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A Recap of Lee and Bareinboim (2020)

Our result Theorem 8 is an initial step in a larger potential project of proving that (Lee & Bareinboim, 2020,
Thm. 2) is a complete criterion for materiality.

The result begins with the following factorization, of which we are only focused on cases where the first
condition is violated (Lee & Bareinboim, 2020). The result uses the definition of “redundancy” (which is a
looser condition than immateriality): if a scoped graph G(S) has X ̸⊆ AncY or (C ̸⊥ Y | X ∪ PaX \ {C})
then it is “redundant”, The result from Lee & Bareinboim (2020) is reproduced verbatim:
Lemma LB-1. Given an MPS S, which satisfies non-redundancy, let X ′ ⊆ X(S), actions of interest, C ′ ⊊
CX′ \X ′. non-action contexts of interest. If there exists a subset of exogenous variables U ′ in GS , a subset
of endogenous variables Z in GS that is disjoint with C ′ ∪̇X ′ and subsumes CX′ \ (C ′ ∪̇X ′), and an order
≺ over V ′ .= C ′ ∪̇X ′ ∪̇ Z such that

1. (Y ⊥ πX′ | ⌈X ′ ∪̇ C ′⌉)GS ,
2. (C ⊥ πX′

≺C
, Z≺C , U ′ | ⌈(X ′ ∪̇ C ′)≺C⌉)GS for every C ∈ C ′, and

3. V ′
≺X is disjoint with de(X)GS and subsumes pa(X)GS for every X ∈X ′,

where, the policy node πX is a new parent added to X, then the expected reward for π, a deterministic
policy optimal with respect to S, can be written as

µπ =
∑

y,c′,x′

yQ′
x′(y, c′)

∑
u′,z

Q(u′)
∏

Z∈Z

Q(z|v′
≺z, u′)

∏
X∈X′

π(x|cx). (1)

Lemma LB-1 provides conditions for asserting Equation (1) given (S, X ′, C ′), whether (U ′, Z,≺) exist
satisfying three conditions. It is then used to prove redundancy under optimality using the following theorem.
Theorem LB-2. Let U ′, Z and ≺ satisfy Lemma LB-1. For Z ∈ Z, let VZ be a minimal subset of V ′

≺Z ∪U ′

such that Z ⊥ U ′ | VZ . We define fix(T ) with respect to {⟨Z, VZ⟩}Z∈Z , that is with T̂ := ⌈T ⌉ ∪ {Z ∈ Z |
VZ \ U ′ ⊆ ⌈T ⌉}, and fix(T ) is T if T = T̂ , and fix(T̂ ) otherwise. If fix(CX \ Z) ⊇ CX for X ∈ X ′, then
S ′ := (S \X ′) ∪ {⟨X, CX \Z⟩}X∈X′ satisfies µ∗

S′ = µ∗
S .

Let us apply Theorem LB-2 to the graph Figure 2, which we discussed in Section 2. We have noted that
using Z = {Z}, X ′ = {X}, and the ordering ≺= ⟨Z, X⟩, Z and X ′ are LB-factorizable. To apply the
theorem, we must confirm that fix(CX \ Z) ⊇ CX is true. The right hand side is simply equal to Z. To
evaluate the left hand side, note that CX \Z = ∅. Furthermore, ∅̂ includes ⌈T ⌉, which includes Z. So fix(∅)
also includes Z, meaning that the left hand side, fix(∅) is a superset of the right hand side, CX , and thus Z
is immaterial for X.

An interested reader may refer to Lee & Bareinboim (2020) for further examples where LB-2 is used to
establish immateriality.

B Supplementary proofs regarding the main result (Theorem 4)

B.1 Proof of Lemma 10

We begin by restating the lemma.
Lemma 10. If a scoped graph G(S) satisfies conditions (B-C) of Theorem 8, then for every edge Z → X
between decisions Z, X ∈X(S), there exists a path Z ← N - - - Y , active given ⌈(X(S)∪CX(S)\{Z}) \ {Z}⌉,
(so N ̸∈ ⌈(X(S) ∪ CX(S)\{Z}) \ {Z}⌉).

We now prove Lemma 10.

Proof of Lemma 10. Since Z is assumed to be a decision, we have from Lemma 9, that there exists N ∈
PaZ \ ⌈(X(S) ∪ CX(S)\Z) \ Z⌉, which therefore is also a chance node. Condition (C) of Theorem 8 for
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N → Z implies the existence of a path p : ΠZ → Z ← N - - - Y active given ⌈(X(S) ∪ CX(S)\N ) \ N⌉,
which can be truncated as p′ : Z ← N p- - - Y . We will consider the cases where every collider in p′ is in
⌈(X(S) ∪ CX(S)\Z) \ Z⌉, or there exists one that is not.

Case 1. Every collider in p′ is in ⌈(X(S) ∪ CX(S)\Z) \ Z⌉. Clearly p′ begins as Z ← · and terminates
at Y and is active at colliders, given ⌈(X(S) ∪ CX(S)\Z) \ Z⌉. We will now prove that p′ is also active
given ⌈(X(S) ∪ CX(S)\Z) \ Z⌉ at non-colliders. Note that ⌈(X(S) ∪ CX(S)\N ) \ N⌉ = ⌈(X(S) ∪ CX(S)) \
N⌉ ⊇ ⌈(X(S) ∪ CX(S)\Z) \ (Z ∪ N)⌉ = ⌈(X(S) ∪ CX(S)\Z) \ Z⌉, where the first equality follows from
N being a chance node, and the latter follows from that and N ̸∈ CX(S)\Z , which jointly imply that
N ∈ PaZ \ ⌈(X(S) ∪ CX(S)\Z) \ Z⌉. So p′ is active given ⌈(X(S) ∪ CX(S)\Z) \ Z⌉ at non-colliders, and the
result is proved for this case.

Case 2. There exists a collider in p′ that is not in ⌈(X(S)∪CX(S)\Z)\Z⌉. Let M be the collider in p′ that is
not in ⌈(X(S)∪CX(S)\Z)\Z⌉, nearest to Z along p′. Since p′ is active given ⌈(X(S)∪CX(S)\N )\N⌉, we have
M ∈ Anc⌈(X(S)∪CX(S)\N )\N⌉, which implies M ∈X(S)∪ (CX(S) (because M ∈ ⌈W ⌉ \W =⇒ M ∈X(S)),
so M is an ancestor of some decision X ′. By condition (B) of Theorem 8, X ′ is an ancestor of Y , so we can
construct p′′ : Z p′

- - - M 99K X ′ 99K Y , and prove that it satisfies the required conditions. Clearly p′′ begins
at Z, terminates at Y . The first segment Z p′

- - - M is active at non-colliders given Anc⌈(X(S)∪CX(S)\Z )\Z⌉ by
the same argument as in Case 1, and at colliders by the definition of M . From M ̸∈ Anc⌈(X(S)∪CX(S)\Z )\Z⌉,
it follows that M 99K X ′ 99K Y of p′′ is active given Anc⌈(X(S)∪CX(S)\Z)\Z⌉, proving the result.

B.2 Proof of Lemma 11

We begin by restating the lemma.
Lemma 11. Let G(S) be a scoped graph that contains a context Z0 ∈ CX0 and satisfies the conditions of
Theorem 8. Then, it contains the following:

• A control path: a directed path d : A 99K Z0 → X0 99K Y , where A is a non-decision, possibly
equal to Z0, and d contains no parents of X0 other than Z0.

• We can write d as A 99K Zimin → Ximin 99K · · ·Z0 → X0 99K Zimax → Ximax 99K Y, imin ≤ i ≤ imax,
where each Zi is the parent of Xi along d (where A 99K Zimin and Xi−1 99K Zi are allowed to have
length 0). Then, for each i, define the info path: m′

i : Zi - - - Y , active given ⌈(X(S)∪CX(S)\Zi
) \

Zi⌉, that if Zi is a decision, begins as Zi ← N (so N ∈ CZi
\ ⌈(X(S) ∪ CX(S)\Zi

) \ Zi⌉.)
• Let Ti be the node nearest Y in m′

i : Zi - - - Y (and possibly equal to Zi) such that the segment
Zi

m′
i- - - Ti of m′

i is identical to the segment Zi
d

L99 Ti of d. Then, let the truncated info path mi

be the segment Ti
m′

i- - - Y .
• Write mi as mi : Ti 99KWi,1 L99Ui,1 99KWi,2 L99Ui,2 · · ·Ui,Ji 99KY , where Ji is the number of forks

in mi. (We allow the possibilities that Ti = Wi,1 so that mi begins as Ti L99 Ui,1, or that Ji = 0 so
that mi is Ti 99K Y .) Then, for each i and 1 ≤ j ≤ Ji, let the auxiliary path be any directed path
ri,j : Wi,j 99K Y from Wi,j to Y .

The proof was described in Section 4.2.2, and is as follows.

Proof. We prove the existence of each path in turn.

From Lemma 9, there exists a control path A 99K Z0 that contains no parents of X0 other than Z0 (if Z0 is
a decision, choose A = N , and otherwise choose A = Z0.) Moreover, from Theorem 8 condition (A), there
exists a path X0 99K Y , so we can concatenate these to obtain d : A 99K Z0 → X0 99K Y .

From condition (C) of Theorem 8, there exists an info path m′
i : Zi - - - Y , active given ⌈(X(S)∪CX(S)\Zi

)\
Zi⌉, and if Zi is a decision, one that begins as Zi ← ·, by Lemma 10. The existence of a truncated info path
is immediate from this.

Each collider Wi,j is an ancestor of ⌈(X(S) ∪ CX(S)\Zi
) \ Zi⌉ by activeness, hence an ancestor of X(S) ∪

CX(S)\Zi
by the definition of the closure property ⌈·⌉, so Wi,j is an ancestor of some X ∈X(S); in addition,
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from condition (A) of Theorem 8 we have X ∈ Anc(Y ). Hence, there exists a auxiliary path ri,j : Wi,j 99K
Y .

B.3 Proof of Lemma 13

We begin by proving an intermediate result.
Lemma 27. Let w = ⟨w0, . . . , wJ⟩, w̄ = ⟨w̄0, . . . , w̄J⟩, and u0:J′ = ⟨u0, . . . , uJ′⟩, J ′ < J where w0, w̄0 ∈ Bk,
wj , w̄j ∈ B for n ≥ 1, and uj ∈ Bexpn

2 (k). If w0:J′ is consistent with u0:J′ but w̄0:J′ is not compatible with
uJ′ , then there exists u := ⟨u0, . . . , u′

J , uJ′+1, . . . , uJ⟩ where uj ∈ Bexpn
2 (k), such that w is consistent with u,

but w̄ is not compatible with uJ .

Proof. We will prove by induction. The base case j = J ′ ≥ 0 is given by the condition.

Induction step: for j > J ′, if w0:j−1 ∼ u0:j−1 and w̄0:j−1 ̸∼ uj−1, then there exists u0:j such that (a)
w0,j ∼ u0:j and (b) w̄0,j ̸∼ uj .

Let us construct uj such that uj [uj−1]← wj and uj [i]← 1− w̄j for every i ∈ Bexpj−1
2 (k) \ {uj−1}.

(a) First, by the construction uj [uj−1] = wj and given condition w0:j−1 ∼ u0:j−1, we can induce w0,j ∼ u0,j .

(b) Next, we show that w̄0:j ̸∼ uj . For the sake of contradiction, assume that w̄0:j ∼ uj . Then, there exists
u′

0:j = ⟨u′
0, . . . , u′

j−1, uj⟩ satisfying w̄0:j ∼ u′
0:j . Since w̄0,j−1 ̸∼ uj−1, we can observe u′

j−1 ̸= uj−1. Now, by
construction, uj [u′

j−1] = 1− w̄j ̸= w̄j . Thus, w̄0:j−1 ̸∼ uj . Contradiction.

By induction, w̄ is not compatible with uJ .

Lemma 13. Let w = ⟨w0, . . . , wJ⟩ and w̄ = ⟨w̄0, . . . , w̄J⟩ be sequences with w0, w̄0 ∈ Bk, wj , w̄j ∈ B
for j ≥ 1, and let J ′ ≤ J be the smallest integer such that wJ′ ̸= w̄J′ . Let u0, . . . , uJ′ be a sequence
where uj [uj−1] = wj for 1 ≤ j < J ′. Then, there exists some uJ′+1, . . . , uJ such that w is consistent with
u0, . . . , uJ , but w̄ is incompatible with uJ .

Proof. If u0, . . . , un is incompatible with w, then the result follows from Lemma 27. Otherwise, let un+1 be
wn repeated expn+1

2 (k) times. Then u0, . . . , un+1 is compatible with w0, . . . , wn+1 but un+1 is incompatible
with b. We can then apply Lemma 27 to obtain the result.

B.4 Proof of Lemma 17

We now prove the expected utility in the non-intervened model (which we will later establish is the MEU).
Lemma 17. In the non-intervened model, the materiality SCM has Y = imax − imin + 1, surely.

Proof. Since Y =
∑

imin≤i≤imax
Y mi , it will suffice to prove that Y mi = 1 for every i. We will consider the

cases where mi is, or is not, a directed path.

If the info path mi contains no collider, then every chain node V in d from Ti to Y has V d = Pad
V , so

pa(Y pi) = T pi

i . The same is true for the chain nodes in mi, so Pa∗(Y ) = T pi

i , and so Y mi = 1, surely.

If mi contains a collider, each chain in mi and ri,j copies the value of its parent, so Pa(Y pi,ri,1,...,ri,Ji ) =
⟨T pi

i , W mi
i,1 , . . . , W mi

i,Ji⟩, and Pa∗(Y ) = UJi . By construction, ⟨T pi

i , W mi
i,1 , . . . , W mi

i,Ji⟩ is consistent with
⟨U1, . . . , UJi⟩, so by definition it is compatible with UJi , so Y mi = 1, surely.

B.5 Proof of the requirements of an optimal policy

Lemma 20 (Collider path requirement). If the materiality SCM has an info path mi that is not directed,
and under the policy π there are assignments Pa(Y pi,ri,1:Ji )=pa(Y pi,ri,1:Ji ) to parents of the outcome, and
Umi

i,1:Ji
=umi

i,1:Ji
to the forks of mi, with P π(pa(Y pi,ri,1:Ji ), umi

i,1:Ji
) > 0 and where pa(Y pi,ri,1:Ji ) is inconsistent

with pa(Y pi), umi

i,1:Ji
, then P π(Y mi < 1) > 0.
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Proof of Lemma 20. Let us index the forks and colliders of mi as Ti - - - Vi,1 L99 Ui,1 99K Wi,1 L99
, . . . , Wi,Ji L99 Ui,Ji 99K Y . Then, by assumption, there exists a set of assignments w := pa(Y pi), wi,1:Ji

w̄ := pa(Y pi), pa(Y ri,1:Ji ) and u := pa(Y pi), umi

i,1:Ji
, where w ∼ u and w̄ ̸∼ u and P π(w, w̄, u) > 0. Let

J ′ be the smallest index such that w̄1:J′ ̸∼ u1:J′ , and clearly we will have J ′ ≥ 1. Then, from Lemma 13,
there exists ū = pa(Y pi), u1:J′ , umi

i,J′+1, . . . , umi

i,Ji such that w ∼ ū and w̄ ̸∼ ūJi . Consider the intervention
do(Umi

i,J′+1, . . . , Umi

i,Ji = ūJ′+1:Ji . By the definition Definition 16, the intervention to forks on the info path
can only affect variables outside of the info path via the intersection node Ti and the colliders Wi,j , 1 ≤ j ≤ J i.
But ū1:J′ = u1:J′ , so Ti and the colliders Wi,j , 1 ≤ j ≤ J ′ are unchanged (note that this is true even if Ti is
a decision, which it can be). Furthermore, w̄ ∼ u so the colliders Wi,j , J ′ < j ≤ J i are similarly unaffected
by the intervention. We also have w̄ ̸∼ ūJi . Then, by the same arguments as in the proof of Lemma 19, we
have that P π(Y mi = 0 | do(ū)) > 1 and then P π(Y mi = 0) > 0.

B.6 Proof of Lemma 22

We begin by restating the lemma.

Lemma 22 (Required properties unachievable if child is a non-decision). Let M be a materiality SCM
where the child of X0 along d is a non-decision. Then, the MEU for the scope S cannot be achieved by a
deterministic policy in the scope SZ0 ̸→X0 (equal to S, except that Z0 is removed from CX0).

The proof was described in Section 4.4.1 and it is detailed as follows.

Proof. Consider the scope X(S)\Z0 , equal to X(S) except that CX0 is replaced with CX0 \ {Z0}, and
assume that a deterministic policy π in this scope achieves the MEU, then we will prove a contradiction.
Specifically, we will establish two consequences that are clearly contradictory given a deterministic policy:
(a) the support of P π(Xp0

0 ) contains at least 2k assignments, (b) the domain of CX0 \ {Z0} contains fewer
than 2k assignments.

(Proof of a.) We know that A assigns a strictly positive probability to 2k assignments (Definition 16) and
so if π achieves the MEU, then Pa(Y d) a.s.== A (Lemma 21). So Pa(Y d) has at least 2k assignments in its
support. Let us now consider the cases where X0 is, or is not, the decision nearest Y along d.

If X0 is the decision nearest Y along d, then by the model definition, Pa(Y d) = Xd
0 surely, so X0 must have

at least 2k assignments in its support, and so (a) follows.

If X0 is not the decision nearest Y along d, then note that by assumption, there are one or more chance
nodes in d separating X0 from X1. Furthermore, T1 must be one of these nodes (because T1 is defined by
a segment T1 99K Z1, shared by d and m′

i, and active given ⌈(X(S) ∪ CX(S)\Z1) \ Z1⌉, and such a path
cannot be active if it includes X0.) The materiality SCM is constructed to pass values along d, and since the
segment T1 99K Z1 has no decisions, we have T d

1 = Xd
0 , surely. Since T1 is a chance node, if π achieves the

MEU, we also have by Lemma 18 and Lemma 19 that Pa(Y p1) a.s.== T p1
1 and, since d ∈ p1, that Pa(Y d) a.s.== T d

1 .
So Xd

0
a.s.== Pa(Y d). Since Pa(Y d) places strictly positive probability on at least 2k assignments, so does Xd

0 .

(Proof of b.) The domain of CX0 \ {Z0} is a Cartesian product of variables V p for V ∈ CX0 \ {Z0} where p
is either d, some mi or some ri,j Definition 16.

The control path d does not intersect CX0 \ {Z0} as it is defined not to include parents of X0 other than
Z0 (Lemma 11). Each info path mi is active given ⌈(X(S) ∪ CX(S)\Z0) \ Z0⌉ (Lemma 11), so can only
intersect CX0 \ {Z0} at the colliders, which have domain B. Finally, any variable in a path ri,j would also
have domain B. So the domain of CX0 \ Z0 is not larger than 2c·|CX0 |, where c is the maximum number of
materiality paths passing through any vertex in the graph, and |CX0 | is the number of variables in CX0 . By
construction, k > c ·maxX∈X(S)|CX |, so the domain of CX0 \ Z0 is less than 2k, proving (b).

A deterministic policy cannot map fewer than 2k assignments to greater than 2k assignments, and so (a-b)
imply a contradiction.
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B.7 Proof of Lemma 23

We firstly restate the lemma.
Lemma 23 (If next fork is repeated, then fork only influences intersection node). If, in the materiality
SCM:

• the intersection node Ti is the vertex Xi−1,
• πTi

is a deterministic decision rule where πTi
(c¬mi(Ti, ui,1) = πTi

(c¬mi(Ti, u′
i,1)) for assignments

ui,1, u′
i,1 to the first fork variable, and c¬mi(Ti) to the contexts of Ti not on mi, and

• Wi,1:Ji
= wi,1:Ji

, and Ui,2:Ji
= ui,2:Ji

are assignments to forks and colliders in mi where each ui,j

consists of just wi,j repeated expj
2(k + |pi| − 1) times, then:

P π(pa(Y pi,ri,1), c¬mi(Ti), wi,1:Ji , ui,2:Ji |do(ui,1))=P π(pa(Y pi,ri,1), c¬mi(Ti), wi,1:Ji , ui,2:Ji |do(u′
i,1)).

The proof is as follows.

Proof. An intervention do(u′
i,1) could, in the materiality SCM (Definition 16) only affect the variables

Pa(Y pi,ri,1), C¬mi(Ti), Wi,1:Ji
, Ui,2:Ji

in four ways:

1. via the intersection node Ti,
2. via the collider Wi,2 of mi,
3. via contexts lying in the segment mi : Ti L99 Ui,1 99K Wi,2,
4. if Papi

Y , C¬mi(Ti) or Ui,2:Ji
were distinct from Ti, Wi,2 and lay on mi : Ti L99 Ui,1 99K Wi,2

The deterministic decision rule has πTi
(ui,1, c¬mi(Ti)) = πTi

(u′
i,1, c¬mi(Ti)), so (1) is false. Also, ui,2 equals

wi,2 repeated, so ui,2[x] = wi,2 for all x, and thus (2) is false also. Moreover, mi : Ti L99 Ui,1 99K Wi,2 is
active given ⌈(X(S)∪CX(S)\Ti

) \ Ti⌉ and so contexts can only lie at the endpoints Ti and the collider Wi,2,
meaning that (3) is false. Finally, Papi

Y is a descendant of Ti by the definition of the control path, so can
only lie on mi : Ti L99 Ui,1 99K Wi,2 if it is the vertex Ti, which we have already proved is not influenced by
ui,1; meanwhile, C¬mi(Ti) does not intersect mi by definition, and Ui,2:Ji

are fork variables, which cannot
lie on mi : Ti L99 Ui,1 99K Wi,2, so (4) is false, and the result follows.

B.8 Proof of Lemma 24

We begin by restating the lemma.
Lemma 24 (Decision must distinguish fork values). If in the materiality SCM:

• the intersection node Ti is the vertex Xi−1, and
• π is a deterministic policy that for assignments ui,1, u′

i,1 to Ui,1 where ui,1 ̸=u′
i,1,

has πTi
(c¬mi(Ti), ui,1)=πTi

(c¬mi(Ti), u′
i,1) for every C¬mi

Ti
(Ti)=c¬mi(Ti),

(†)

then P π(Y mi < 1) > 0

The proof has been described already, and it proceeds as follows.

Proof. Let us assume Equation (†), and that the MEU is achieved, and we will prove a contradiction. Given
Equation (†), there is an index at which ui,1 and u′

i,1 differ. We write this index as an assignment pa(Y d,ri,j ),
belonging to Pa(Y pi). Define each ui,j , 2 ≤ j ≤ Ji as equal to pa(Y ri,j ), repeated expj

2(k + |pi| − 1) times.
Then, we have:

0 < P π(Ad = pa(Y d), Ui,1:Ji
= ui,1:Ji

)
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because A and Ui,1:Ji are independent random variables with full support. Then, let c¬mi(Ti) and w1,1:Ji

be any assignments to the parents of Ti not on mi, and to the colliders on mi such that:

0 < P π(Ad = pa(Y d), c¬mi(Ti), w1,1:Ji , ui,1:Ji).

Given these assignments, in order to achieve P π(Y mi = 1) = 1, we must have Pa(Y d) a.s.== Ad (Lemma 21)
and pa(Y pi) must be consistent with ui,1:Ji

(Lemma 20). We must also therefore have Pa(Y pi,ri,1:Ji ) =
papi,ri,1:Ji ), so marginalizing over Ad, we must have:

0 < P π(Pa(Y pi,ri,1:Ji )=pa(Y pi,ri,1:Ji), c¬mi(Ti), w1,1:Ji
,ui,1:Ji

)
∴ 0 < P π(pa(Y pi,ri,1:Ji ), c¬mi(Ti), w1,1:Ji

, ui,2:Ji
) | do(ui,1)) (Ui,1:Ji

unconfounded)
= P π(pa(Y pi,ri,1:Ji ), c¬mi(Ti), w1,1:Ji

, ui,2:Ji
| do(u′

i,1)) (by Lemma 23)
= P π(pa(Y pi,ri,1:Ji ), c¬mi(Ti), w1,1:Ji

, ui,2:Ji
| u′

i,1) (P π(u′
i,1) > 0.)

∴ 0 < P π(pa(Y pi,ri,1:Ji ), u′
i,1) (P π(u′

i,1) > 0.)

However, u′
i,1[pa(Y pi)] ̸= ui,1[pa(Y pi)] and ui,1[pa(Y pi)] = pa(Y ri,1), so pa(Y pi), pa(Y ri,1:Ji ) is inconsistent

with pa(Y pi), u′
i,1, ui,2:Ji

. So 0 < P π(pa(Y pi,ri,1:Ji ), u′
i,1) implies that P π(Y1 = 1) < 1 (by Lemma 20), and

the MEU is not achieved.

C Proof of Lemma 25

We first restate the lemma.
Lemma 25 (Required properties unachievable if child is a decision). Let M be the materiality SCM for
some scoped graph GS , where imax > 0 and T1 is a decision. Then, there exists no deterministic policy in
the scope SZ0 ̸→X0 that achieves the MEU.

The proof was explained in section Section 4.4.2, and is detailed as follows.

Proof. To begin with, by assumption, the child of X0 along d is a decision, so X0 is the same node as Z1,
and since the segment T1 99K X1 must be active given ⌈(X(S)∪CX(S)\Z1) \Z1⌉, X0 is also T0. We will now
bound the domains of X0 and C¬m1(X0).

The domain of X0. Given that X0 is a decision, while each truncated info path mi′ is active given ⌈(X(S)∪
CX(S)\Zi

) \Zi⌉, it follows that X0 cannot overlap with info paths, except for colliders of mi′ , i′ ̸= i, and the
endpoint of m1. As such, the domain of T0 is at most |XX0 | ≤ 2k+c, due to k bits from d (Definition 16),
and at most c bits from the info paths and auxiliary paths (where c is the maximum number of materiality
paths passing through any vertex in the graph).

The domain of C¬m1(X0). Given that each info path mi is active given ⌈(X(S)∪CX(S)\Zi
)\Zi⌉, the contexts

C¬m1(X0) cannot intersect any mi, except at colliders in mi. Moreover, by the definition of the control path,
the only parent of X0 that it contains is Z0. So, C¬m1(X0) can only intersect portions of the materiality
paths with domain B, and so the size of the domain of C¬m1(X0) cannot exceed |XC¬m1 (X0)\Z0 | ≤ 2bc,
where b is the maximum number of variables belonging to any context CX , and c is the largest number of
materiality paths passing through any vertex.

Proof of Equation (†) As the domain of X0 has XX0 | ≤ 2k+c, for any particular C¬m1(X0) = c¬m1(X0),
there are at most 2k+c assignments XU ′

1,1
⊆ XU1,1 such that for all u1,1, u′

1,1 ∈ XU ′
1,1

, πX1(c¬m1(X0), u1,1) ̸=
πX1(c¬m1(X0), u′

1,1). Furthermore, as |XC¬m1 (X0)\Z0 | ≤ 2bc, by the union property, there are at most 2bc(k+c)

assignments X′
U1,1

such that there exists c¬m1(X0) such that for all u1,1, u′
1,1 ∈ X′

U1,1
, u1,1, u′

1,1 ∈ XU ′
1,1

,
πX1(c¬m1(X0), u1,1) = πX1(c¬m1(X0), u′

1,1). However, the domain of Ui is Bexp1
2(k+|p0|−1) ⊇ B2k (as p0

contains at least d), so:
|XPa(X

mi
0 )| ≥ 22k

> 2(k+c)bc ≥ |XC¬m1 (X0)||XX0 |,
where the strict inequality is from the definition of k in Definition 16. So, there must exist a pair of
assignments u1,1, u′

1,1 in the domain of U1,1 such that for all c¬m1(X0) ∈ XC¬m1 (X0), πX1(c¬m1(X0), u1,1) =
πX1(c¬m1(X0), u′

1,1). This satisfies Equation (†), which by Lemma 24 proves the result.
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D Supplementary proofs for Section 5 (Proof of Lemma 26)

D.1 Proving the existence of paths

In this section, we will prove that when LB-factorizability is not satisfied, then there exist info paths and
control paths, a potential intermediate step toward establishing completeness of Theorem LB-2 from Lee &
Bareinboim (2020).
Lemma 26 (System Exists General). Let GS be a scoped graph that satisfies conditions (A,B) from Theo-
rem 8. If Z = {Z}, X ′ ⊇ Ch(Z), C ′ = CX′ \ (X ′ ∪Z), U = ∅ are not LB-factorizable, then there exists a
pair of paths to some C ′ ∈ C ′ ∪ Y :

• an info path m : Z - - - C ′, active given ⌈X ′ ∪C ′⌉, and
• a control path d : X 99K C ′ where X ∈X ′.

Since we will have to establish activeness given a set of implied variables, the following lemma will be useful.
Lemma 28. Let p be a path. If (i) p contains no non-collider in N , (ii) every fork variable in p is not in
⌈N⌉, and (iii) every endpoint of p that has a child along p is not in ⌈N⌉, then p contains no non-collider
in ⌈N⌉.

Proof. Write p as W1 L99 U1 99K W2 L99 U2 . . . UJ 99K WJ+1, where possibly W1 is U1, and possibly UJ is
WJ+1. Every Uj is not in ⌈N⌉ by (ii-iii). Each non-collider child V of any Uj has a parent that is not in
⌈N⌉, and V ̸∈N by (i), so V ̸∈ ⌈N⌉. The same is then true for the non-collider child of V , and so on. Since
every non-collider V ′ in p has a segment Uj 99K V ′ of p consisting of only non-colliders, every V ′ ̸∈ ⌈N⌉,
and V ′ contains no non-collider in ⌈N⌉, proving the result.

Conditions II-III of LB-factorizability require that there must exist an ordering over variables, that where
certain variables are placed before others (i.e. that satisfies certain precedence relationships). Our approach
will be to encode the precedence relationships from condition III in a graph, as follows.
Definition 29. Let the “ordering graph” H be a graph on vertices Z ∪X ′ ∪ C ′, with an edge A → B
from each parent A ∈ Pa(B) of a decision B ∈ X ′, and an edge B → C from each decision B ∈ X ′ to a
descendant C ∈ Desc(B).

A useful property of the ordering graph is that if a variable V is downstream of a context C in the ordering
graph, then there exists a decision, that has C as a context, and can influence V .
Lemma 30. If vertex V is a descendant in H of a context Z ∈ CS(X), then GS contains a path Z → X 99K V ,
where X ∈X ′.

Proof. Assume that V ∈ DescH(Z). The path in H from Z begins with an edge Z → X where X ∈ X ′,
which implies that GS has an edge Z → X. The path in H must continue from X to Z, and since each edge
A→ B in H has B ∈ DescGS (A), it follows that V ∈ DescGS (X), proving the result.

It is also useful to note that the expression πX′
≺C

is unnecessary in condition II.
Lemma 31 (Unnecessary separation in condition II). Let X ′ be a set of decisions, Z be a set of variables
disjoint with X ′, and C ′ be the set of contexts not in C ′ or Z, and ≺ be an ordering over C ′ ∪X ′ ∪Z. If
πX′

≺C
̸⊥ C | ⌈(X ′ ∪C ′)≺C⌉ for some C ∈ C ′ then Z≺C ̸⊥ C | ⌈(X ′ ∪C ′)≺C

Proof. By assumption, there is a path p from πX to C, active given ⌈(X ′∪C ′)≺C⌉, for some X ∈X ′
≺C . The

only neighbour of πX is X, so p must terminate as X ← πX . As X is in X ′, activeness given ⌈(X ′∪C ′)≺C⌉
implies that p terminates as C → X ← πX . Every parent of X is in X ′ ∪C ′ except Z. So by truncating p
at Z, we have that there is a path from Z≺C to C, active given ⌈(X ′ ∪C ′)≺C⌉.
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We are now equipped to prove Lemma 26. Recall that for Z, X ′ to be LB-factorizable, there only needs to
be one ordering ≺ that satisfies the precedence relationships from conditions II-III. So the approach in our
proof will be to define one such ≺ that satisfies conditions III. Since Z, X ′ are not LB-factorizable, that
must mean that condition I or II is violated, which will imply the existence of paths m, d in each case. (We
will use the notation DescH(Z0) to denote the set of vertices that are descendants of Z0 in the ordering
graph H.)

Proof of Lemma 26. Let ≺ be any ordering ⟨V0, · · ·Vm, Z0, Vm+2, · · ·VM ⟩, over Z∪X ′∪C that is topological
in H and where Vm+2, · · · , VM are in DescH(Z0) whereas V0 · · ·Vm are not. Since ≺ is topological in H,
Condition III is satisfied, and since LB factorizability is not satisfied, Condition I or II must be be violated;
we consider these cases in turn.

Case 1: Condition I is violated.

If Condition I is violated, there is a path m′ : V1, V2, · · · , Vn where V1 = πX′ and Vn = Y , active given
⌈X ′ ∪ C ′⌉. From the definition of πX , this path must begin as πX′ → X for X ∈ X ′. As X is in the
conditioning set, it must be a collider, i.e. m′ begins as ΠX → X ← V3. The only parent of X that is not
in the conditioning set is Z0, so we have ΠX → X ← Z0 - - - Y . We truncate m′ as m : Z0 - - - Y . Since
Z0 → X satisfies condition (A) of Theorem 8, there exists some d : X 99K Y , proving the result in this case.

Case 2: Condition II is violated. Step 2.1

The violation of condition II implies that there is an active path from some C ∈ C ′ to πX′
≺C

, Z≺C , or U ′.
This path cannot go to U ′, which was chosen to be empty. Moreover, if there is an active path to πX′

≺C
,

then there is a similarly active path to Z≺C (Lemma 31. So let m′ : Z0 - - - C ′ (where Z0 ≺ C ′) be the path
to Z0, active given ⌈(X ′ ∪C ′)≺C⌉. Replace this path with a walk w′ with an added segment V 99K S L99 V
from each collider Z to a variable S in the conditioning set. Truncate w′ as Z0 - - - C, where C is the node
in C ′

≻Z0
nearest Z0 along w′. Then let m be the path obtained from w by removing all retracing segments.

Clearly m is active given ⌈(X ′∪C ′)≺C⌉ From Z0 ≺ C, it follows that C ∈ DescH(Z0), so there exists a path
d : Z0 → X 99K C for X ∈X ′ (Lemma 30).

Case 2: Condition II is violated. Step 2.2

We will now establish that m is active given ⌈X ′ ∪ C ′⌉. Since m is active given ⌈(X ′ ∪ C ′)≺C⌉, and
⌈(X ′ ∪ C ′)⌉ ⊇ ⌈(X ′ ∪ C ′)≺C⌉, m is active given ⌈X ′ ∪ C ′⌉ at each collider. We now prove that m also
contains no non-collider in ⌈(X ′ ∪ C ′)≺C⌉ using Lemma 28, by proving that the non-colliders are not in
(X ′ ∪C ′) while the endpoints and forks are not in ⌈(X ′ ∪C ′)⌉.

Step 2.2.1: no non-collider in w is in (X ′ ∪C ′).

We consider three sub-cases: a non-collider in 2.2.1.1: (C ′ ∪X ′)≺C , 2.2.1.2: C ′
≻C , or 2.2.1.3: X ′

≻C . Sub-
case 2.2.1.1: a non-collider in (C ′ ∪X ′)≺C . As w is active given ⌈(X ′ ∪ C ′)≺C⌉, w does not contain a
non-collider in (C ′ ∪X ′)≺C . Sub-case 2.2.1.2: a non-collider in C ′

≻C . Moreover, the definition of C implies
that m cannot contain a non-collider in C ′

≻C . Sub-case 2.2.1.3: a non-collider in X ′
≻C . Finally, w cannot

contain any non-collider X ∈ X ′
≻C , because being a vertex being a non-collider in any path implies that it

is an ancestor of a collider or an endpoint of that path, but being an ancestor of a collider or an endpoint
of w implies X ≺ C, which is a contradiction. If X is an ancestor of the endpoint C, then by the definition
of H, X ≺ C, which contradicts X ∈ X ′

≻C . If X is an ancestor of the other endpoint Z0, then X ≺ Z0 by
the definition of H, and so X ≺ C, implying a contradiction once again. If X is an ancestor of a collider V ,
then by activeness, the collider must have a descendant V ′ in ⌈(X ′ ∪C ′)≺C , and so X is an ancestor of V ′.
By the definition of H, it follows that X ≺ V ′, and since V ′ ≺ C, we have X ≺ C. Since no non-collider in
w is in (X ′ ∪C ′), it also follows that no non-collider in m is in (X ′ ∪C ′).

Step 2.2.2: no endpoint of m is in ⌈(X ′ ∪C ′)⌉.

The endpoint Z0 cannot be in ⌈(X ′ ∪ C ′)≺C⌉ because Z0 ∈ Z, and Z is disjoint from X ′ and C ′. The
endpoint C cannot be in ⌈(X ′ ∪C ′)≺C⌉ because we cannot have C ≺ C.

Step 2.2.3: If no non-collider in (X ′ ∪C ′) then no fork in ⌈X ′ ∪C ′⌉ \X ′ ∪C ′.
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Assume that a fork V in ⌈X ′ ∪C ′⌉ \X ′ ∪C ′ is in m, and we will prove a contradiction. The vertex V must
not be in ⌈(X ′ ∪C ′)≺C⌉, since m′ is active given ⌈(X ′ ∪C ′)≺C⌉. As V is in ⌈X ′ ∪C ′⌉ \ ⌈(X ′ ∪C ′)≺C⌉,
V must in GS have an ancestor A ∈ (X ′ ∪C ′)≻C . Since Z0 ≺ C, V this ancestor A also has Z0 ≺ A. So,
A ∈ DescH(Z0) by the definition of ≺, and A ∈ DescG(Z0) by the definition of H, and V ∈ DescG(Z0), since
A is an ancestor of V .

Any fork in a path must either be an ancestor of the initial endpoint (in this case Z), or an ancestor of a
collider in the path. Since V ∈ DescG(Z0) and V is a fork, not an endpoint, V cannot be an ancestor of the
initial endpoint. So V must be an ancestor of a collider in the walk w. As w is active given ⌈(X ′∪C ′)≺C⌉, the
collider D must be in ⌈(X ′∪C ′)≺C⌉. We consider three sub-cases: 2.2.3.1: D is in ⌈(X ′∪C ′)≺C⌉\(X ′∪C ′),
2.2.3.2: D is in X ′

≺C , 2.2.3.3: D is in C ′
≺C , and will prove a contradiction in each case. Sub-case 2.2.3.1: D

is in ⌈(X ′∪C ′)≺C⌉\ (X ′∪C ′). Then all the parents of ⌈(X ′∪C ′)≺C must also be in ⌈(X ′∪C ′)≺C by the
definition of implied variables, and these parents would be non-colliders, which would make w blocked given
⌈(X ′ ∪C ′)≺C, giving a contradiction. Sub-case 2.2.3.2: D is in X ′

≺C . Then at least one parent of D must
be a non-collider in C ′

≺C , which contradicts the statement that w contains no non-collider in (X ′ ∪ C ′).
Sub-case 2.2.3.3: D is in C ′

≺C . Then D ∈ DescG(Z0) (since D ∈ DescG(V ) and V ∈ DescG(Z0)). It follows
that Z0 ≺ D, but this contradicts the definition of C as the nearest variable along w to Z0 that is in C ′

≻Z0
.

From Lemma 28 the result follows.
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