Equivariance by Local Canonicalization:
A Matter of Representation
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Exact & expressive Compare different geometric
O(3) equivariance representations

-> Equivariance made easy by Equivariance: pout(9)9(z) = ¢(pin(9)T)
canonicalization & tensorial messages Group representation: p(9192) = p(91)p(g2)

> WOka for all represeﬂtatiqns Cartesian tensor rep. or  Irreducible rep.
& with any message.oassmg NN B = S R RasT | (DO (R) < El: .
-> Our tensor_frames library offers an e Syl
easy-to-use implementation e Both have different computational advantages
Representation 4 Components Total Transform Cost Per-Entry Cost
Local canonicalization G e zep () hath 2t

& Tensorial messages

e Must the transformation be a group rep.?

e Predict local frames at each node ;arl;;?orpriq representation’, let the network decide how to

— Canonicalize the node features locally o (R:R7V)f; = MLP(RiR7L,f))
] J =% 2 J]

fi = pin(R;) F; . -
e Performance of different transformations:

e Use frame-to-frame transitions to send Table 1: MAE and runtime on QM9
tensorial messages: property prediction.
4 ) Method a EHOMO €ELUMO 7 it /s
(k) o L | (k__l) [ao] [meV] [meV] D] [s—1]
f@ T 69 ¢( ) pf(RZR] )f] y R'l (x@ o aj]) Equiformer (Liao and Smidt, 2022) .050 14 13 .010 0.8
]GN(Z) MACE (Batatia et al., 2022) .038 22 19 .015 n/a
\ 4 LoCaFormer: Scalar messages 057  20.8 18.2 .030 4.5
LoCaFormer: Cart. tensor rep. .052 20.6 177  .018 3.8
R. Ry — R’ LoCaFormer: Irreducible rep. .054  19.1 19.4  .020 3.3
A_Ti s ok LoCaFormer: MLP rep. 057 206 179 .030 4.0
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€ D S e Fair comparison against data
T R augmentation
Ry : :
¥, BN e Data augmentation by choosing random global frames,
9 y g g

keeping everything else as is!
— Exact equivariance is more data efficient

Easily build new

x  Built-in equiv.
e Data augm.

— uitin aui. Can YOU solve
—— Data augm. fit o
this puzzle?

architectures e i P

e NO architecture constraints /

e Ourtensor_frames library transforms
any PyG message passing module |
: : : here?
into a tensorial message passing module: | Nt X

1071 | 100
Fraction of training data

Why is data
augmentation
more accurate

MAE on test set [mD]
=
o

1 from tensor frames.nn.tfmessage passing import TFMessagePassing
2 from tensor frames.reps.tensorreps import TensorReps

3

4 class GCNConv(TFMessagePassing):

5 def init (self, 1in reps: TensorReps, out reps: TensorReps):
6 super(). init (

7 params dict={

8 "x"i: {"type": "local", "rep": in _reps}

9 }

10 ) . o 17 oy

11 self.linear = torch.nn.Linear(in reps.dim, out reps.dim) ¢ 3D ComPUter vision iy

13 def forward(self, edge_index, x, lframes): o Quantum Chem|st|"y: R

14 return self.propagate(edge index, x=x, lframes=1frames . ; :

- propagatetedss. | Orbital-free DFT s
16 def message(self, x j): f?f

17 return self.linear(x_j) ® Partlcle PhYSlCS: N X

19 module = GCNConv(TensorReps("16x0n+8x1n"), TensorReps("4xOn+1x1ln")) LOrentZ EqUWa"ance %%//\Ei” E
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