

Equivariance by Local Canonicalization: A Matter of Representation

Gerrit Gerhartz*, Peter Lippmann*, Fred A. Hamprecht
Interdisciplinary Center for Scientific Computing (IWR),
Heidelberg University, Germany

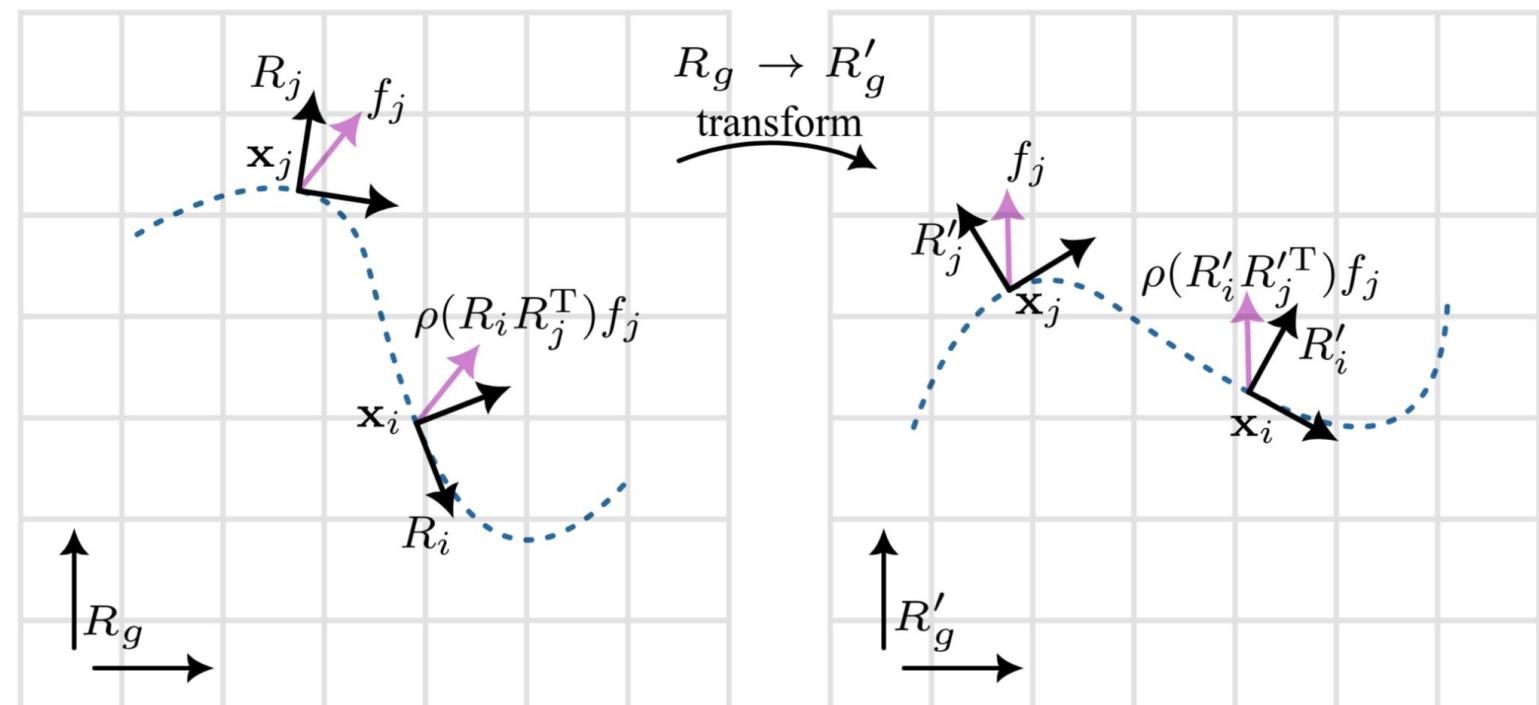
Exact & expressive $O(3)$ equivariance

- Equivariance made easy by **canonicalization & tensorial messages**
- Works for all representations & with any message passing NN
- Our **tensor_frames library** offers an easy-to-use implementation

Local canonicalization & Tensorial messages

- Predict local frames at each node
→ Canonicalize the node features locally
$$f_i = \rho_{\text{in}}(R_i)F_i$$
- Use frame-to-frame transitions to send tensorial messages:

$$f_i^{(k)} = \bigoplus_{j \in \mathcal{N}(i)} \phi^{(k)} \left(\rho_f(R_i R_j^{-1}) f_j^{(k-1)}, R_i(x_i - x_j) \right)$$



Easily build new architectures

- No architecture constraints
- Our **tensor_frames library** transforms any PyG message passing module into a tensorial message passing module:

```

1  from tensor_frames.nn.tfmessag_passing import TFMessagePassing
2  from tensor_frames.reps.tensorreps import TensorReps
3
4  class GCNConv(TFMessagePassing):
5      def __init__(self, in_reps: TensorReps, out_reps: TensorReps):
6          super().__init__()
7          params_dict = {
8              "x": {"type": "local", "rep": in_reps}
9          }
10         self.linear = torch.nn.Linear(in_reps.dim, out_reps.dim)
11
12     def forward(self, edge_index, x, lframes):
13         return self.propagate(edge_index, x=x, lframes=lframes)
14
15     def message(self, x_j):
16         return self.linear(x_j)
17
18 module = GCNConv(TensorReps("16x0n+8x1n"), TensorReps("4x0n+1x1n"))

```

Compare different geometric representations

Equivariance: $\rho_{\text{out}}(g)\phi(x) = \phi(\rho_{\text{in}}(g)x)$

Group representation: $\rho(g_1g_2) = \rho(g_1)\rho(g_2)$

Cartesian tensor rep. or **Irreducible rep.**

$$T'_{i_1 \dots i_n} = \sum_{j_1, \dots, j_n} R_{i_1 j_1} \cdots R_{i_n j_n} T_{j_1 \dots j_n} \quad | \quad (D^{(l)}(R)x)_m = \sum_{m'=-l}^l D_{mm'}^{(l)}(R)x_{m'}$$

- Both have different computational advantages

Representation	# Components	Total Transform Cost	Per-Entry Cost
Irrep (l)	$2l + 1$	$\mathcal{O}(l^3)$	$\mathcal{O}(l^2)$
Cart. tensor rep (n)	3^n	$\mathcal{O}(n 3^n)$	$\mathcal{O}(n)$

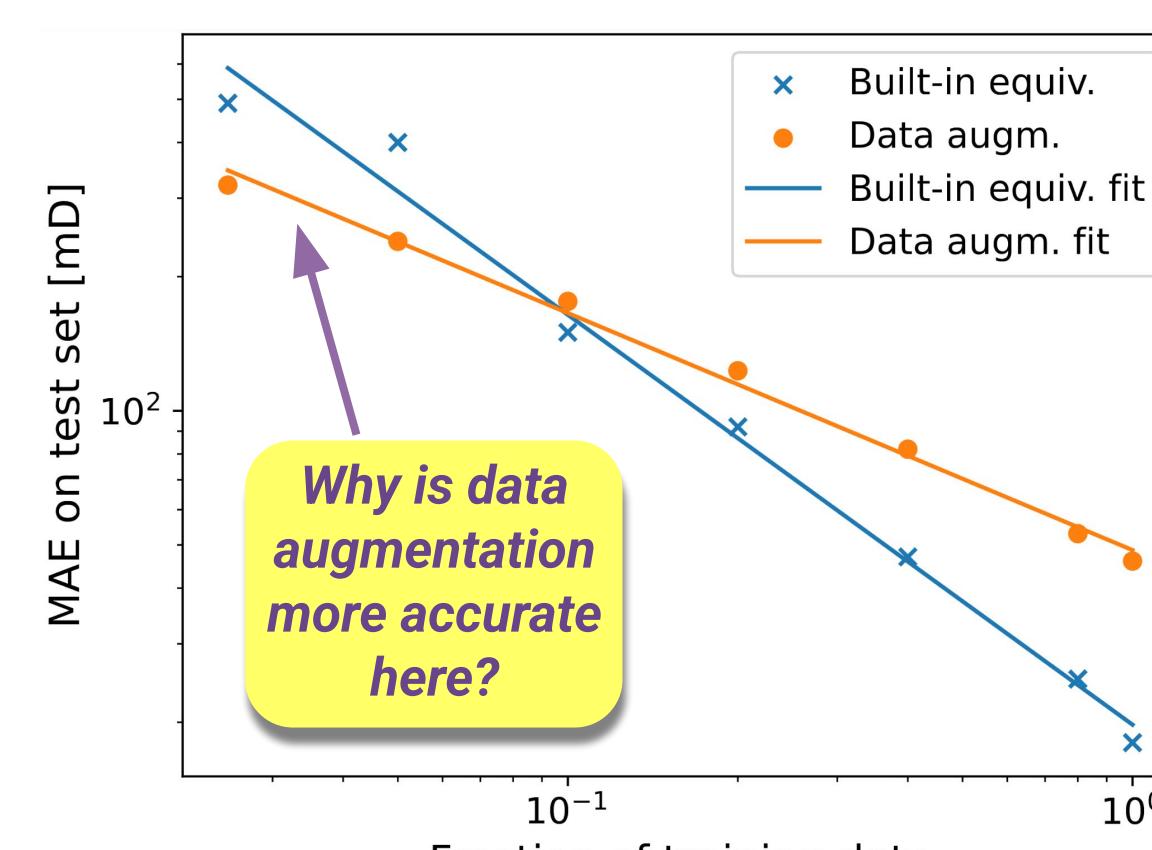
- Must the transformation be a group rep.?
→ Learned “representation”, let the network decide how to transform:
$$\rho_f(R_i R_j^{-1})f_j \Rightarrow \text{MLP}(R_i R_j^{-1}, f_j)$$
- Performance of different transformations:

Table 1: MAE and runtime on QM9 property prediction.

Method	$\alpha_{[a_0]}$	$\epsilon_{\text{HOMO}} [\text{meV}]$	$\epsilon_{\text{LUMO}} [\text{meV}]$	$\mu_{[\text{D}]}$	it/s [s ⁻¹]
Equiformer (Liao and Smidt, 2022)	.050	14	13	.010	0.8
MACE (Batatia et al., 2022)	.038	22	19	.015	n/a
LoCaFormer: Scalar messages	.057	20.8	18.2	.030	4.5
LoCaFormer: Cart. tensor rep.	.052	20.6	17.7	.018	3.8
LoCaFormer: Irreducible rep.	.054	19.1	19.4	.020	3.3
LoCaFormer: MLP rep.	.057	20.6	17.9	.030	4.0

Fair comparison against data augmentation

- Data augmentation by choosing random global frames, keeping everything else as is!
→ **Exact equivariance is more data efficient**



Can YOU solve
this puzzle?

Transferable across domains

Achieves SOTA results in several tasks:

- **3D Computer vision**
- **Quantum Chemistry: Orbital-free DFT**
- **Particle Physics: Lorentz Equivariance**

