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0.1 EXPERIMENT SETTINGS

In this section, we introduce our experimental setups in detail with descriptions of used datasets along
with baseline models to benchmark the performance of our proposed method.

0.1.1 DATASETS

In our experiment, 7 diverse datasets are employed, encompassing both drug-drug interaction and
solute-solvent interaction tasks. Here we provide a brief overview of the original datasets. Detailed
statistical information on the datasets used in this study can be found in Table ??.

ZhangDDI (Zhang et al. (2017)). It consists of 548 drugs and 48,548 drug-drug interaction pairs in
total, along with multiple types of similarity information between drug pairs.

ChChMiner (Marinka Zitnik & Leskovec (2018)). This dataset contains 1,322 drugs and their labeled
DDIs, all of which have been extracted from official drug labels and validated through scientific
research.

DeepDDI (Ryu et al. (2018)). It collects 1704 various drugs with their labeled DDIs. The collec-
tion is gathered from DrugBank which features detailed DDI data alongside associated side-effect
annotations.

FreeSolv (Mobley & Guthrie (2014)). The dataset includes 643 hydration free energy measurements
for small molecules in water, both experimental and calculated. For our study, we focus on 560
experimental values, consistent with previous work.

CompSol (Moine et al. (2017)). This dataset aims to demonstrate the influence of hydrogen-bonding
interactions on solvation energies. It includes a total of 3,548 combinations involving 442 unique
solutes and 259 solvents, as referenced in earlier studies.

Abraham (Grubbs et al. (2010)). It compiles information published by the Abraham research group
at University College London. It includes 6,091 combinations of 1,038 unique solutes and 122
solvents, in accordance with prior studies.

CombiSolv (Vermeire & Green (2021)). It integrates data from the MNSol, FreeSolv, CompSol, and
Abraham datasets, resulting in 8780 unique pairings between 1,415 solutes and 309 solvents

0.1.2 BASELINES

In this section, we provide introduction of the baseline models utilized in our experiment. Both
traditional deep learning based methods and the recent biochemical LLMs are employed. For
qualitative tasks, we use the following baselines:

CIGIN (Pathak et al. (2020)). This model uses a three-phase framework—message passing, inter-
action, and prediction—to achieve high accuracy in solvation free energy predictions and provides
chemically interpretable insights into electronic and steric factors governing solubility.

SSI-DDI (Nyamabo et al. (2021)). This method applies a 4-layer GAT model to uncover substructures
across different layers, while the co-attention mechanism handles the final prediction.

DSN-DDI (Li et al. (2023)). It persents a dual-view drug representation learning network that
integrates local and global drug substructure information from both individual drugs (‘intra-view’)
and drug pairs (‘inter-view’).
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CMRL (Lee et al. (2023b)). The approach reveals the main substructure driving chemical reactions
through a conditional intervention model that adapts its intervention based on the paired molecule.

CGIB (Lee et al. (2023a)). It adapts the detected substructure depending on the paired molecule to
mimick real chemical reactions, based on the conditional graph information bottleneck theory.

DeepDDI (Ryu et al. (2018)). In this method, the structural similarity profile of the two drugs is first
evaluated against other drugs, after which a deep neural network is used to complete the prediction.

MHCADDI (Deac et al. (2019)). The model utilizes a gated information transfer neural network to
manage substructure extraction, and interactions are guided by an attention mechanism.

MolTC (Fang et al. (2024)). It introduces a novel multi-modal framework that integrates molecular
graph structures and LLMs using Chain-of-Thought (CoT) theory.

As for quantitative tasks, the following baselines are employed besides CIGIN, CMRL, CGIB and
MolTC which are mentioned above:

D-MPNN (Vermeire & Green (2021)). This technique combines the fundamentals of quantum
calculations with the experimental precision of solvation free energy measurements, using a transfer
learning approach with the CombiSolv-QM and CombiSolv-Exp databases.

1 ABLATION STUDY
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Figure 1: Ablation study.

The ablation studies we conducted are shown in Figure 1. A detailed evaluation was performed to
compare our approach with the standalone use of Causal Molecule Motif-interaction Disentangling
module proposed in Section ?? across diverse task settings and datasets. It is evident that full
CALMOL excels in the context of both DDI classification and SSI regression tasks on a wide range
of datasets. The most striking difference can be seen in quantitative SSI tasks, where its superiority
are most pronounced.
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