
A Algorithm

To address the complete Order Fulfillment (OF) problem by Multi-Agent Reinforcement Learning
(MARL), in addition to an environment for the agent team to interact with, we still require an
algorithm to direct and manage the interaction. Accordingly, we present the MARL algorithm in this
section. This section consists of three parts, with each subsequent part building upon the previous
one. Appendix A.1 covers the fundamentals of RL, where the actor-critic method is introduced.
Appendix A.2 describes the RL algorithm for a single fulfillment agent, which is the proximal policy
optimization (PPO) [Schulman et al., 2017]. Appendix A.3 presents the MARL algorithm for the
entire fulfillment agent team, which is developed based on the heterogeneous-agent proximal policy
optimization (HAPPO) [Kuba et al., 2022].

A.1 Reinforcement Learning Basics — Actor-Critic

RL covers a multitude of sequential decision-making methods that reward desired behaviors and
punish undesired behaviors [Szepesvári, 2010, Sutton and Barto, 2018]. In general, RL methods can
be categorized into two groups: value-based methods and policy-based methods. Currently, policy-
based methods [Deisenroth et al., 2013] are prevalent because they are compatible with stochastic
policies and continuous action spaces. The majority of existing policy-based methods are developed
based on the vanilla policy gradient method [Williams, 1992]. Specifically, a policy gradient method
updates the policy parameter θ along the ascending direction of the objective function J(πθ), namely
the policy gradient∇θJ(πθ). For the vanilla policy gradient method, the policy gradient∇θJ(πθ) is
estimated by averaging samples from multiple collected trajectories as

∇θJ(πθ) =
1

Bh

B∑
i=1

h∑
t=0

R(s, a)∇θ log πθ(a|s), (1)

where the policy πθ(a|s) (abbreviated as π(a|s) in the following parts) is a parameterized function that
outputs a probability distribution over action a given state s, B denotes the batch size of trajectories,
h is the trajectory length, and R(s, a) represents the reward function that gives a scalar reward based
on state s and action a. Nevertheless, the variance in vanilla policy gradient is notoriously high.
Accordingly, several methods were developed to reduce the variance in policy gradient, among
which using a baseline function was proven to be effective. Among these methods, the actor-critic
method uses a state-action value function Qπ(s, a) to approximate the reward function R(s, a) and a
state value function Vπ(s) as the baseline function b(s), which reduces the variance by introducing
tolerable bias. The difference between the state-action value function Qπ(s, a) and the state value
function Vπ(s) is called the advantage of action a on state s, given by Aπ(s, a) = Qπ(s, a)− Vπ(s).
Incorporating the notation of advantage, the policy gradient of the actor-critic method becomes

∇J(π) =
1

Bh

B∑
i=1

h∑
t=0

(
R(s, a)− b(s)

)
∇ log π(a|s)

=
1

Bh

B∑
i=1

h∑
t=0

(
Qπ(s, a)− Vπ(s)

)
∇ log π(a|s)

=
1

Bh

B∑
i=1

h∑
t=0

Aπ(s, a)∇ log π(a|s).

(2)

With each batch of samples, the policy parameter can be updated by

θk+1 ← θk + α∇θkJ(πθk), (3)

where θk and θk+1 are policy parameters before and after the update, and α denotes the learning rate.

A.2 Single Agent Reinforcement Learning — PPO

Since the MARL algorithm used in this paper is a multi-agent extension of the single-agent actor-critic
method called proximal policy optimization (PPO) [Schulman et al., 2017], we describe PPO here

14

and expound its multi-agent version in the next part. To be concise, PPO is a first-order trust region
method [Kakade and Langford, 2002, Schulman et al., 2015] that improves training stability by
constraining the step size within a trust region, avoiding excessively large step sizes which result
in detrimental behaviors that are irrecoverable. To formalize PPO, we use π to denote the current
policy and π̄ to represent the new policy. Then we define a surrogate objective function which forms
a pessimistic bound on the performance of the policy as

Lπ(π̄) = J(π) + Es∼ρπ,a∼π̄[Aπ(s, a)]. (4)

Besides, we express the distance between the distributions of the current policy π and the new policy
π̄ using the maximum Kullback-Leibler (KL) divergence [MacKay, 2003] which is

Dmax
KL (π, π̄) = max

s
DKL

(
π(·|s), π̄(·|s)

)
. (5)

On this basis, we have the following bound that holds,

J(π̄) ≥ Lπ(π̄)− C ·Dmax
KL (π, π̄), (6)

where C =
4γmaxs,a |Aπ(s,a)|

(1−γ)2 . As the distance between the current policy π and the new policy π̄
decreases, the surrogate objective Lπ(π̄) approaches the original objective J(π̄). Accordingly, the
update at iteration k + 1 can be expressed as

πk+1 ← arg max
π

(
Lπk(π)− C ·Dmax

KL (πk, π)
)
, (7)

where monotonic improvement J(πk+1) ≥ J(πk) is guaranteed. In practice, using the recommended
penalty coefficient C results in excessively small step sizes which further lead to unbearably slow
convergence. To overcome this limitation, we take larger update steps using a constraint δ on the KL
divergence between the current policy π and the new policy π̄, namely a trust region constraint, by

θk+1 ← arg max
θ

Lπθk (πθ) s.t. Es∼ρπθk [DKL(πθk , πθ)] ≤ δ. (8)

In other words, we optimize πθk+1
to maximize Lπθk (πθ) within the boundary specified by δ. To

further reduce the cost in computing Es∼ρπθk [DKL(πθk , πθ)] in Equation (8), we approximate it
by only using the first-order derivatives and optimize the policy parameter θk+1 by maximizing the
clipped surrogate objective [Schulman et al., 2017],

Lπθk (πθ) = Es∼ρπθk ,a∼πθk
[

min
(πθ(a|s)
πθk(a|s)

Aπθk (s, a),Ξ
(πθ(a|s)
πθk(a|s)

Aπθk (s, a), 1± ε
))]

, (9)

where ε denotes the clipping coefficient and Ξ(·) represents the clipping function that replaces the
ratio πθ(a|s)

πθk (a|s) with 1 + ε or 1 − ε when this ratio exceeds the clipping threshold. Consequently,
we update the policy parameter using the policy gradient of this clipped surrogate objective from
Equation (9) as

θk+1 ← θk + α∇θkLπθk (πθk). (10)

A.3 Multi-Agent Reinforcement Learning — HAPPO

Based on the previous parts, we extend the clipped surrogate objective of Equation (9) from the
single-agent setting to the multi-agent setting [Kuba et al., 2022]. Following the notations in Section
3.2, we define an ordered subset i1:m = {i1, . . . , im} ∈ I and its complement −ii:m. In i1:m, we
denote the kth agent by ik. Then the multi-agent state-action value function can be written as

Qi1:m
π (s,ai1:m) = Ea−i1:m∼π−i1:m

[
Qπ(s,ai1:m ,a−i1:m)

]
. (11)

Correspondingly, the multi-agent advantage function for the disjoint sets j1:k and i1:m are

Ai1:m
π (s,aj1:k ,ai1:m) = Qj1:k,i1:m

π (s,aj1:k ,ai1:m)−Qj1:k
π (s,aj1:k). (12)

Besides, we use π = (π1, . . . , πn) to represent the current joint policy, and use π̄ = (π̄1, . . . , π̄n) to
denote the new joint policy. Hence, the joint advantage function can be represented as the sum of the
local advantages of agents by

Ai1:m
π (s,ai1:m) =

m∑
j=1

A
ij
π (s,ai1:j−1 , aij). (13)

15

In Equation (13), agents take actions sequentially following an arbitrary order i1:n. For agent i1, it
takes an action āi1 such that Ai1(s, āi1) > 0. For a remaining agent im where m ∈ [2, n], it takes an
action āim such that Aim(s, āi1:m−1 , āim) > 0. Consequently, the performance of the agent team is
guaranteed to improve since Aπθ (s, ā) is positive. Analogous to the definition of the joint policy,
we define π̄i1:m−1 =

∏m−1
j=1 π̄ij as some other joint policy of agents i1:m−1. Additionally, we define

π̂im as some other policy of agent im. On this basis, we have the surrogate objective,

Li1:m
π (π̄i1:m−1 , π̂im) = Es∼ρπ,ai1:m−1∼π̄i1:m−1 ,aim∼π̂im [Aimπ (s,ai1:m−1 ,aim)]. (14)

Meanwhile, for any joint policy π̄, we have the following inequality holds that

J(π̄) ≥ J(π) +

n∑
m=1

[Li1:m
π (π̄i1:m−1 , π̄im)− C ·Dmax

KL (πim , π̄im)]. (15)

Concisely, we sequentially update the policy of each agent, and the optimization objective of each
agent incorporates the updates of all previous ones. At iteration k + 1, given a permutation of agents
i1:n, agent im ∈ {1, . . . , n} sequentially optimize the policy parameter θimk+1 by maximizing the
constrained objective,

θimk+1 ← arg max
θim

E
s∼ρπθk ,a

i1:m−1∼π
i1:m−1

θ
i1:m−1
k+1

,aim∼πim
θim

[Aimπθk
(s,ai1:m−1 , aim)]

s.t. Es∼ρπθk [DKL(πim
θimk

(·|s), πimθim (·|s))] ≤ δ.
(16)

Then we apply a linear approximation to the objective function and a quadratic approximation to the
KL constraint. Accordingly, the closed-form update for the optimization problem can be expressed as

θimk+1 ← θimk + ηj

√
2δ

gimk (Him
k)−1gimk

(Him
k)−1gimk , (17)

where Him
k = ∇2

θimEs∼ρπθk [DKL(πim
θimk

(·|s), πimθim (·|s))]|θim=θimk
is the Hessian of the expected

KL divergence, gimk is the gradient of the objective, ηj < 1 is a positive coefficient that is found by
backtracking line search [Bertsekas, 1997], and the product of (Him

k)−1gimk can be computed by the
conjugate gradient algorithm [Shewchuk, 1994]. For each state s, we have

E
a
i1:m−1∼π̄i1:m−1 ,aim∼π̂im

[Aimπ (s,ai1:m−1 ,aim)]=Ea∼π

[(
π̂im (aim |s)
πim (aim |s)

−1

)
π̄
i1:m−1 (a

i1:m−1 |s)

π
i1:m−1 (a

i1:m−1 |s)
Aπ(s,a)

]
(18)

We estimate the advantage function

E
ai1:m−1∼π

i1:m−1

θ
i1:m−1
k+1

,aim∼πim
θim

[
Aimπθk

(s,ai1:m−1 , aim)
]

(19)

with the estimator (πimθ (aim |s)
πimθk (aim |s)

− 1
)
M i1:m(s,a), (20)

where M i1:m = π̄i1:m−1 (ai1:m−1 |s)
πi1:m−1 (ai1:m−1 |s) Â(s,a). Specifically, we employ the generalized advantage

estimation (GAE) [Schulman et al., 2016] as the value estimator, which actively trades off variance
and bias,

Âκ,λt =

h∑
l=0

(κλ)l
(
− Vπ(st+l) + rt+l + κVπ(st+l+1)

)
, (21)

where κ and λ are coefficients that control the variance-bias trade-off. By only considering the first
order derivatives, the computational load ofHim

k is significantly reduced. At step k + 1, agent im
selects the policy parameter θimk+1 to maximize the clipped surrogate objective

Lπθk
(πim
θim

)=Es∼ρπθk ,a∼πθk

[
min

(
π
im
θim

(ai|s)

π
im

θ
im
k

(ai|s)
Mi1:m (s,a),Ξ

(πim
θim

(ai|s)

π
im

θ
im
k

(ai|s)
,1±ε

)
Mi1:m (s,a)

)]
, (22)

16

where ε represents the clipping coefficient and Ξ(·) denotes the clipping function that replaces the

ratio
πim
θim

(ai|s)
πim
θ
im
k

(ai|s)
with 1 + ε or 1− ε when this ratio exceeds the clipping threshold. Consequently, we

update the policy parameter of agent im by

θimk+1 ← θimk + α∇θLπθk (πimθim), (23)

where θimk and θimk+1 denote the policy parameters of agent im before and after the update, and α is
the learning rate. To sum up, the complete procedure is given in Algorithm 1.

Algorithm 1 Heterogeneous Multi-Agent Reinforcement Learning for Order Fulfillment.
1: Initialize the joint policy πθ0

= (π1
θ1
0
, . . . , πnθn0

) and the GAE value network Vw.
2: for k = 0, 1, . . . ,K − 1 do
3: Sample trajectories using the joint policy πθk = (π1

θ1
k
, . . . , πnθnk

).

4: Store transition samples {(oit, ait, oit+1, rt),∀i ∈ I, t ∈ [0, h]} in the replay buffer.
5: Calculate the advantage Â(s,a) using the critic network.
6: Generate a random sequence for agents ii:n.
7: Let M i1(s,a)← Â(s,a).
8: for agent im = i1, . . . , in do
9: θ

im
k+1
← 1
Bh

∑B
j=1

∑h
t=0 min

(
π
im
θim

(a
im
t |oimt)

π
im

θ
im
k

(a
im
t |oimt)

Mii:m (st,at),clip

(πim
θim

(a
im
t |oimt)

π
im

θ
im
k

(a
im
t |oimt)

,1±ε
)
Mii:m (st,at)

)
.

10: M
ii:m+1(s,a)←

π
im

θ
im
k+1

(a
im
t |oimt)

π
im

θ
im
k

(a
im
t |oimt)

Mii:m (s,a) ∀m=n.

11: end for
12: Update wk+1 for the critic network by arg minw

1
Bh

∑B
j=1

∑h
t=0

(
Vw(st)− R̂t

)2
.

13: end for

B Experimental Setup

Regarding neural network architectures, the shape of a critic neural network is [obs, hid, hid, 1] and
the shape of an actor neural network is [obs, hid, hid, act]. In other words, the actor network and
the critic network only differ in the output layer and share the same structure for the remaining 2
hidden layers which are linear layers of size 256 followed by ReLU activation functions [Agarap,
2018]. In terms of the training procedure, the total number of episodes is 128 × 16 = 2048, the
episode length is 200 steps, and the batch size is 1024. We use the Adam optimizer [Kingma and
Ba, 2015] for all neural networks. With respect to the optimizer, we use 3 × 10−3 as the learning
rate for all actor networks and critic networks. With regard to the advantage estimator, we set the
GAE parameters [Schulman et al., 2016] κ = 0.99 and λ = 0.95. Besides, the gradient clipping
threshold [Schulman et al., 2017] is ε = 1.0 for all actor networks and critic networks. In Equation
(4.5), the undelivered penalty p is set to 50. All models were trained with 5 random seeds on Intel
Xeon Platinum 8396B CPU@2.90GHz and NVDIA A100-80GB GPU.

C Comparison to Existing Benchmarks

To highlight how our proposed benchmark differs from existing approaches focused on sub-tasks
of order fulfillment, we compare the objectives, observations, and actions in Table 1. It should
be noted that multiple formulations exist for each sub-task. For illustrative purposes, we include
representative works on scheduling [Zhang et al., 2020], bin-packing [Duan et al., 2019], inventory
management [Oroojlooyjadid et al., 2022], and vehicle routing [James et al., 2019]. This comparison
demonstrates key distinctions between modeling isolated sub-problems versus our approach of an
integrated fulfillment system benchmark.

17

Table 1: Comparison to existing benchmarks.
Benchmark Objective Observation Action

scheduling makespan disjunctive graph operation
bin-packing surface area bin size sequence sequencing & orientation
inventory management inventory level historical quadruple order quantity
vehicle routing traveling length node coordinations node
order fulfillment (ours) financial cost order information operation

D State Transition

To explicate the state transition logic in OFCOURSE, the following code snippets provide an
illustrative implementation. At each simulation step, the joint action is input at the team level. The
team then calls its agents and provides each agent’s individual action as input. Next, each agent then
passes the pertinent unit action as input to its constituent fulfillment units. Within a fulfillment unit,
the execute() function takes the unit action and alters the state information for all orders carried by
that unit based on preset probabilities corresponding to the operation encoded in the unit action.

In OFCOURSE, each simulation step invokes Team.step(agents_action) once, where each agent
retrieves its designated action from agents_action (line 8 in team.py).

1 class Team:
2 ...
3 def step(self , agents_action):
4 self.step_count += 1
5 _costs = [0 for agent_i in range(self.n_agents)]
6 for agent_i , action in enumerate(agents_action):
7 if not (self.agent_dones[agent_i]):
8 _costs[agent_i] = self.agents[agent_i].step(action ,

self.step_count)
9 if self.step_count >= self.max_step:

10 for agent_i in range(self.n_agents):
11 _costs[agent_i] += self.agents[agent_i]. clearance(self

.undelivered_penalty)
12 self.agent_dones[agent_i] = True
13 _obs = []
14 for agent_i in range(self.n_agents):
15 _obs.append(self.get_agent_obs(agent_i))
16 _rewards = [-_cost + self.args.r_baseline for _cost in _costs]
17 return _obs , _rewards , self.agent_dones , {}

Each call to Agent.step(action, step_count) first updates order information (line 5 in
agent.py), then executes the designated action (line 6 in agent.py). Specifically, Agent.update()
iterates through all fulfillment units and their carried orders (line 12 in agent.py). Similarly,
Agent.execute(action, step_count) iterates through all units to take the corresponding ac-
tions (line 18 in agent.py).

1 class Agent:
2 ...
3

4 def step(self , action , step_count=None):
5 _reward_update = self.update ()
6 _reward_execute = self.execute(action , step_count)
7 return _reward_update + _reward_execute
8

9 def update(self):
10 _step_price = 0
11 for _fulfillment_unit in self.fulfillment_units:
12 _step_price += _fulfillment_unit.update ()
13 return _step_price
14

15 def execute(self , action , step_count=None):

18

16 _step_price = 0
17 for _agent_i , _fulfillment_unit in enumerate(self.

fulfillment_units):
18 _step_price += _fulfillment_unit.execute(action[_agent_i],

step_count)
19 return _step_price

From a fulfillment unit’s perspective, FulfillmentUnit.update() updates order information (line
10 in fulfillment_unit.py), while FulfillmentUnit.execute(action, step_count) carries out
order transfers (line 14 in fulfillment_unit.py).

1 class FulfillmentUnit:
2 def __init__(self , latitude=None , longitude=None):
3 self.containers = deque ()
4 self.operations = deque ()
5 ...
6

7 def update(self):
8 _step_price = 0
9 for _container in self.containers:

10 _step_price += _container.update ()
11 return _step_price
12

13 def execute(self , action , step_count=None):
14 return self.operations[action]. execute(step_count)

19

