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A Recap of Lee and Bareinboim (2020)

Our result Theorem 8 is an initial step in a larger potential project of proving that (Lee & Bareinboim, 2020,
Thm. 2) is a complete criterion for materiality.

The result begins with the following factorization, of which we are only focused on cases where the first
condition is violated (Lee & Bareinboim, 2020). The result uses the definition of “redundancy” (which is a
looser condition than immateriality): if a scoped graph G(S) has X € Ancy or (C LY | X UPax \ {C})
then it is “redundant”, The result from Lee & Bareinboim (2020) is reproduced verbatim:

Lemma LB-1. Given an MPS S, which satisfies non-redundancy, let X’ C X (S), actions of interest, C' C
Cx: \ X'. non-action contexts of interest. If there exists a subset of exogenous variables U’ in Gs, a subset
of endogenous variables Z in Gs that is disjoint with C’ U X’ and subsumes Cx \ (C’ U X’), and an order
< over V' =C’"U X' U Z such that

1. (Y 1 X/ | [X/ U Cq)gs,

2. (Clmxr ,Zc, U | [(X"UC) o])gs for every C € C’, and
3. V! is disjoint with de(X)gs and subsumes pa(X)g for every X € X',

where, the policy node 7y is a new parent added to X, then the expected reward for 7, a deterministic
policy optimal with respect to S, can be written as

pr = 3 4@ () S Q) [T @llsw) T mlale,): 1)
y,c’ @’ u',z zZeZ XeX'

Lemma LB-1 provides conditions for asserting Equation (1) given (S,X’,C’), whether (U’, Z, <) exist
satisfying three conditions. It is then used to prove redundancy under optimality using the following theorem.
Theorem LB-2. Let U', Z and < satisfy Lemma LB-1. For Z € Z, let Vz be a minimal subset of V_, UU’
such that Z L U’ | Vz. We define fix(T") with respect to {(Z, Vz)}zez, that is with T':= [T U{Z € Z |
Vz\ U’ C [T}, and fix(T) is T if T = T', and fix(T') otherwise. If fix(Cx \ Z) D Cx for X € X', then
§'=(S\X"NU{(X,Cx \ Z)} xex satisfies p, = p%.

Let us apply Theorem LB-2 to the graph Figure 2, which we discussed in Section 2. We have noted that
using Z = {Z}, X’ = {X}, and the ordering <= (Z,X), Z and X' are LB-factorizable. To apply the
theorem, we must confirm that fix(Cx \ Z) O Cx is true. The right hand side is simply equal to Z. To
evaluate the left hand side, note that Cx \ Z = (). Furthermore, () includes [T'], which includes Z. So fix()
also includes Z, meaning that the left hand side, fix(() is a superset of the right hand side, Cx, and thus Z
is immaterial for X.

An interested reader may refer to Lee & Bareinboim (2020) for further examples where LB-2 is used to
establish immateriality.

B Supplementary proofs regarding the main result (Theorem 4)

B.1 Proof of Lemma 10

We begin by restating the lemma.

Lemma 10. If a scoped graph G(S) satisfies conditions (B-C) of Theorem 8, then for every edge Z — X
between decisions Z,X € X(S), there exists a path Z <= N ---Y, active given [(X(S)UCxsniz1) \1Z}],

(so N & [(X(S)UCxs)\izy) \{Z}]).

We now prove Lemma 10.

Proof of Lemma 10. Since Z is assumed to be a decision, we have from Lemma 9, that there exists N €
Paz \ [(X(S) U Cxs)\z) \ Z], which therefore is also a chance node. Condition (C) of Theorem 8 for
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N — Z implies the existence of a path p : Iz — Z <= N --- Y active given [(X(S) U Cxsyw~) \ N,
which can be truncated as p’ : Z + N -2-Y. We will consider the cases where every collider in p’ is in
[(X(S)UCx(s)z) \ Z], or there exists one that is not.

Case 1. Every collider in p’ is in [(X(S) U Cx(syz) \ Z]. Clearly p’ begins as Z < - and terminates
at Y and is active at colliders, given [(X(S) U Cxsy\z) \ Z]. We will now prove that p’ is also active
given [(X(S) UCxs)\z) \ Z] at non-colliders. Note that [(X(S)U Cxsyn) \ N| = [(X(S) UCxs)) \
N1 2 [(X(S)UCx@spnz) \ (ZUN)| = [(X(S)UCxs)z) \ Z], where the first equality follows from
N being a chance node, and the latter follows from that and N ¢ Cx(s)\ z, which jointly imply that
N € Paz \ [(X(S)UCx@s)z)\ Z]. Sop' is active given [(X(S)UCxs)\z) \ Z] at non-colliders, and the
result is proved for this case.

Case 2. There exists a collider in p’ that is not in [(X(S)UCx (s)\z)\ Z]. Let M be the collider in p’ that is
not in [(X(S)UCx(s)\z)\Z], nearest to Z along p’. Since p’ is active given [(X (S)UCx (s)\n)\ V|, we have
M e Anc[(X(S)UCX(S)\N)\N—‘7 which implies M € X (S)U (CX(S) (because M € [W]\W = M € X(S)),
so M is an ancestor of some decision X’'. By condition (B) of Theorem 8, X’ is an ancestor of Y, so we can

construct p”’ : Z ZoM s X s Y, and prove that it satisfies the required conditions. Clearly p” begins

at Z, terminates at Y. The first segment Z . M is active at non-colliders given AHC((X(S)UC,((S)\Z)\Z] by
the same argument as in Case 1, and at colliders by the definition of M. From M ¢ AHC((X(S)UCMS)\Z)\ZM
it follows that M --+ X’ --s Y of p” is active given AnC((X(S)UCX(S)\Z)\Z‘\v proving the result.

B.2 Proof of Lemma 11

We begin by restating the lemma.

Lemma 11. Let G(S) be a scoped graph that contains a context Zy € Cx, and satisfies the conditions of
Theorem 8. Then, it contains the following:

e A control path: a directed path d : A --+ Zyg — Xo --» Y, where A is a non-decision, possibly
equal to Zy, and d contains no parents of X other than Z.

o We can write d as A--» Z; . — X - Zo = Xo - Zi = Xive = Yilmin < 8 < mag,
where each Z; is the parent of X; along d (where A --» Z; . and X;_1 --» Z; are allowed to have

length 0). Then, for each i, define the info path: m; : Z; ---Y, active given [(X(S)UCx sy z,) \

Z;), that if Z; is a decision, begins as Z; < N (so N € Cz, \ [(X(S)UCxs)z) \ Zil.)

o Let T; be the node nearest Y in mj : Z; ---'Y (and possibly equal to Z;) such that the segment
/ d
Z; 5Ty of m} is identical to the segment Z; «-- T; of d. Then, let the truncated info path m;
be the segment T; - Y.

o Writemy as my : Ty -->W;1¢--U; 1 --+W;2¢--U;2---U; j,--+Y, where J; is the number of forks
in m;. (We allow the possibilities that T; =W, 1 so that m; begins as T; «-- U; 1, or that J; =0 so
that m; is T; --+Y.) Then, for each i and 1 < j < J;, let the auxiliary path be any directed path
Tij * Wi,j --» Y fmm Wi,j toY.

Tmin max

The proof was described in Section 4.2.2, and is as follows.

Proof. We prove the existence of each path in turn.

From Lemma 9, there exists a control path A --+ Z; that contains no parents of X other than Z, (if Zy is
a decision, choose A = N, and otherwise choose A = Z.) Moreover, from Theorem 8 condition (A), there
exists a path Xo --+ Y, so we can concatenate these to obtain d : A --» Zyg — Xg --» Y.

From condition (C) of Theorem 8, there exists an info path m; : Z; --- Y, active given [(X (S)UCx s)\z,) \
Z;|, and if Z; is a decision, one that begins as Z; < -, by Lemma 10. The existence of a truncated info path
is immediate from this.

Each collider W; ; is an ancestor of [(X(S) U Cxs)\z,) \ Zi] by activeness, hence an ancestor of X (S) U
Cx (s)\z, by the definition of the closure property [-], so Wj ; is an ancestor of some X € X (S); in addition,
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from condition (A) of Theorem 8 we have X € Anc(Y). Hence, there exists a auxiliary path r; ; : W; j --»
Y. O

B.3 Proof of Lemma 13

We begin by proving an intermediate result.

Lemma 27. Let w = (wy, ..., wyz), © = (W, ..., Ws), and ug.;» = (ug, - ..,uy),J < J wherewy,wy € B,
wj,w; €B forn > 1, and u; € Bexpz (k) If wg.yr is consistent with wg.; but wy.y is not compatible with
uys, then there exists w = (uog,...,u, uy41,...,uy) where u; € Bz (k) such that w is consistent with w,

but w is not compatible with w;.

Proof. We will prove by induction. The base case j = J' > 0 is given by the condition.

Induction step: for j > J', if wg,j—1 ~ woj—1 and Wo.j—1 % uj_1, then there exists ug,; such that (a)
W, 5 ~ UQ:5 and (b) 1171()’]‘ 75 Uj.

Let us construct u; such that u;[u;_1] < w; and u;[i] - 1 — w; for every ¢ € By (k) \{u;-1}

(a) First, by the construction u;[u;_1] = w; and given condition wy.;_1 ~ wg.;—1, we can induce wy ; ~ ug ;.
(b) Next, we show that @y.; # u;. For the sake of contradiction, assume that w¢.; ~ u;. Then, there exists

r_ o ’ ) o oyl : - ) / )

ug,; = (ugy - - - ,ujfl,uﬁ satisfying wo.; ~ ug,;. Since Wy j—1 # uj—1, we can observe uj_; # u;j_1. Now, by
- PR S - _ S

construction, w;[u; ] =1 —1w; # w;. Thus, Wo.j_1 # u;. Contradiction.

By induction, w is not compatible with w ;. O
Lemma 13. Let w = (wo,...,w;) and @ = {(Wy,...,w;) be sequences with wy,wy € B*, w;,w; € B
for 5 > 1, and let J < J be the smallest integer such that wy # wy:. Let ug,...,uy be a sequence
where u; [uj,l] =w; for1 <j< J'. Then, there exists some ujii1,...,uy such that w is consistent with
Uug, - - -, Uy, but w is incompatible with u .

Proof. If uy, ..., u, is incompatible with w, then the result follows from Lemma 27. Otherwise, let u,+1 be
w,, repeated expy ™! (k) times. Then wug, ..., u, 11 is compatible with wp, . .., w, 1 but u, 1 is incompatible
with b. We can then apply Lemma 27 to obtain the result. O

B.4 Proof of Lemma 17

We now prove the expected utility in the non-intervened model (which we will later establish is the MEU).

Lemma 17. In the non-intervened model, the materiality SCM has 'Y = iya0 — min + 1, surely.
Proof. Since Y = Zimin <i<i, Y™, it will suffice to prove that Y™ =1 for every i. We will consider the
cases where m; is, or is not, a directed path.

If the info path m; contains no collider, then every chain node V in d from T} to Y has V¢ = Pa“i/, SO
pa(YPi) = TP". The same is true for the chain nodes in m;, so Pa*(Y') = TP*, and so Y™ = 1, surely.

If m; contains a collider, each chain in m; and r; ; copies the value of its parent, so Pa(YP#" 1 "is) =

(TP Wit,...,W/™,), and Pa™(Y) = Uy By construction, (TP, W/},...,W/"};) is consistent with
(Uy,...,Ujsi), so by definition it is compatible with Ui, so Y™ = 1, surely. O

B.5 Proof of the requirements of an optimal policy

Lemma 20 (Collider path requirement). If the materiality SCM has an info path m; that is not directed,
and under the policy 7 there are assignments Pa(YP+ 717 ) = pa(YPi"i:1:7:) to parents of the outcome, and
U/, =, to the forks of m;, with P™ (pa(YP>" 17 ), w'f ;) > 0 and where pa(YP""1:7:) is inconsistent
with pa(YP"),w.; , then P™(Y™ <1) > 0.
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Proof of Lemma 20. Let us index the forks and colliders of m; as T; --- V;1 «-- U;q1 --» Wiq «--
voos Wy gi == U; ji -=» Y. Then, by assumption, there exists a set of assignments w := pa(YP"), w; 1.7,

w := pa(YP),pa(Y"1%) and w = pa(Ym),uZ’f:Ji, where w ~ u and w # w and P™(w,w,u) > 0. Let
J’ be the smallest index such that wi.; % w1.5:, and clearly we will have J' > 1. Then, from Lemma 13,

there exists w = pa(YP?), w1y, 4"y, .., u; 5 such that w ~ u and w 7 u;:. Consider the intervention
do(U]™, 115+, U™}; = Wy y1.5i. By the definition Definition 16, the intervention to forks on the info path

can only affect variables outside of the info path via the intersection node 7} and the colliders W; ;,1 < j < J*.
But u1.;7 = uq.y, so T; and the colliders W; ;,1 < j < J’ are unchanged (note that this is true even if T; is
a decision, which it can be). Furthermore, w ~ w so the colliders W; ;, J' < j < J* are similarly unaffected
by the intervention. We also have w » wji. Then, by the same arguments as in the proof of Lemma 19, we
have that P™(Y™ =0 | do(u)) > 1 and then P™ (Y™ = 0) > 0. O

B.6 Proof of Lemma 22

We begin by restating the lemma.

Lemma 22 (Required properties unachievable if child is a non-decision). Let M be a materiality SCM
where the child of Xy along d is a non-decision. Then, the MEU for the scope S cannot be achieved by a
deterministic policy in the scope Sz, 4x, (equal to S, except that Zy is removed from Cx, ).

The proof was described in Section 4.4.1 and it is detailed as follows.

Proof. Consider the scope X (S)\z,, equal to X(S) except that Cx, is replaced with Cx, \ {Zo}, and
assume that a deterministic policy 7 in this scope achieves the MEU, then we will prove a contradiction.
Specifically, we will establish two consequences that are clearly contradictory given a deterministic policy:
(a) the support of P™(XF°) contains at least 2% assignments, (b) the domain of Cy, \ {Zo} contains fewer
than 2% assignments.

(Proof of a.) We know that A assigns a strictly positive probability to 2* assignments (Definition 16) and
so if v achieves the MEU, then Pa(Y?) 2% A (Lemma 21). So Pa(Y?) has at least 2* assignments in its
support. Let us now consider the cases where Xy is, or is not, the decision nearest Y along d.

If X is the decision nearest Y along d, then by the model definition, Pa(Y?) = X¢ surely, so X, must have
at least 2F assignments in its support, and so (a) follows.

If Xg is not the decision nearest Y along d, then note that by assumption, there are one or more chance
nodes in d separating X, from X;. Furthermore, 77 must be one of these nodes (because Tj is defined by
a segment T --+ Zj, shared by d and mj, and active given [(X(S) U Cx(s)\z,) \ Z1], and such a path
cannot be active if it includes Xj.) The materiality SCM is constructed to pass values along d, and since the
segment T} --+ Z; has no decisions, we have T{ = Xg, surely. Since T3 is a chance node, if 7 achieves the
MEU, we also have by Lemma 18 and Lemma 19 that Pa(Y??) 2= TP! and, since d € py, that Pa(Y?) 2= T,
So X§ 2= Pa(Y?). Since Pa(Y%) places strictly positive probability on at least 2% assignments, so does X{.

(Proof of b.) The domain of Cx, \ {Zy} is a Cartesian product of variables V? for V € Cx, \ {Zo} where p
is either d, some m; or some r; ; Definition 16.

The control path d does not intersect Cx, \ {Zp} as it is defined not to include parents of X, other than
Zy (Lemma 11). Each info path m; is active given [(X(S) U Cx(s)\z,) \ Zo| (Lemma 11), so can only
intersect Cx, \ {Zo} at the colliders, which have domain B. Finally, any variable in a path r; ; would also
have domain B. So the domain of Cx, \ Zy is not larger than 2¢€xol where ¢ is the maximum number of
materiality paths passing through any vertex in the graph, and |Cy,| is the number of variables in Cx,. By
construction, k > ¢~ maxxex(s)|Cx|, so the domain of Cx, \ Zo is less than 2¥, proving (b).

A deterministic policy cannot map fewer than 2* assignments to greater than 2* assignments, and so (a-b)
imply a contradiction. O
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B.7 Proof of Lemma 23

We firstly restate the lemma.

Lemma 23 (If next fork is repeated, then fork only influences intersection node). If, in the materiality
SCM:

e the intersection node T; is the vertex X;_1,

o w1, is a deterministic decision rule where Tr,(c™™ (Ti,u;1) = 7, (¢”™ (T, uj 1)) for assignments
Ui,hué)l to the first fork variable, and ¢™™ (T;) to the contexts of T; not on m;, and

e Wiy, = w1y, and U .5, = u; 2.5, are assignments to forks and colliders in m; where each u; ;
consists of just w; ; repeated exp}(k + |p;| — 1) times, then:

P™ (pa(YPo 1), 7™ (T5), wi 1.7, Wi 2.7,

do(uiyl)) =pP7 (pa‘(ypi)”’l)v cm (Tl)v Wi 1.0, Wi2:J; do(ui,l))'

The proof is as follows.

Proof. An intervention do(u},) could, in the materiality SCM (Definition 16) only affect the variables
Pa(YPorir) C™™(T;), Wi 1.5, Ui 2.5, in four ways:

via the intersection node Tj,

via the collider W; 5 of m;,

via contexts lying in the segment m; : T; «-- U; 1 --+» W, 2,

if Pal?, C™™i(T;) or U, 2., were distinct from T;, W; o and lay on m; : T; «-- U; 1 --» Wi 2

N

The deterministic decision rule has 7wr, (u; 1, (T})) = 7, (u; ;, €™ (T})), so (1) is false. Also, u; 2 equals
w; 2 repeated, so u;o[x] = w; 2 for all z, and thus (2) is false also. Moreover, m; : T; «-- U; 1 --» W, 2 is
active given [(X (S)UCxs)\1,) \ Ti] and so contexts can only lie at the endpoints 7; and the collider W o,
meaning that (3) is false. Finally, Pal’ is a descendant of T; by the definition of the control path, so can
only lie on m; : T; «-- U; 1 --» W o if it is the vertex T;, which we have already proved is not influenced by
u;,1; meanwhile, C™™i(T;) does not intersect m; by definition, and Uj 2., are fork variables, which cannot
lie on my; : T «-- U; 1 --» Wy 2, so (4) is false, and the result follows. O

B.8 Proof of Lemma 24

We begin by restating the lemma.
Lemma 24 (Decision must distinguish fork values). If in the materiality SCM:

e the intersection node T; is the vertex X;_1, and
e 7 is a deterministic policy that for assignments u;1,w;, to U1 where w;y #u; , )
has mr, (€™ (T;), ui 1) =7, (€7 (T5), U;1) for every C;m (T;)=c ™ (T3),

then PT(Y™ < 1) >0

The proof has been described already, and it proceeds as follows.

Proof. Let us assume Equation (), and that the MEU is achieved, and we will prove a contradiction. Given
Equation (t), there is an index at which u;; and uj ; differ. We write this index as an assignment pa(Y ®"),

belonging to Pa(YPi). Define each u; ;,2 < j < J; as equal to pa(Y""), repeated exp}(k + |p;| — 1) times.
Then, we have:

0 < P™(AY =pa(Y), Uiy, = ui1.,)
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because A and U; 1., are independent random variables with full support. Then, let ¢ (T;) and w1 1.y,
be any assignments to the parents of T; not on m;, and to the colliders on m; such that:

0< Pﬂ-(Ad = pa‘(Yd)a cﬁmi (E)a wl,l:Jﬂ ui,l:J¢)~
Given these assignments, in order to achieve PT (Y™ = 1) = 1, we must have Pa(Y?) 2= A? (Lemma 21)

and pa(YP?) must be consistent with w;1.s, (Lemma 20). We must also therefore have Pa(YP:"i1:7:) =
paPi'Ti1:7: ) 5o marginalizing over A%, we must have:

0< PT (Pa(Ypia"'i,l:Ji ) :pa(Y'Pi77‘1‘,1:J,;)7 Cﬁmi(ﬂ), wl,l:Ji;ui,l:Ji)

0 < P™(pa(YPomitdi) ¢ ™(T}), w1 1.0, Wi2:;) | do(ui1)) (U 1., unconfounded)
= P (pa(YP:"r7i) e ™ (T;), wy 1.7, (uj 1)) (by Lemma 23)
= P™(pa(YPorirvi), e (T), wa e, Wi, |uzl) (P™(uj ) > 0.)
0 < P™(pa(YPomitdi) uj q) (P™(u}) > 0.)

However, u; {[pa(YP?)] # u;1[pa(YP")] and u; 1 [pa(YP?)] = pa(Y"*1), so pa(YP?), pa(Y " 1/:) is inconsistent
with pa(YP?), uf 1,1 2.5,. So 0 < P™(pa(YP743:7i ) uy; ) implies that P™(Y; = 1) < 1 (by Lemma 20), and
the MEU is not achieved. O

C Proof of Lemma 25

We first restate the lemma.

Lemma 25 (Required properties unachievable if child is a decision). Let M be the materiality SCM for
some scoped graph Gs, where iyq, > 0 and T1 is a decision. Then, there exists no deterministic policy in
the scope Sz, 4 x, that achieves the MEU.

The proof was explained in section Section 4.4.2, and is detailed as follows.

Proof. To begin with, by assumption, the child of Xy along d is a decision, so X is the same node as Z1,
and since the segment 77 --» X1 must be active given [(X(S)UCx sy z,) \ Z1], Xo is also Ty. We will now
bound the domains of Xy and C™™ (Xj).

The domain of Xy. Given that Xy is a decision, while each truncated info path m; is active given [(X(S)U
Cxs)\z;) \ Zi], it follows that X, cannot overlap with info paths, except for colliders of my, 4" # 4, and the
endpoint of m;. As such, the domain of Tj is at most |Xx,| < 28, due to k bits from d (Definition 16),
and at most ¢ bits from the info paths and auxiliary paths (where ¢ is the maximum number of materiality
paths passing through any vertex in the graph).

The domain of C™"(Xy). Given that each info path m; is active given [(X (S)UCx (s)\z,)\Zi|, the contexts
C™™(X,) cannot intersect any m;, except at colliders in m,. Moreover, by the definition of the control path,
the only parent of Xy that it contains is Zy. So, C7™*(Xj) can only intersect portions of the materiality
paths with domain B, and so the size of the domain of C™"(X() cannot exceed |Xg-m1(x,)\z,| < b,
where b is the maximum number of variables belonging to any context Cx, and c is the largest number of
materiality paths passing through any vertex.

Proof of Equation (1) As the domain of Xo has Xx,| < 2", for any particular C™™1(Xy) = ¢ (X)),
there are at most 2"¢ assignments X7 C Xy, , such that for all uy 1, uf; € Xyr |, 7x, (€7™ (Xo), u1,1) #
mx, (€7 (Xo), vy ;). Furthermore, as [Xg-m1 (x,)\ 2| < 2¢ by the union property, there are at most 20¢(k+¢)
assignments X7; | such that there exists ¢! (Xo) such that for all uy1,u}; € Xy, |, ui1,u1, € Xyr

mx, (€7 (Xo),u1,1) = 7x, (€7 (Xo),uq ). However, the domain of U; is Bexpz(k+lpal=1) 5 B2" (as p,
contains at least d), so

> 22k > 2(k+c)bc > |xCﬁm1 (X0)||xXo|7

where the strict inequality is from the definition of k£ in Definition 16. So, there must exist a pair of
assignments u; 1, u} ; in the domain of U; ; such that for all ¢™™1(Xo) € Xo-m1(xy), Tx, (€7 (Xo), u1,1) =
mx, (€7 (Xo), vy ;). This satisfies Equation (f), which by Lemma 24 proves the result. O

|xPa(Xg”)
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D Supplementary proofs for Section 5 (Proof of Lemma 26)

D.1 Proving the existence of paths

In this section, we will prove that when LB-factorizability is not satisfied, then there exist info paths and
control paths, a potential intermediate step toward establishing completeness of Theorem LB-2 from Lee &
Bareinboim (2020).

Lemma 26 (System Exists General). Let Gs be a scoped graph that satisfies conditions (A,B) from Theo-
rem 8 If Z ={Z}, X' D Ch(Z), C' =Cx: \ (X' UZ), U =0 are not LB-factorizable, then there exists a
pair of paths to some C' € C'UY :

e an info path m : Z --- C', active given [ X' UC"], and
e a control path d : X --+ C" where X € X'.

Since we will have to establish activeness given a set of implied variables, the following lemma will be useful.

Lemma 28. Let p be a path. If (i) p contains no non-collider in N, (ii) every fork variable in p is not in
[N, and (iii) every endpoint of p that has a child along p is not in [IN'|, then p contains no non-collider

Proof. Write p as Wy «-- Uy --+ Wy «-- Uy ... Uy --» Wy, where possibly W; is U, and possibly Uy is
[N],and V & N by (i), so V & [N]. The same is then true for the non-collider child of V', and so on. Since
every non-collider V' in p has a segment U; --» V' of p consisting of only non-colliders, every V' ¢ [IN],
and V' contains no non-collider in [IN'], proving the result. O

Conditions II-ITT of LB-factorizability require that there must exist an ordering over variables, that where
certain variables are placed before others (i.e. that satisfies certain precedence relationships). Our approach
will be to encode the precedence relationships from condition III in a graph, as follows.

Definition 29. Let the “ordering graph” H be a graph on vertices Z U X' U C’, with an edge A — B
from each parent A € Pa(B) of a decision B € X', and an edge B — C from each decision B € X’ to a
descendant C € Desc(B).

A useful property of the ordering graph is that if a variable V' is downstream of a context C' in the ordering
graph, then there exists a decision, that has C as a context, and can influence V.

Lemma 30. IfvertexV is a descendant in H of a context Z € Cs(x), then Gs contains a path Z — X --» 'V,
where X € X'.

Proof. Assume that V € DescH(Z). The path in H from Z begins with an edge Z — X where X € X',
which implies that Gs has an edge Z — X. The path in ‘H must continue from X to Z, and since each edge
A — Bin H has B € Descs (A), it follows that V € Desc9s (X), proving the result. O

It is also useful to note that the expression m X' is unnecessary in condition II.

Lemma 31 (Unnecessary separation in condition II). Let X’ be a set of decisions, Z be a set of variables
disjoint with X', and C" be the set of contexts not in C' or Z, and < be an ordering over C'UX'U Z. If
mx L C | [(X'UC) <] for some C € C' then Zic L C | [(X'UC )<

Proof. By assumption, there is a path p from 7x to C, active given [(X'UC")<¢], for some X € X’ . The
only neighbour of mx is X, so p must terminate as X < mx. As X is in X', activeness given [(X'UC") (']
implies that p terminates as C — X <+ wx. Every parent of X is in X’ U C"’ except Z. So by truncating p
at Z, we have that there is a path from Z_.c to C, active given [(X'UC")<¢]. O
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We are now equipped to prove Lemma 26. Recall that for Z, X’ to be LB-factorizable, there only needs to
be one ordering < that satisfies the precedence relationships from conditions II-III. So the approach in our
proof will be to define one such < that satisfies conditions III. Since Z, X’ are not LB-factorizable, that
must mean that condition I or IT is violated, which will imply the existence of paths m,d in each case. (We
will use the notation Desc’(Zy) to denote the set of vertices that are descendants of Zy in the ordering
graph H.)

Proof of Lemma 26. Let < be any ordering (Vo, - - Vin, Zo, Vinaa, - - - Var), over ZU X' UC that is topological
in ‘H and where V4o, -+, V3 are in DescH(Zo) whereas Vj - --V,, are not. Since < is topological in H,
Condition III is satisfied, and since LB factorizability is not satisfied, Condition I or IT must be be violated;
we consider these cases in turn.

Case 1: Condition I is violated.

If Condition I is violated, there is a path m’ : Vq,V,,---,V,, where V; = wx, and V,, = Y, active given
[X"UC"]. From the definition of 7x, this path must begin as wx, — X for X € X’'. As X is in the
conditioning set, it must be a collider, i.e. m’ begins as IIx — X < V3. The only parent of X that is not
in the conditioning set is Zj, so we have IIy — X < Zy --- Y. We truncate m’ as m : Zy --- Y. Since
Zy — X satisfies condition (A) of Theorem 8, there exists some d : X --» Y, proving the result in this case.

Case 2: Condition IT is violated. Step 2.1

The violation of condition II implies that there is an active path from some C € C’ to X! Z_c,or U'.
This path cannot go to U’, which was chosen to be empty. Moreover, if there is an active path to X'
then there is a similarly active path to Z¢ (Lemma 31. So let m’ : Zy --- C' (where Zy < C) be the path
to Zy, active given [(X'UC")<¢]. Replace this path with a walk w’ with an added segment V --3 S «-- V
from each collider Z to a variable S in the conditioning set. Truncate w’ as Zy --- C, where C' is the node
in C_, nearest Zy along w’. Then let m be the path obtained from w by removing all retracing segments.
Clearly m is active given [(X'UC")<¢] From Zy < C, it follows that C' € Desc™(Zy), so there exists a path
d:Zy— X --»C for X € X’ (Lemma 30).

Case 2: Condition II is violated. Step 2.2

We will now establish that m is active given [X’ U C’]. Since m is active given [(X' U C’)<¢], and
[(X'UC)] 2 [(X'uC)<C], m is active given [X' U C’] at each collider. We now prove that m also
contains no non-collider in [(X’ U C’")<¢| using Lemma 28, by proving that the non-colliders are not in
(X" U C") while the endpoints and forks are not in [(X'UC")].

Step 2.2.1: no non-collider in w is in (X' UC").

We consider three sub-cases: a non-collider in 2.2.1.1: (C' U X")<¢, 2.2.1.2: C{ 4, or 2.2.1.3: X{ . Sub-
case 2.2.1.1: a non-collider in (C' U X")<1c. As w is active given [(X' U C")<C'], w does not contain a
non-collider in (C"U X')sc. Sub-case 2.2.1.2: a non-collider in C!_. Moreover, the definition of C' implies
that m cannot contain a non-collider in C{_ . Sub-case 2.2.1.3: a non-collider in X{ . Finally, w cannot
contain any non-collider X € X/ ., because being a vertex being a non-collider in any path implies that it
is an ancestor of a collider or an endpoint of that path, but being an ancestor of a collider or an endpoint
of w implies X < C, which is a contradiction. If X is an ancestor of the endpoint C, then by the definition
of H, X < C, which contradicts X € X[ . If X is an ancestor of the other endpoint Z, then X < Z, by
the definition of H, and so X < C, implying a contradiction once again. If X is an ancestor of a collider V,
then by activeness, the collider must have a descendant V’ in [(X’ U C’)<¢, and so X is an ancestor of V.
By the definition of #, it follows that X < V', and since V' < C, we have X < C. Since no non-collider in
w is in (X' UC"), it also follows that no non-collider in m is in (X’ U C").

Step 2.2.2: no endpoint of m is in [(X' U C")].

The endpoint Zy cannot be in [(X' U C")<¢] because Zy € Z, and Z is disjoint from X’ and C’. The
endpoint C' cannot be in [(X’ U C")<¢] because we cannot have C < C.

Step 2.2.8: If no non-collider in (X' UC") then no fork in [ X' UC'|\ X' UC".

31



Published in Transactions on Machine Learning Research (12/2024)

Assume that a fork V in [ X’UC’']\ X’ UC" is in m, and we will prove a contradiction. The vertex V must
not be in [(X’' U C")<¢], since m’ is active given [( X' UC")z¢]. As Visin [ X' UCT\ (X' UC) <],
V must in Gs have an ancestor A € (X' U C').¢. Since Zy < C, V this ancestor A also has Zy < A. So,
A € Desc™(Zy) by the definition of <, and A € Desc?(Zy) by the definition of H, and V € Desc?(Z;), since
A is an ancestor of V.

Any fork in a path must either be an ancestor of the initial endpoint (in this case Z), or an ancestor of a
collider in the path. Since V € Descg(Zo) and V is a fork, not an endpoint, V' cannot be an ancestor of the
initial endpoint. So V' must be an ancestor of a collider in the walk w. As w is active given [(X'UC")<C, the
collider D must be in [(X’'UC")4C']. We consider three sub-cases: 2.2.3.1: D isin [(X'UC")cCT\(X'UC"),
2.2.3.2: Disin X!, 2.2.3.3: Disin C’,, and will prove a contradiction in each case. Sub-case 2.2.3.1: D
isin [(X'UC")<CT\ (X'UC"). Then all the parents of [(X'UC")<C must also be in [(X'UC")<C by the
definition of implied variables, and these parents would be non-colliders, which would make w blocked given
[((X'UC")<C, giving a contradiction. Sub-case 2.2.8.2: D is in X' . Then at least one parent of D must
be a non-collider in C’,, which contradicts the statement that w contains no non-collider in (X’ U C”).
Sub-case 2.2.3.3: D is in C',~. Then D € Desc?(Zy) (since D € Desc? (V) and V € Desc?(Zy)). It follows
that Zy < D, but this contradicts the definition of C' as the nearest variable along w to Z that is in C_ Zo-

From Lemma 28 the result follows. O
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