss function with constant Lf at the consensus
space, (b) is true because

〈
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and the continuity of ∇fi(xr
i ,y

∗
i,k(x

r
i )) is the same as the centralized case (e.g., constant C in [31, Lemma

2.2.]) as variable yi,k, ∀i are decoupled over the nodes, namely ∥∇fi(xr
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∗
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Combining (193), we have Then, we can have
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Following (164) and (167), we can have constants C1 > 0 and C2 < 0 such that
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Applying the telescoping sum, we have that when α ∼ O(
√
T/n) and β ∼ O(

√
T/n),
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where Pu denotes the lower bound of Pu.

B.7.3 Optimality of the LL Optimization Variables

From (193) and condition β ≥ 2(µg + Lg,1)
−1, we know that −1 < C2 < 0. With θ′ = 2mnL2

y/α, so (194)
can be written as
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Applying the telescoping sum on (203), we have
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as we choose α ∼ O(
√
T/n), β ∼ O(

√
T/n), and T ≫ n.
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C Additional Numerical Results

C.1 SLAM for MARL: SLAM-AC

In this section, we will introduce how to use SLAM for solving MARL problems. Consider a networked Markov
Decision Process (nMDP) (S, {Ai,∀i},P, {Ri, ∀i}, η,G, γ), where S denotes the global states shared by all
agents, Ai is the action space of agent i, subsequently A = Πn

i=1Ai is the joint action space of all agents,
P : S × A × S → [0, 1] is the state transition probability of the nMDP, Ri(s,a) : S × A → R, ∀i denote
the local rewards, η(s) denotes the initial state, G is the communication graph, and γ ∈ (0, 1) stands for the
discount factor. We assume that the states s and actions a are globally observable. The goal of this problem is to
learn a joint policy πθ parametrized by θ such that the networked reward function is maximized. Let θi be the
local policy at each agent and the concatenation of all local policies be θ = [θ1, . . . , θn]

T (which will be the UL
optimization variables in the DAC formulation). Under this setting, µθ(s) is the stationary distribution induced
by the policy πθ at each state, and dθ(s) = (1 − γ)

∑∞
r=0 γ

rP(sr = s|s0 ∼ η(s)) denotes the discounted
visitation measure. Therefore, given the initial state η(s), the policy πθ can generate a trajectory according to the
nMDP. Then, the discounted accumulative reward function maximization problem w.r.t. optimizing the policy is
maxθ J(θ), and the objective function is

J(θ) ≜
1

n

n∑
i=1

Eπθ

[
∞∑
r=0

γrRi(s
r,ar)

]
(206)

=Eπθ

[
∞∑
r=0

γrR̄(sr,ar)

]
(207)

=Es∼η(·) [Vπθ (s)] (208)

where R̄(s,a) = n−1∑n
i=1Ri(s,a), and the expectation is taken over all the trajectories generated by policy

πθ , and value function Vπθ (s) ≜ E
[∑∞

r=0 γ
rR̄(sr,ar)|s0 = s

]
. Note that given policy πθ , value function

Vπθ (s) satisfies the Bellman equation [7] and can be written as

Vπθ (s) = Ea∼πθ(·|s),s′∼P(·|s,a)
[
R̄(s,a) + γVπθ (s

′)
]
, (209)

so the policy gradient [50] of J(θ) w.r.t. θ can be expressed by

∇J(θ) = 1

1− γ
Es∼dθ(·),a∼πθ(·|s),s′∼P(·|s,a)

[(
R̄(s,a) + γVπθ (s

′)
)
∇θ log πθ(a|s)

]
. (210)

Based on the finite sum structure of the rewards over the network and policy gradient theorem, it is motivated
that the policy gradient at each node can be estimated locally when a consensus process is allowed and the global
action and state are observable. As the value function is not explicitly known at each agent, we apply the critic
step to approximate the global valuation function by formulating the LL function estimation process. Following
the existing AC works [30, 23, 15], we also adopt the linear function approximation, i.e., V̂ (s, w) = φ(s)Tw,
to estimate the global value function, where φ(s) denotes the feature mapping and w is the model parameter.
Then, in this decentralized setting, the global value functions are estimated by V̂ (s, wi) = φ(s)Twi, ∀i and
subsequently the global reward functions can be estimated through R̂i(s,a, ϕi) = ψ(s,a)Tϕi, ∀i, where
{wi, ϕi, ∀i} are local model parameters and ψ(s,a) is the given feature mapping. Towards this end, the DAC
problem can be formulated as the following DBO problem,

max
θ

J(θ) = Eπθ

[ ∞∑
r=0

γrR̄(sr,ar)

]
(211a)

s.t. θpi = θpj , j ∈ Ni, ∀i (211b)

w∗(θ) = argmin
w

1

n

n∑
i=1

E
(
Ri(s,a) + γV̂ (s′, wi)− V̂ (s, wi)

)2
, s.t. wi = wj , j ∈ Ni, ∀i (211c)

ϕ∗(θ) = argmin
ϕ

1

n

n∑
i=1

E
(
Ri(s,a)− R̂i(s,a, ϕi)

)2
, s.t. ϕi = ϕj j ∈ Ni,∀i (211d)

where θpi is the shared part of the agent i’s policy parameter, w = [w1, . . . , wn]
T and ϕ = [ϕ1, . . . , ϕn]

T . The
LL problem (211c) is used for approximating the network value function and (211d) for the averaged reward
function, and both of them are needed at the UL problem (211a) for computing the policy gradient w.r.t. local
policies at each iteration, which can be explicitly approximated by

∇̂θiJ(θ) = (1− γ)−1 (ψ(sr,ar)Tϕr
i + γφ(sr+1)Twr

i − φ(sr)Twr
i

)
∇θi log πθi(a

r
i |sr). (212)

Given the above setting, we implement SLAM for solving DAC problem (211) in a decentralized way. The
results are shown in both main text and the following. All the experiments are executed on an Apple MacBook
Pro (8 GB Memory, M1 processor).
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Figure 3: Neural Network Architecture Diagrams in the Pursuit-Evasion Game. (Left) The
diagram of the critic network. (Right) The diagram of the actor network.

C.2 Cooperative Navigation Task

In our simulations, the dimension of state sr is 4× n, since it includes the two-dimensional coordinates of n
agents and n landmarks. Both the actor and critic networks maintained at each agent have one hidden layer with
20 neurons followed by the ReLU activation function. Under a common policy πθ = {πθi}

n
i=1, critic networks

jointly estimate the global value function Vπ(s) for all s ∈ S, where the dimension of the output layer is 1.
While the output of actor network corresponds to the probability of choosing each possible action option and the
dimension of the output layer is 5 as there are 5 given actions in total. We set the step size for the critic network
as 1× 10−3 and the step size for the actor network as 1× 10−4 for all the compared algorithms. Moreover, we
set ρ = 1× 10−1 in SLAM-AC. The results have been shown in Figure 1.
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Figure 4: The averaged reward versus the learning process on the pursuit-evasion game. (With only LL
Consensus.)

C.3 Pursuit-Evasion Game

In this experiment, the “capture” reward for each agent is set to be 5 when a pursuer successfully catches
an evader. Additionally, the pursuer will receive a small reward set to be 0.1 when the pursuer encounters
an evader at its current location. The environment is divided by a 15 × 15 grid where there exist obstacles
in this two-dimensional (2D) grid such that the agents cannot pass through. Hence, the global state of the
pursuit-evasion game consists of three images (binary matrices) with the size of 15 × 15. Consequently, the
dimension of the global state is 3 × 15 × 15. These three images (binary matrices) respectively present the
location of the pursuers, evaders, and obstacles in this 2D grid.

Since the observation of each agent is a 3-channel image, two convolutional neural networks (CNNs) are each
agent respectively maintained at each agent, including two convolutional layers, one max-pooling layer, and
one fully connected layer for both the actor and critic learners. The ReLU activation function is utilized in
each hidden layer of actor network and critic networks. The output of critic network targets approximating
the value function Vπ(s) for all s ∈ S, where the dimension of the output layer is 1. The output dimension
of actor network is 5 which corresponds to the number of possible actions. In each CNN, the raw images
(3-channel location matrices), whose dimension is 3× 15× 15, are processed by two convolutional layers and
one max-pooling layer first and then passed through a fully connected layer as the output layer. The detailed
structure diagrams used for the actor and critic networks are shown in Figure 3. For all algorithms, we set the
step size for the critic network as 1× 10−3 and the step size for the actor network as 1× 10−4. Moreover, we
set ρ = 5 in SLAM-AC.

Additional results are shown in Figure 4, where only critic neural networks are used for consensus for estimating
the network value function through the communication channel. All the algorithms adopt the same settings. It
can be observed from these figures that our proposed algorithm, SLAM-AC, outperforms the state-of-the-art
algorithms w.r.t. both convergence speed and achievable average rewards.
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C.4 Scalability, robustness, and extendability of SLAM in MARL
In this section, we add more numerical results on MARL and decentralized MAML problems respectively to
showcase the superiority of the proposed learning framework and efficiency of SLAM, including scalability,
robustness, and extendability.

Based on the problem setup and parameters chosen shown in Section C, we compare the scalability of the three
algorithms on a different number of agents and test the performance of SLAM by varying the hyper-parameters.
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(c) 8 agents
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Figure 5: The averaged reward versus the learning process on the cooperative navigation task over different
numbers of agents.

C.4.1 Scalability

It is well known that the variance of the multi-agent policy gradient estimate grows as the number of agents
increases [18], implying that the difficulty of solving large-scale multi-agent problems rises. We use the same
set of step sizes for each algorithm and test their performances by increasing the number of agents from 4 to 10.
It can be observed in Figure 5 that SLAM-AC consistently performs well and converges stably with minimum
variances compared with the other two existing methods, where the average reward achieved by the classic
MARL algorithm, DAC, has higher variances and even diverges when the number of agents is increased to 10,
and the reward obtained by MDAC is relatively stable compared to DAC as the multiple consensus steps in the
inner loop reduces the variances, but it is still lower than SLAM-AC. Therefore, it is concluded that SLAM-AC
scales better than the other two due to the averaged variance over the network.

C.4.2 Effects on Hyper-parameters

Besides the scalability of SLAM, we have also evaluated the numerical performance of SLAM by varying the
hyper-parameters, including the actor and critic step sizes and the penalty term. It can be seen in Figure 6 that
when the step sizes and penalty term shrink by a half and one-tenth, SLAM-AC converges slower while keeping
a similar convergence behavior.

C.4.3 Extendability of SLAM-L with PPO

The proposed SLAM based learning framework is generic, and is amenable to incorporating other optimization
techniques at each agent to improve the performance of learning models. In applications of MARL, we further
consider two algorithms, denoted as SLAM-PPO and Dec-PPO. Both of them apply proximal policy optimization
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(b) Varying β
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Figure 6: The averaged reward versus the learning process by varying hyper-parameters of SLAM on the
cooperative navigation task.

(PPO) instead of the vanilla policy gradient to update their actors (upper-level parameters). In the updates of the
critic, the difference is that SLAM-PPO uses SLAM-L to minimize the temporal difference (TD) errors while
Dec-PPO directly utilizes the decentralized gradient descent for policy evaluation. We test these two algorithms
on the navigation task, where the ϵ clip threshold in PPO is set as 0.2. It can be observed from Figure 7 that
SLAM-PPO converges to higher reward values with less variance compared with DEC-PPO, which is similar to
the numerical results by employing policy gradient updates for the actor networks.
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Figure 7: The averaged reward versus the learning process on the cooperative navigation task with PPO for
policy improvment.

C.5 Decentralized Meta Learning

We further test the performance of the proposed SLAM with application to a multi-agent MAML problem (9).
Following the ANIL structure [6], we partition the weights of the neural network at each agent as two parts
denoted by xi and yi, where the UL optimization problem is to extract the reusable latent space across the
connected agents while the LL optimization problem is adopted for adaption of the local model to individual
learning tasks.

In this numerical experiment, a two-layer neural network is used, where the numbers of neurons at the hidden
and output layers are 32 and 10 respectively and the activation function is sigmoid. A 2-norm regularization
term with parameter 0.01 is added to the LL loss function. The communication topology is generated by a
random Erdős–Rényi graph. We divide the MNIST dataset as n parts, where each of them only includes 128
data samples for the training. The (standard) initial UL and LL step sizes of SLAM-U are 0.01 and 0.1, and the
mini-batch size for gradient estimate is 32.

C.5.1 Linear Speed-up

From the numerical results shown in Figure 8, it can be observed that as the number of agents increases, SLAM-U
converges faster in terms of the data samples passed. Setting 93.5% test accuracy as a threshold, we measure
the number of data sampled passed w.r.t. the different numbers of agents and report the results in Table 2 and
Figure 8(b). If we assume that the computational evaluations of the stochastic gradient estimate are the same at
each agent, Figure 8(b) shows that there at least exists a linear speed-up w.r.t. the number of agents in terms of
the computational workload, which is consistent with the theoretical analysis.
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(a) Test Accuracy (b) Linear speed-up

Figure 8: The test accuracy versus the numbers of data samples passed at each agent on the decentralized
metal-learning task.

Table 2: Linear speed-up of SLAM-U w.r.t. the number of agents.

number of agents (n) 2 4 6 8 10

required number of samples passed 62976 30336 19328 12672 6656

C.5.2 Effects on Hyper-parameters

Similar to the MARL case, we use different step sizes and penalty parameters to test the robustness of SLAM-U
against the changes of these hyper-parameters. From Figure 9, it can be seen that if the step sizes and ρ decrease,
SLAM-U converges relatively slower, and the performance of SLAM-U is more sensitive to the UL step size
while very robust to the LL step size and ρ.

(a) Varying α (b) Varying β (c) Varying ρ

Figure 9: The test accuracy versus the numbers of epochs on the decentralized metal-learning task.
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