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ABSTRACT

This paper investigates list replicability Dixon et al. (2023) in the context of multi-
armed (also linear) bandits (MAB). We define an algorithm A for MAB to be
(ℓ, δ)-list replicable if with probability at least 1 − δ, A has at most ℓ traces in
independent executions even with different random bits, where a trace means se-
quence of arms played during an execution. For k-armed bandits, although the
total number of traces can be Ω(kT ) for a time horizon T , we present several sur-
prising upper bounds that either independent of or logarithmic of T : (1) a (2k, δ)-
list replicable algorithm with near-optimal regret, Õ(

√
kT )1, (2) a (O(k/δ), δ)-list

replicable algorithm with regret Õ
(

k
δ

√
kT
)

, (3) a ((k+1)B−1, δ)-list replicable

algorithm with regret Õ(k
3
2T

1
2+2−(B+1)

) for any integer B > 1. On the other
hand, for the sublinear regret regime, we establish a matching lower bound on the
list complexity (parameter ℓ). We prove that there is no (k − 1, δ)-list replicable
algorithm with o(T )-regret. This is optimal in list complexity in the sub-linear
regret regime as there is a (k, 0)-list replicable algorithm with O(T 2/3)-regret.
We further show that for linear bandits with d-dimensional features, there is a
Õ(d2T 1/2+2−(B+1)

)-regret algorithm with ((2d + 1)B−1, δ)-list replicability, for
B > 1, even when the number of possible arms can be infinite.

1 INTRODUCTION

The issue of replicability and reproducibility in science has become a significant concern, attract-
ing substantial attention from the broader scientific community Begley & Ellis (2012); Ioannidis
(2005); Baker (2016); of Sciences et al. (2019). Recently the machine learning community also
started addressing this issue. Inspired by reproducibility workshops at ICML/ICLR, the ML com-
munity has created a dedicated online conference, the ML Reproducibility Challenge (MLRC) Sinha
et al. (2023), to encourage the publishing and sharing of scientific results that are reliable and repro-
ducible. In machine learning, a common approach to ensure replicability and reproducibility is to
make datasets and code publicly available. However, it is unclear if such an approach is sufficient, as
machine learning algorithms draw samples from data distributions and are usually randomized. This
inherent randomness results in non-replicability. Therefore, it is more desirable to design machine
learning algorithms that are replicable, i.e., algorithms that return the same result over multiple runs,
even when different runs observe different sets of samples from the data distribution. The aforemen-
tioned requirement has recently led to theoretical studies and rigorous definitions of replicability
Impagliazzo et al. (2022); Dixon et al. (2023), with various notions of replicability being proposed.

In this work, we study bandit algorithms with replicability guarantees. The Multi-Armed Bandit
(MAB) is a learning task in which a learner interacts with an environment consisting of a set of
fixed k distributions (called arms) in discrete time steps. In each of the T steps, the learner selects

1Here Õ(·) omits log k, log log T , log 1
δ

.
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an arm and receives an i.i.d. sample from that arm, called the reward. The goal of the learner is to
maximize the cumulative expected reward, equivalently minimizing the “regret” (defined formally
later), which characterizes the total sub-optimality of the actions played over the learning course.

Ideally, an MAB algorithm with perfect replicability should always select exactly the same trace
(i.e., sequence of arms) over multiple runs, even if the algorithm receives a different set of samples
from the data distribution for each run. However, as shown later in the paper (and discussed in Dixon
et al. (2023)), it is impossible for MAB algorithms with perfect replicability guarantees to have a
non-trivial regret bound, as algorithms need to adapt to the randomness from the history to learn
effectively. Therefore, we ask, what is the strongest notion of replicability of a bandit algorithm
without suffering significant regret loss?

Inspired by a recent study Dixon et al. (2023) that investigates replicability in the supervised learning
setting, we propose a notion of list replicability for bandit learning. In this setting, we require
that the trace (sequence of actions) produced by the algorithm during the entire learning course be
predictable to a certain extent. That is, no matter how many times we repeat the algorithm for the
bandit instance, the resulting sequence of actions comes from a small finite list. Note that in general,
a T horizon MAB algorithm with k arms can have kT possible traces. Such a guarantee would
be useful for bandit learning in safety-critical applications, as one can be prepared for the action
sequence being played. Bandit algorithms and more general reinforcement learning algorithms are
increasingly used in clinical trials and social experiments to personalize treatment decisions for
individuals Zhang et al. (2024). In such domains, it is highly desirable to limit the possible sequence
of actions and limit uncertainty.

The formalization of the concept of replicability in various computational settings is a significant and
emerging area of research. This work takes an important step toward understanding the foundational
principles of replicability in the context of bandit problems.

2 PRELIMINARIES

For n ∈ N, we use [n] to denote the set {1, . . . , n} and for a, b ∈ R we use [a, b], (a, b), [a, b), and
(a, b] to represent the closed, open intervals, and their corresponding half-open intervals respectively.
We use Õ(·) to subsume log k, log log T , and log 1

δ . In this paper, we consider the following Multi-
Armed Bandit (MAB) instance.
Assumption 2.1. An MAB instance is a tuple (D,T ) where D = (D1, . . . , Dk) is a collection of
distributions and T ∈ N is the horizon such that2 each Di is supported on [0, 1] and has a mean µi.
For any t ∈ [T ], if action at ∈ [k] is played, the reward rt is an i.i.d. sample drawn from Dat

.

Here, we use k to denote the number of arms and T to denote the horizon. For a collection of
means µ1, . . . , µk we use µ∗ = maxa∈[k]{µa} to denote the highest mean and for each i ∈ [k],
∆i = µ∗−µi to denote its reward gap. An arm i with ∆i = 0 is called an optimal arm; otherwise, it
is called a sub-optimal arm. LetM be an algorithm for MAB. The algorithmM defines probability
distribution PM on traces [k]T in the following sense: Given a trace a ∈ [k]T , probability of a, de-
noted PM(a), is the probability thatM takes trace a. For a set S of traces, PM(S) =

∑
a∈S PM(a).

Definition 2.2 ((ℓ, δ)-MAB Replicability). An algorithmM for MAB is (ℓ, δ)-list replicable if for
every MAB instance (D,T ), there exists a set of traces SD,T ⊆ [k]T such that |SD,T | ≤ ℓ and
PM(SD,T ) ≥ 1− δ.

When δ = 0, then we just say thatM is ℓ-list replicable. We call ℓ the list complexity ofM.
Definition 2.3 (Regret). We measure the performance of an algorithm by the regret, which is RT =∑T

t=1 maxa µa − µat , where at is the action played at time t. An MAB algorithm is effective if the
regret is sublinear in T : in this case, the average regret per round is approaching 0 as T →∞.

Trivially, any MAB algorithm is kT -list replicable because a trace must be an element of [k]T ; and
an algorithm playing the same action all the time is a 1-list replicable algorithm, yet with regret T .
We aim to create MAB algorithms that have both low regret and are (ℓ, δ)-list replicable with small
ℓ and δ.

2For presentation simplicity, we restrict to the [0, 1] setting. Our results generalize to sub-Gaussian distri-
butions straightforwardly.
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For the linear bandits, we assume that the rewards rt satisfy a linear structure. Specifically,

Assumption 2.4. For any a ∈ A, we assume ∥a∥2 ≤ 1 and hence A is a compact set. For
any time t, if action at is played, the reward rt satisfies rt = ⟨at, θ∗⟩ + ηt where θ∗ is unknown
with ∥θ∗∥2 ≤

√
d, and ηt is an history independent mean-0 σ-sub-Gaussian random variable that

satisfies E[ηt] = 0 and (∀x > 0).Pr [|ηt| > x] ≤ 2 exp
(

−x2

σ2

)
.

We denote µa = ⟨a, θ∗⟩ ∈ [0, 1] as the unknown true mean of an arm a, and let a∗ =
argmaxa∈A⟨a, θ∗⟩, which is the unknown optimal action. For presentation simplicity, we assume
σ = 1.

3 OUR CONTRIBUTIONS

In this work, we introduce a viable notion of replicability which is called list replicability in the
context of Multi-Armed Bandit algorithms. We summarize our technical results below.

In Section 5.1, we present a (2k, δ)-list replicable MAB algorithm with near-optimal regret,
Õ(
√
kT ). Importantly, the total number of possible traces is completely independent of T .

In Section 5.2, we present a (O(k/δ), δ)-list replicable MAB algorithm with Õ(k/δ
√
kT ) re-

gret. When δ is constant, the total number of possible traces is O(k), while the regret bound is
Õ(
√
poly(k)T ).

In Section 5.3, we present a ((k + 1)B−1, δ)-list replicable algorithm with regret bound
Õ(k

3
2T

1
2+2−(B+1)

) for any B > 1. By setting B to be a constant, the total number of possible
traces is polynomial in k, while the regret bound is sublinear in k. By setting B = log log T , the
total number of possible traces is kO(log log T ), while the regret bound is Õ(k3/2

√
T ).

In Section 6, we further show that the guarantees of our third algorithm are nearly tight by establish-
ing a (k−1) lower bound for any list replicable algorithm with failure probability at most 1/(k+1)
and regret o(T ), almost exactly matching the k-list replicable upper bound for B = 2. Interstingly,
we use a cubical version of Sperner/KKM lemma for establishing the lower bound.

Finally, in Section 7, we generalize our third algorithm to the linear bandit setting. For a d-
dimensional linear bandit instance, we present a ((2d + 1)B−1, δ)-list replicable algorithm with
regret Õ(d2T

1
2+2−(B+1)

) for any B > 1.

4 RELATED WORK

Bandit algorithms have been extensively studied in the general setting Lattimore & Szepesvári
(2020); Slivkins et al. (2019); Bubeck et al. (2012); Auer et al. (2002); Cesa-Bianchi & Fischer
(1998); Kaufmann et al. (2012). In the MAB setting, Thomson sampling and UCB achieve an op-
timal regret of Õ(

√
kT ) Agrawal & Goyal (2017); Auer et al. (2002). In the d-dimensional linear

bandit setting, Contextual Thomson sampling and LinUCB achieve a regret of Õ(d
√
T ) Lattimore

& Szepesvári (2020). There is extensive work in other bandit variants, and interested readers are
referred to Lattimore & Szepesvári (2020).

Several works Impagliazzo et al. (2022); Dixon et al. (2023); Bun et al. (2020); Ghazi et al. (2021)
studied various notions of replicability in the context of learning tasks. In Bun et al. (2020), a no-
tion called stability is introduced. The work of Impagliazzo et al. (2022), defined the notion of
ρ-replicability. In Dixon et al. (2023), the authors introduce list replicability and certificate replica-
bility. The work of Ghazi et al. (2021) studied list-global stability and pseudo-global stability. The
works of Esfandiari et al. (2023); Karbasi et al. (2024); Eaton et al. (2023) studied replicability in
the context of reinforcement learning and Bandits.

The work that is closely related to our work is the work of Esfandiari et al. (2023) in the con-
text of MAB. Their definition of replicability for MAB is inspired by the notion of ρ-replicability
of Impagliazzo et al. (2022). Informally, their definition requires that an algorithm for MAB is ρ-
replicable if multiple runs of an algorithm, where all the runs share the internal random seed, will
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result in the same trace, with probability greater than 1 − ρ. Their goal was to design ρ-replicable
algorithms for MAB with (near) optimal regret. Our definition of replicability is inspired by the
list replicability notion of Dixon et al. (2023). In our work, the goal is to design list-replicable
algorithms with small list size with (near) optimal regret. In this context, the notions of ρ and list
replicability are different as they do not imply each other. Thus our results are significantly different
from that of Esfandiari et al. (2023). Since their algorithm’s replicability depends on the random
seeds/certificates, which could be exponentially many, their algorithm can have bad (exponential)
list replicability when applied in our setting. Hence, different techniques are required to bound the
list size.

5 MULTI-ARM BANDITS: UPPER BOUND

In this section, we introduce several list-replicable algorithms for the finite-arm setting. We first
present an algorithm with no T dependence yet with less ideal dependence on k. We will then
attempt to improve the dependence on k by sacrificing the dependence on other parameters.

5.1 A (2k, δ)-LIST REPLICABLE ALGORITHM

This algorithm is a standard phase-elimination type algorithm (yet our analysis for list-replicability
is novel). For completeness, we present the full algorithm in Algorithm 1. The algorithm proceeds
in batches (or rounds) and maintains a set of “good” arms. In each batch, the good arms are played
uniformly in a lexicographic order to refine the estimation of their estimated means. At the com-
pletion of the batch, the arms whose estimated means are deemed non-optimal (even considering
the estimation uncertainty) are removed. The batch length grows geometrically to provide more
accurate estimates of the arms compared to the previous batch. The total number of batches is
bounded by O(log T ). Furthermore, the arms being played at every batch are guaranteed to satisfy
certain optimality guarantees, and therefore, the overall regret per batch can be bounded with high
probability.

Algorithm 1: (2k, δ)-List Replicable for MAB
Input: Horizon T , Actions [k], Failure probability δ
Number of batches: B ← ⌊log25 T ⌋, Initial good arm set: A1 ← [k]
for b=1,. . . ,B do

Denote error parameter: ϵb ←
√

ck
52b

log kB
δ for some constant c > 0,

Set deletion criteria: Db ← 3ϵb

For each arm i ∈ Ab, play i for
⌈

52b

|Ab|

⌉
times, and obtain an empirical mean µ̂i,(b) (halt the

algorithm if T arms have been played)
For all i ∈ Ab: let ∆̂i,(b) ← maxa∈Ab

µ̂a,(b) − µ̂i,(b)

Eliminate bad arms: Ab+1 ← {i ∈ Ab : ∆̂i,(b) ≤ Db}.
end

5.1.1 ANALYSIS

Our analysis for replicability relies on the novel observation that the total number of traces is deter-
mined by the number of possible batches for a sub-optimal arm to be eliminated. If each sub-optimal
is eliminated in at most 2 different batches with high probability, then the overall list complexity is
at most 2k. In particular, a sub-optimal arm is always eliminated in one of two consecutive batches,
with high probability. More formally, the guarantee of the algorithm is presented as follows.
Theorem 5.1. For every δ ∈ (0, 1], Algorithm 1 is (2k, δ)-list replicable, and for every input bandit

instance satisfying Assumption 2.1, the algorithm enjoys a regret bound of O
(√

kT log k log T
δ

)
with probability at least 1− δ.

We provide the proof of the theorem, which is built on a sequence of lemmas and observations.
Before we make our analysis formal, we recall our definition of the parameters. Note that B =
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⌊log25 T ⌋ is the number of batches. For b ∈ [B], note that Nb =
⌈
52b

|A|

⌉
is the number of pulls of each

arm in the batch. Then each batch has a length of Tb = |Ab| ·Nb ≥ 52b. For ϵb =
√

ck
52b

log kB
δ , and

µ̂i,(b) be the empirical mean of the arm i, we denote the following event Eb : {(∀i ∈ Ab). µi− ϵb ≤
µ̂i,(b) ≤ µi + ϵb}. Define the “good” event E = ∩b∈[B]Eb. Then, by Hoeffding bound and a
union bound, we have that Pr[E] ≥ 1 − δ. Conditioned on E, we immediately have, ∀b ∈ [B],
µ∗ − ϵb ≤ maxa∈Ab

µ̂a,(b) ≤ µ∗ + ϵb and ∆i − 2ϵb ≤ ∆̂i,(b) ≤ ∆i + 2ϵb.

We now define a partition {I1, . . . , IB+1} on [0, 1]. Let ϵ0 = 1 and ϵB+1 = 0. For each m ∈ [B]
define Im = (ϵm, ϵm−1] and IB+1 = [ϵB+1, ϵB ]. Note for each arm i ∈ [k], there exists a unique
m ∈ [B + 1] such that ∆i ∈ Im. We use mi to denote this unique partition number.

For i ∈ [k], let Xi be the random variable that denotes which batch arm i is eliminated; we claim
that conditioned on E, Xi can take at most one of two values, namely mi or mi + 1. This follows
because of the geometric nature of ϵb. The proof of the following can be found at the Appendix A.1.
Lemma 5.2. For all i ∈ [k], Pr(mi ≤ Xi ≤ mi + 1|E) = 1.

To conclude that the algorithm is (2k, δ)-list replicable, consider the vectors of deletion sequences
(X1, . . . , Xk), with high probability see exactly these 2k such vectors, each vector corresponds to a
single unique trace. The proof of the following can be found in Appendix A.1. Thus concludes the
proof of Theorem 5.1.

Lemma 5.3. On E, the regret of Algorithm 1 satisfies RT ≤ O

(√
kT log k log T

δ

)
.

5.2 A (O(k/δ), δ)-LIST REPLICABLE ALGORITHM

In this section, we present a novel modification to Algorithm 1 to further boost the list replicablility.
For the above (2k, δ)-list replicablility, we obtained 2ϵb-estimates of ∆i and eliminated those that
were 3ϵb away. The algorithm guarantees w.h.p. that each arm will be deleted randomly in one of
two rounds. We shall now show that if we perturb the deletion criteria by a random shift picked
at the start of the algorithm (while simultaneously getting better approximations for ∆i by drawing
more samples in each batch), then the arm will be deleted in exactly 1 round. Crucially, we show
that if we pick at most C =

⌈
12k
δ

⌉
such perturbations, it results in at most C many traces. The

algorithm is formally presented in Algorithm 2.

Algorithm 2: (12k/δ, δ)-List Replicable for MAB
Input: Horizon T , Actions [k], Failure probability δ
Number of shifts: C ←

⌈
12k
δ

⌉
, Number of batches: B ←

⌊
log25

T
C2

⌋
, Initial good arm set:

A1 ← [k], Random shift: r ∼ Unif([C])
for b=1,. . . ,B do

Denote error parameters: ϵb ←
√

ck
52bC2 log

2kB
δ , τb ← 4Cϵb

3(
√
2−1)

Set deletion criteria: Db ← Db,r = 3τb + (r − 1) · 3(τb−1−τb)
C

For each arm i ∈ Ab, play i for
⌈
52bC2

|Ab|

⌉
times, and obtain an empirical mean µ̂i,(b) (halt

the algorithm if T arms have been played)
For all i ∈ Ab: let ∆̂i,(b) ← maxa∈Ab

µ̂a,(b) − µ̂i,(b)

Eliminate bad arms: Ab+1 ← {i ∈ Ab : ∆̂i,(b) ≤ Db}.
end

5.2.1 ANALYSIS

Similar to the analysis of Algorithm 1, our new algorithm shares a similar structure of bounding the
regret: the estimates of arms get increasingly improved, and only arms with better error guarantees
will be played per batch. The challenging part is to show that the algorithm can only produce a small
number of traces. The following theorem presents the formal guarantee.
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3τb 3τb−1

Db,1 Db,2 . . . . . . Db,C−1 Db,C Db−1,1

∆i − 2ϵb ∆i + 2ϵb

Figure 1: The deletion criteria Db is randomly chosen from Db,1, . . . ,Db,C

Theorem 5.4. For every δ ∈ (0, 1], Algorithm 2 is
(
12k
δ , δ

)
-list replicable, and for every input bandit

instance satisfying Assumption 2.1, the algorithm enjoys a regret bound of O
(

k
δ ·
√
kT log k log T

δ

)
with probability at least 1− δ.

We now present a proof of the theorem. Recall that C = ⌈12k/δ⌉ the number of shifts, B =⌊
log25

T
C2

⌋
. Let Tb = 52bC2 and Nb =

⌈
Tb

k

⌉
, we draw Tb samples each round, each arm gets ≥ Nb

samples. Let ϵb =
√

ck
52bC2 log

2kB
δ (for some c > 0) and τb = 4Cϵb

3(
√
2−1)

and thus the estimate at
each round is ϵb-accurate with probability at least 1 − δ. For b ∈ [B], and for r ∈ [C], consider
the deletion criterias in the algorithm: Db,r = 3τb + (r − 1) · 3(τb−1−τb)

C . For a randomly picked
r ∈ [C], the deletion criteria at round b, denoted by the random variable Db is uniformly picked
from Db,1, . . . ,Db,C . Note that the same r is shared across all rounds.

Unlike in Algorithm 1, the decision boundary, Db ∝ (Cϵb) is much larger than the estimation error
ϵb. Hence, suppose an arm i has a gap ∆i ∈ [Db,Db−1] and is more than O(ϵb) from the boundary
of the interval, the algorithm will eliminate it with high probability in batch b. Only the “bad” arms
whose gaps are within O(ϵb) to the boundary has the possibilities to be not eliminated in batch b.
We will show that for the C we choose, with certain probability no bad arms exists and thus there is
unique trace from the algorithm. Below, we make this intuition more formal.
Observation 5.5. For all b ∈ [B] and r ∈ [C], 3τb ≤ Db,r < 3τb−1. In particular, this always
holds for the random variable Db, 3τb ≤ Db < 3τb−1.

Analogous to the analysis of Algorithm 1, for b ∈ [B], we define the event as Eb : (∀i ∈ Ab). µi −
ϵb ≤ µ̂i,(b) ≤ µi + ϵb, and the “good” event E = ∩b∈[B]Eb. Via Hoeffding and a union bound, we
have for all b ∈ [B].Pr(Eb) ≥ 1 − δ

2B and Pr(E) ≥ 1 − δ
2 . Define the partition {I1, . . . , IB+1}

on [0, 1]. Let τ0 = 1 and τB+1 = 0. For each m ∈ [B] define Im = (τm, τm−1] and IB+1 =
[τB+1, τB ]. For each arm i ∈ [k], there exists a unique m ∈ [B + 1] such that ∆i ∈ Im. We use mi

to denote this unique partition number.

We now claim that each arm i will be eliminated in one of three batches, namely mi,mi+1,mi+2,
instead of the two in the case of the previous algorithm. Intuitively, an arm that was supposed to be
deleted in the second round might be delayed to the third round because of the perturbation in the
deletion criteria. The full proof can be found in Appendix A.2.
Lemma 5.6. For all i ∈ [k], Pr(mi ≤ Xi ≤ mi + 2|E) = 1.

Referring to Figure 1, observe that if r = C − 1 were picked, it would be a “bad” because even
conditioned on E, sometimes the estimate of ∆i lies on the left of the deletion criteria, Db and other
times ∆i lies on the right of the Db, i.e., the round the arm is deleted is inconsistent even when
estimates are good. The other rs are “good” because the arm consistently either gets eliminated this
round b or its deletion gets postponed to a future round.
Definition 5.7. Let i ∈ [k], r ∈ [C], and b ∈ [B]. We say,

1. r is b-bad for i if Db,r ∈ [∆i − 2ϵb,∆i + 2ϵb].

2. r is bad for i if it is b-bad for i for some b = mi,mi + 1,mi + 2.

3. r is bad if it is bad for i for some i ∈ [k]. Otherwise, r is said to be good.

Db,rs were carefully chosen so that every batch b ∈ [B] the length of the approximation interval
of ∆i at round b is exactly equal to the distance between consecutive shifts of the same round
Db,r and Db,r+1. As a consequence, there can only be at most two Db,rs contained in the interval

6
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[∆i−2ϵb,∆i+2ϵb]. With some rudimentary counting, the following lemma holds whose full proof
can be found in Appendix A.2.

Lemma 5.8. There are at most 6k bad rs.

When a good r is chosen, we see exactly one trace (conditioned on E), because the deletion criteria
is always outside the estimation interval for all arms. Thus if we uniformly at random pick an
r ∼ Unif[C], then with probability at most 6k

C = δ
2 , r is bad. Therefore, the number of traces is

at most C = 12k
δ when both these events occur. The probability that both estimates are good and

r is good are independent and is bounded by: Pr(E ∩ r is good) ≥
(
1− δ

2

)2 ≥ 1 − δ. The proof
of the following lemma is similar to the regret analysis of the previous section and can be found in
Appendix A.2. Thus concludes the proof of Theorem 5.4.

Lemma 5.9. On E and the event that r is good, the regret of Algorithm 2 satisfies, RT ≤

O

(
k
δ

√
kT log k log T

δ

)
.

5.3 A (kO(1), δ)-LIST REPLICABLE ALGORITHM WITH k3/2T 1/2+O(1)-REGRET

In this section, we refine the tradeoff between list-replicability and the regret bound. We rely on the
following critical routine proposed in Dixon et al. (2023).

Theorem 5.10 (Dixon et al. (2023), Replicable Mean Estimation). Let ϵ, δ ∈ (0, 1] and k ∈ N. For
any random vector V ∈ Rk, suppose there exists an algorithm takes samples from V and produces
an estimator V̂ such, that ∥E[V ]− V̂ ∥∞ ≤ ϵ

2k with probability at least 1− δ. Then there exists an
algorithm, ReplicableMeans, which takes V̂ as an input and output a ((k+1), δ)-list replicable
estimator V , which satisfies ∥E[V ]− V ∥∞ ≤ ϵ, with probability at least 1− δ.

We shall argue about replicability based on the subset of arms that are eliminated. Let B > 1 be
an integer, denoting the number of batches, and δ ∈ (0, 1]. Let ν ≈ 1

2B+1−2
with α = 1

2 + ν.
We shall demonstrate how to create a

(
(k + 1)B−1, δ

)
-list replicable algorithm with Õ(kT ν

√
kT )-

regret. The algorithm is a constant batched algorithm where B is the number of batches. In each
batch, bad arms are deleted in a replicable manner with the help of Theorem 5.10; thus, in each
batch, only (k+1) possible subset of arms are deleted (instead of the naı̈ve 2k). Via rule of product,
over B − 1 batches (k + 1)B−1 traces are observed. Note that the eliminations in batch B does
not affect the replicability. Therefore the replicability is (k + 1)B−1. The algorithm is formally
presented in Algorithm 3.

Algorithm 3: ((k + 1)B−1, δ)-List Replicable for MAB
Input: Horizon T , Actions [k], Number of Batches B > 1, Failure probability δ
Regret paramter: ν ← 1

2B+1−2
, α← 1

2 + ν, Initial good arm set: A1 ← [k]

for b=1,. . . ,B do
For each arm i ∈ Ab, play i for Nb =

⌈
Tα(2− 1

2b−1 )/|Ab|
⌉

times and obtain an empirical
mean µ̂i,(b) (the algorithm halts if it has played T arms)

Use Theorem 5.10:
〈
µ̂i,(b)

〉
i∈Ab

← ReplicableMeans
(〈

µ̂i,(b)

〉
i∈Ab

)
For all i ∈ Ab: let ∆̂i,(b) ← maxa∈Ab

µ̂a,(b) − µ̂i,(b)

Let Tb = Nb|Ab| be the total steps of batch b

Denote error parameters: ϵb ←
√

ck3

Tb
log kB

δ

Ab+1 ← {i ∈ Ab : ∆̂i,(b) ≤ 2ϵb}.
end

7
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5.3.1 ANALYSIS

Theorem 5.11. For every δ ∈ (0, 1], and integer B > 1, Algorithm 3 is
(
(k + 1)B−1, δ

)
-list

replicable, and for every input bandit instance satisfying Assumption 2.1, the algorithm enjoys a

regret bound of O
(
kT ν

√
kT log kB

δ

)
with probability at least 1− δ, where ν = 1

2B+1−2
.

Remark 5.12. We note that when B = 2, the algorithm is (k + 1, δ)-list replicable while en-
joys a regret bound of Õ(k3/2T 2/3). For B = log log T , the algorithms enjoys a regret bound of
Õ(k3/2

√
T ), while with klog log T list-complexity Cesa-Bianchi et al. (2013).

We present the proof of Theorem 5.11. For b ∈ [B], let Tb = Θ(Tα(2− 1

2b−1 )) be the batch
length. Note that if ν = 1

2B+1−2
then TB = T . Therefore ν ≈ 1

2B+1−2
is sufficient to guar-

antee
∑

b∈[B] Tb ≈ T . Let ϵb =
√

ck3

Tb
log kB

δ for some c. Therefore, for each b ∈ [B], with
probability at least 1 − δ/B, for each i ∈ Ab, |µ̂i,(b) − µi| ≤ ϵb

2k . Therefore, by Theorem 5.10,
RelicableMeans outputs a (k + 1, δ/B)-list means with error at most ϵb to each arm.

We now argue Algorithm 3 is ((k+1)B−1, δ)-list replicable. Due to the list replicability of the mean
estimators, we see at most (k + 1) possible subset deletions at each b = 1, . . . , B − 1 with high
probability. Therefore, we see at most (k+1)B−1 traces with probability ≥ 1− δ. The proof of the
following lemma similar to the previous regret analysis, and the proof can be found in Appendix A.3.
Thus concludes the proof of Theorem 5.11.
Lemma 5.13. The regret of Algorithm 3 with probability at least 1 − δ is bounded by RT ≤

O

(
kT ν

√
kT log kB

δ

)
.

6 MULTI-ARM BANDITS: LOWER BOUND

In this section, we prove that any algorithm for k-MAB that has a regret o(T ) with high probability
can not be (k − 1) list replicable.
Theorem 6.1. There is no (k − 1, δ)-list replicable algorithm for k-MAB that has o(T ) regret with
probability 1− δ, for δ ≤ 1

k+1 .

The proof of this lower bound theorem makes use of a cubical version of Sperner/KKM lemma De
Loera et al. (2002). Informally, Sperner/KKM lemma says the following: if we “properly color” a
d dimensional cube with d+ 1 colors, then there is a point p in the cube so that any arbitrary small
neighborhood of p contains d+ 1 points with different colors.

We prove Theorem 6.1 in two steps. Step (1): we establish that any (k− 1)-list replicable algorithm
with o(T ) regret yields a (k−1) list replicable algorithm for a problem known as (k, ϵ, δ)-BESTARM.
Step (2): we establish that (k, ϵ, δ)-BESTARM does not admit (k − 1)-list replicable algorithm.

We provide a proof sketch after stating relevant definitions and necessary results. The detailed proofs
are given in Appendix A.4.1. We say an arm a is an ϵ-best arm if µ∗ − µa < ϵ.
Definition 6.2 ((k, ϵ, δ)-BESTARM). Let k ∈ N and ϵ, δ ∈ (0, 1). The (k, ϵ, δ)-BESTARM is follow-
ing problem: given k arms with unknown means µ1, . . . , µk. Output an ϵ-best arm. with probability
≥ 1− δ. The algorithm can sample from the distribution of the arms.

Definition 6.3 (List replicable algorithms). An algorithm A for (k, ϵ, δ)-BESTARM is ℓ-list repli-
cable if there is a list L ⊆ [k] of size ℓ so that (1) for every i ∈ L, µ∗ − µi < ϵ (2)
Pr[A outputs a arm from L] ≥ 1− δ.

Lemma 6.4. If there is an (ℓ, δ)-list replicable algorithm for k-MAB that has o(T ) regret with
probability ≥ 1 − δ then there is a ℓ-list replicable algorithm for (k, ϵ, 2δ)-BESTARM for any
constant ϵ and δ.

The above Lemma formalizes Step (1). The proof of the lemma is based on the observation that
any o(T )-regret algorithm for k-MAB should not play a bad arm too frequently. Thus, we could
use k-MAB algorithm with o(T ) regret to tell us an approximate best arm by simply looking at the

8
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most frequently played arm. Therefore, to prove Theorem 6.1 it suffices to show that there is no
(k − 1, 1

k+1 )-list replicable algorithm for (k, ϵ, δ)-BESTARM (Step (2)).

Following is a sketch of the proof. Suppose there is a (k − 1, δ)-list replicable algorithm A for
(k, ϵ, δ)-BESTARM. Let C be a (k−1)-dimensional cuboid. For each point p⃗ = (α1, . . . , αk−1) ∈ C,
we associate k arms with means (α1, . . . , αk−1,

1
2 ). Each point p⃗ ∈ C is assigned a color from [k]

as follows: Consider the behavior of the algorithm A on the k arms associated with the point p⃗. If
arm i ∈ [k] is the most likely output of A, then color the point p⃗ with color i.

It can be shown that the above coloring is a Sperner/KKM coloring of C. Thus by Sperner/KKM
lemma, there exists a point p⃗ ∈ C, such that for every ν > 0, the ν-neighborhood of p (points that
are ν close in ℓ∞-norm sense) contains k points p⃗1, . . . , p⃗k with distinct colors. Without loss of
generality, let the most likely output of A on the arms associated with the point p⃗i be i. The crucial
observation is that since A is (k − 1, δ)-list replicable, the probability of the most likely output is
at least 1−δ

k−1 . On the other hand, since the points p⃗1, . . . , p⃗k are arbitrarily close, by data processing
inequality, it can be argued that the behavior of the algorithmAmust be very similar on each of these
inputs. This would imply that the algorithm A on instance associated with p⃗1 must output each arm
in [k] with probability at least 1−δ

k−1 . This leads to contradictions as the sum of these probabilities is
more than 1, for the choice of δ.

Remark. Consider Algorithm 3 with B = 2. With a slight modification (play the best estimate
arm in the second batch), this is a (k, 0)-list replicable algorithm with regret Õ(T 2/3). Thus, by
Theorem 6.1, in the sub-linear regret regime, the list size of k is optimal. We also point out that
δ ≤ 1

k+1 is necessary due to the following: Consider the (k, 0)-list replicable algorithm as discussed.
Since there are only k traces, there is a trace with probability ≤ 1

k . The remaining k− 1 traces have
probability at least (1− 1

k ). Thus this is a (k − 1, 1
k ) list-replicable algorithm.

7 LINEAR BANDITS

In this section, we provide the algorithm for list-replicable linear bandit. In the linear bandit setting,
we are given a set of actionsA ⊂ Rd for some dimension d. Similar to the MAB setting, an agent is
allowed to take one action at from A at each time t and receive a reward rt. The assumption is that
rt satisfies a linear structure.

7.1 ALGORITHM

The algorithm takes a phase-elimination batched structure, in each batch b, the algorithm maintains
a set of surviving actions Ab such that for all a ∈ Ab, µa∗ ≤ µa + ϵb−1 for some ϵb−1 depending
on the previous batch. Given a target regret bound RT , we choose the current batch size, Tb, so that
ϵb−1Tb ≲ RT and

∑B
b=1 Tb ≲ T .

Similar to the MAB analysis, B is either constant or log-logarithmic in T . The critical component
to maintain the regret bound is that we need to eliminate the arms with errors smaller than the
previous batch. We first choose a small set of arms from the survival set Ab. These arms are
chosen such that they can be “good” representatives (in terms of linear regression) of the survival
set. More specifically, we choose the G-optimal design (specified shortly), which contains 2d arms.
Our algorithm plays each arm a specific number of times to obtain a sufficient number of samples
about its mean. With these samples, we call the ReplicableMeans (Theorem 5.10) estimator
to produce a (2d + 1)-list-replicable for their means. We then solve linear regression for these
estimated means to obtain θ∗ for this batch and eliminate the arms with sub-optimality below the
accuracy level. We will show that the algorithm halts in at most B batches and achieves the desired
regret bound. The list-complexity is therefore (2d+ 1)B−1.

7.2 ANALYSIS

Definition 7.1. For any compact set A ⊂ Rd, let π : A → [0, 1] be a distribution on A. Denote
V (π) =

∑
a π(a)aa

⊤ and g(π) = supa∈A limλ→0 ∥a∥(λI+V (π))−1 . π is a c-G-optimal design for
A, if g(π) ≤ cd.

9
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Algorithm 4: ((2d+ 1)B−1, δ)-List Replicable Linear Bandit Algorithm
Input: Horizon T , Number of batches B > 1, Failure probability δ > 0
Initialize: A1 = A, ϵ0 = 1, ν ← 1

2B+1−2
, α← 1

2 + ν

for b=1,. . . ,B do
Find a

√
2-G-optimal design πb for Ab using Corollary 7.3 with d′ = |supp(πb)| ≤ 2d.

For a ∈ supp(πb), play a for Nb ← ⌈Tα(2− 1

2b−1 )/d′⌉ times and obtain empirical mean
µ′
(b) = (µ′

a,(b))a∈supp(πb) (halt the algorithm if T arms are played)
Let µ̄(b) ← ReplicableMeans(µ′

(b))

Let Φb = [a]⊤a∈supp(πb)
be the matrix of stacking all actions in supp(πb)

Solve for estimated mean by: θ̂ ←
(
Φ⊤

b Φb

)†
Φ⊤

b µ̄(b)

Denote error parameter: ϵb ←
√

cd4 log d′B
δ

Tb
, where Tb = |supp(πb)|Nb

Eliminate actions a ∈ Ab with sub-optimality below the accuracy level:
Ab+1 ← {a ∈ Ab : maxa′∈Ab

⟨a′, θ̂⟩ − ⟨a, θ̂⟩ ≤ ϵb/2}
end

Theorem 7.2 (G-optimal design Kiefer & Wolfowitz (1960)). For any compact subset A ⊂ Rd,
there exists a 1-G-optimal design π, G ⊂ A such that |supp(π)| = d.

Corollary 7.3. For any compact subset A ⊂ Rd, there exists a
√
2-G-optimal design π, G ⊂ A,

such that |supp(π)| ≤ 2d and π is a uniform distribution over supp(π).

Theorem 7.4 (Guarantee of Algorithm 4). For every δ ∈ (0, 1], and integer B > 1, Algorithm 4
is
(
(2d+ 1)B−1, δ

)
-list replicable, and for every input bandit instance satisfying Assumption 2.4,

enjoys a regret bound of O
(
d2T ν

√
T log dB

δ

)
with probability at least 1− δ, where ν = 1

2B+1−2
.

8 CONCLUSION

This work introduces and initiates the study of list replicability for the Multi-Armed Bandits prob-
lem. We designed various list-replicable algorithms for k-MAB with near-optimal regret in T and
list-complexity linear/polynomial in k. To complement these results, we show that we can not hope
to design (k − 1)-list replicable algorithms with sublinear regret. An open question is to close the
gap between upper and lower bounds on the list complexity. For example, in Theorem 5.4, if we
chose δ = 1

k , then the list size is O(k2). Can we prove that list complexity is Ω(k2)? A general
question is to investigate trade-offs between list complexity and regret.

Remark about UCB. The list complexity of UCB-based algorithms is exponentially dependent
on T . Consider the case when k = 2 and both arms have identical distributions. Let UCB1 and
UCB2 represent the UCB estimates of arm 1 and arm 2, respectively. Let us assume that at some
time t, UCB1 < UCB2. UCB algorithm dictates that we shall play arm 2 till the estimate of arm
1 is larger. However, because the samples are random, the time at which we start playing arm 1
is probabilistic. For each time step where a switch is possible results in a new trace. This trait
makes the list complexity of UCB-based algorithms exponentially dependent on T . Note that the
list complexities of our algorithms are independent of T . We leave it as an open question about what
changes need to be made to UCB to guarantee list replicability.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 PROOFS OF SECTION 5.1

We first note the following observation about Algorithm 1
Observation A.1. ϵb−1 = 5ϵb and ϵB+1 < ϵB < . . . < ϵb+1 < ϵb < ϵb−1 . . . < ϵ1 < ϵ0

Proof of Lemma 5.2. We first prove for all i ∈ [k], Pr(Xi ≥ mi|E) = 1

Let i ∈ [k], for each b ≤ mi − 1, ∆̂i,(b) ≤ ∆i + 2ϵb ≤ ϵmi−1 + 2ϵb ≤ ϵb + 2ϵb = Db. This is to
say that for rounds b such that b ≤ mi − 1, the highest estimate of ∆i is no more than the deletion
criteria Db. Thus, i will not be deleted.

We now prove for all i ∈ [k], Pr(Xi ≤ mi + 1|E) = 1

Let i ∈ [k] and b = mi+1, we have ∆̂i,(b) ≥ ∆i−2ϵb > ϵmi
−2ϵb = ϵb−1−2ϵb = 3ϵb = Db. This

is to say that the lowest estimate of ∆i at round mi + 1, is strictly more than the deletion criteria
Db, therefore i will be eliminated at the latest by round mi + 1.

Proof of Lemma 5.3. Observe that the regret in each round b ∈ {2, . . . , B} is at most TbDb−1 and
for round 1 the expected regret is at most T1 · 1

RT ≤ T1 · 1 +
B∑

b=2

TbDb−1 = 25 + 3
B∑

b=2

52b ·
√

ck

52(b−1)
log

1

θ

= 25 + 3

√
25ck log

1

θ

B∑
b=2

5b ≤ 25 + 3

√
25ck log

1

θ
· 25B

2

= O

(√
kT log

(
k log T

δ

))

A.2 PROOFS OF SECTION 5.2

Proof of Lemma 5.6. Following a similar analysis for the proof of Lemma 5.2

We first prove, for all i ∈ [k], Pr(Xi ≥ mi|E) = 1.

Let i ∈ [k], for each b ≤ mi − 1

∆̂i,(b) ≤ ∆i + 2ϵb ≤ τmi−1 + 2ϵb ≤ τb +
3(
√
2− 1)

2C
τb ≤ 3τb ≤ Db

12

https://reproml.org/
https://reproml.org/
https://reproml.org/
https://api.semanticscholar.org/CorpusID:271329265
https://api.semanticscholar.org/CorpusID:271329265


Published as a conference paper at ICLR 2025

We now prove, For all i ∈ [k], Pr(Xi ≤ mi + 2|E) = 1.

Note that ϵb < τb. Let i ∈ [k], for b = mi + 2,

∆̂i,(b) ≥ ∆i − 2ϵb > τmi
− 2τb = 5τb−1 − 2 · τb−1

5
> 3τb−1 > Db

Proof of Lemma 5.9. Ignoring constants.

RT ≤ T1 · 1 +
B∑

b=2

TbDb−1 ≤
B∑

b=2

52bC2 ·
√

k

52b
log

1

θ
= C2

√
k log

1

θ
· 25B

2 =
k

δ

√
kT log

k log T

δ
.

A.3 PROOFS OF SECTION 5.3

Proof of Lemma 5.8. We first prove

Claim A.2. Let i ∈ [k] and b = mi,mi + 1,mi + 2, there are at most two b-bad rs for i.

Proof. Let b = mi,mi + 1,mi + 2. Firstly, observe that the decision boundaries
Db,1,Db,2, . . . ,Db,C are spaced by 4ϵb. The estimate interval [∆i − 2ϵb,∆i + 2ϵb] has length 4ϵb
and can contain at most two Db,r,Db,r+1. See Figure 1.

Let i ∈ [k]. Fix b = mi or mi + 1 or mi + 2, the number of b-bad r’s for i at most 2 via Claim A.2.
In the worst case, there are 2 bad rs for each of mi, mi+1, and mi+2, and all of them are different.
Therefore, there can be at most 3× 2 = 6 for i. Therefore, there can be at most k × 6 bad rs.

Proof of Lemma 5.13. Let θ = δ
B , we have, ignoring constants

RT ≤ T1 · 1 +
B∑

b=2

Tb · ϵb = Tα +

B∑
b=2

Tb ·

√
k3

Tb−1
log

k

θ
= Tα +

√
k3 log

k

θ

B∑
b=2

Tb√
Tb−1

= Tα +

√
k3 log

k

θ

B∑
b=2

Tα = Tα +BTα

√
k3 log

kB

δ

= O

(
kT ν

√
kT log

kB

δ

)

A.4 PROOFS OF SECTION 6

Proof of Lemma 6.4. LetM be a (ℓ, δ)-list replicable algorithm for k-MAB that has a regret o(T )
with probability ≥ 1 − δ. We design a ℓ-list replicable algorithm A for (k, ϵ, 2δ)-BESTARM us-
ing M. A works as follows: Simulate M for T steps and let Ni be the number of times arm i
was played. Output the arm that is most frequently played: That is, output argmaxi Ni, breaking
ties by outputting the smallest numbered arm. The list replicability of A follows due to the ℓ-list
replicabilityM. It suffices to show that A outputs an arm ϵ-close to the best arm with probability
≥ 1− δ.

Let Ω be the sample space of the algorithmM. Each sample point ω ∈ Ω is a sequence of alternating
actions and rewards. We say that a sample point ω is good if the regret ofM along ω is o(T ) and
the trace associated with ω is in the list. By union, it follows that Pr[ω is good] ≥ 1− 2δ.

Consider a good ω ∈ Ω Let a = A(ω) be the output in this sample point. We now claim the µa ≥
µ∗ − ϵ. Assume for contradiction’s sake, that the output µa < µ∗ − ϵ. We know that Na(ω) ≥ T

k

because A outputs most frequently played arm. Hence the regret along ω is ≥ Na(ω)ϵ ≥ Tϵ
k . Since

ϵ and k are constants, this is a contradiction. Thus Pr[A outputs ϵ-best arm] ≥ 1− δ.
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A.4.1 LOWERBOUND ON THE LIST COMPLEXITY OF (k, ϵ, δ)-BESTARM

In this section, we will prove that there is no (k − 1, 1
k+1 )-list replicable algorithm for (k, ϵ, δ)-

BESTARM. We first introduce the necessary definitions and notation and then state Sperner/KKM
Lemma.

Definition A.3 (Sperner/KKM Coloring). Let d ∈ N and let C be a d-dimensional cuboid and let V
be the vertex set (corners) of C. For a face F of C (of any dimension) let VF be the set of vertices
of F . A coloring function color : C → [d + 1] of C is called a Sperner/KKM coloring if (1)
{color(v) | v ∈ V} = [d + 1] (intuitively, all colors are used on the corners) (2) for any face F of
C, for any point p ∈ F , it holds that color(p) = color(v) for some v ∈ VF (informally, the color of
p is color of one of the vertices in the face F ).

Theorem A.4 (Cubical Sperner/KKM lemma De Loera et al. (2002)). Let d ∈ N and let C be a
d-dimensional cuboid. Let color : C → [d + 1] be a Sperner/KKM coloring of C. Then there is a
point p such that for every ν > 0, ν-neighbourhood of p, B∞ν (p) that contains d + 1 points with
distinct colors.

Theorem A.5. Let ϵ ≤ 1
2k and δ ≤ 1

k+1 . There is no (k − 1)-list replicable algorithm for (k, ϵ, δ)-
BESTARM.

Proof of Theorem A.5. LetA be a (k−1)-list replicable algorithm for the (k, ϵ, δ)-BESTARM where
the total number of times arms are played is n.

We will use Sperner/KKM Lemma on the (k − 1)-dimensional cuboid to arrive at a contradiction.
The cuboid C is defined as [0, 1] × [0, 1 − ϵ] × [0, 1 − 2ϵ] × · · · × [0, (1− (k − 2)ϵ)]. For each
point p = ⟨α1, · · ·αk−1⟩ ∈ C, associate an instance I(p) = ⟨α1, α2, · · · , αk−1,

1
2 ⟩ of the (k, ϵ, δ)-

BESTARM. We assign a color from [k] to each point of the cuboid C as follows: Color of a point p is
the arm whose output probability is the largest when the algorithm A is run on input I(p) (breaking
the ties arbitrarily). More formally, color(p) = argmaxa∈[k]{Pr[A(I(p)) = a]}. We first claim
that the above coloring is a valid Sperner/KKM coloring.

Coloring of the vertices of C. A vertex (corner) v of C is specified by ⟨α1, α2, . . . , αk−1⟩ where
αi is either 0 or (1 − (i − 1)ϵ). Let i∗ be the first index i where αi is non-zero if such an i exists
otherwise (when all α′

is are 0) i∗ = k. Note that the color(v) = i∗. This is because for any i ̸= i∗,
ai∗ − ai ≥ ϵ and A should output the arm i∗ with probability ≥ 1 − δ. Note that all k colors are
used while coloring the vertices of C. Figure 2 for the case k = 3.

Coloring of any face F . For an ℓ (0 < ℓ < k − 2), consider a (k − 1− ℓ) dimensional face F of
C. Face F is specified specifying ℓ coordinates i1 < i2 < · · · < iℓ and fixing them to be αij , where
αij is either 0 or (1 − (ij − 1)ϵ). We claim that the color of any point on F is one of the colors of
VF .

Case 1. All αis are 0 in F : In this case the color(VF ) = [k] \ {i1, . . . , il}. This is because of the
following. Fix i ∈ [k] \ {i1, · · · , iℓ}. Consider a point p whose ith co-ordinate is (1 − (i − 1)ϵ)
and all other co-ordinates are zero. This point belongs to VF and gets color i. Note that the kth-
coordinate of I(p) is 1/2 for every p. Thus the color of a point p can not belong to {i1, i2, · · · , iℓ}.
By a very similar reasoning, it follows that for any point p on F cannot have color from {i1, . . . , il}
and hence the coloring is proper.

Case 2. At least one αij is non-zero: Let j∗ be the smallest index such that among {1, · · · , ℓ} such
αij∗ ̸= 0. In this case, we claim that the color(VF ) = {1, · · · ij∗}\{i1, · · · , ij∗−1}. Fix a vertex v ∈
V(F ). Color of this vertex cannot be any of i1, · · · , ij∗−1 as all these co-ordinates in I(v) are zero.
Let i > ij∗ , note that αij∗ − αi ≥ ϵ. Thus i can not be the color of v. We can apply a very similar
reasoning to conclude that for any point p on F , its color belongs to {1, · · · ij∗} \ {i1, · · · , ij∗−1}.
To finish the proof, we need the following distance lemma that can be proved by Data Processing
inequality.

Lemma A.6 (Distance Lemma). Let p and q be the two points of the cuboid C such that ∥p−q∥∞ ≤
ν. Then, for any a ∈ [k], |Pr[A(I(p)) = a]− Pr[A(I(q)) = a]| ≤ n · k · ν

14
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Now we are ready to complete the proof. Let ν = 1
k5n . By the Sperner/KKM Lemma, there is ν-

neighborhood in C (in ℓ∞-norm) with points p1, · · · pk such that each point gets a distinct color. Let
ai = argmaxa∈[k]{Pr[A(I(pi)) = a]}. Note that all ai’s are distinct as colors of pi’s are distinct.
By definition of list replicability Pr[A(I(pi) = ai] ≥ 1−δ

k−1 ≥
k

(k−1)(k+1) = k
k2−1 , 1 ≤ i ≤ k.

We have the following Pr[A(I(p1) = a1] ≥ k
k2−1 and for 2 ≤ i ≤ k, Pr[A(I(p1) = ai] ≥

k
k2−1 − n · k · ν = k

k2−1 −
1
k4 by distance lemma.

Thus, the following leads to a contradiction, Pr[A(I(p1)) ∈ {a1, · · · ak}] ≥ k
k2−1+

k(k−1)
k2−1 −

k−1
k4 >

1.

A.5 PROOFS OF SECTION 7

Proof of Corollary 7.3. Let πinit be a 1-G-optimal design whose existence is guaranteed by Theo-
rem 7.2. For each a ∈ supp(πinit), we add ⌈dπinit(a)⌉ copies of a into the support of π. Note that
this implies supp(π) is a multiset. We define π to be the uniform distribution over all actions on its
support.

Clearly,

|supp(π)| ≤
∑

a∈supp(πinit)

⌈dπinit(a)⌉ ≤ |supp(πinit)|+ d
∑

a∈supp(πinit)

πinit(a) = 2d.

Moreover,

V (π) =
1

|supp(π)|
∑

a∈supp(π)

aa⊤ ⪰ 1

2d

∑
a∈supp(π)

aa⊤ ⪰ 1

2

∑
a′∈supp(πinit)

πinit(a′)aa⊤ =
1

2
V (πinit).

Therefore, π is a
√
2-G-optimal design.

Proof of Theorem 7.4. We first show correctness. For each batch b, let µ = (µa)a∈supp(πb). By
Hoeffding bound and a union bound, for each batch b, with probability at least 1− δ/B,

∀a ∈ supp(πb) : |µ′
a,(b) − µa| ≤ O

(
ϵb√
d3

)
where µ′ is the empirical mean and ϵb is error parameter defined in Algorithm 4. Thus, by The-
orem 5.10, we have that with probability at least 1 − δ/B, the estimated mean µ̄(b) satisfies
(|supp(πb)|+ 1)-list replicablity and

∀a ∈ supp(πb) : |µ̄a,(b) − µa| ≤ O

(
ϵb√
d

)
Let V =

∑
a∈supp(πb)

aa⊤. We have

∀a ∈ Ab : ⟨a, (θ∗ − θ̂)⟩ ≤ ⟨a(V †)1/2, V 1/2(θ − θ̂)⟩

≤
√
a⊤V †a ·

√
(θ∗ − θ̂)⊤V (θ∗ − θ̂)

≤
√
g(πb)/|supp(πb)|

√
(θ∗ − θ̂)⊤Φ⊤Φ(θ∗ − θ̂)

≤ O(ϵb)

where we use
∥Φ(θ∗ − θ̂)∥2 = ∥µ̄a,(b) − µa∥2 ≤ O(ϵb).

Hence, the overall regret of the algorithm is with probability at least 1− δ bounded by,

RT ≤ T1 · 1 +
B∑

b=2

Tb · ϵb = Tα +

B∑
b=2

Tb ·

√
d4

Tb−1
log

dB

δ
= Tα +

√
d4 log

dB

δ

B∑
b=2

Tb√
Tb−1

= Tα +

√
d4 log

dB

δ

B∑
b=2

Tα = Tα +BTα

√
d4 log

dB

δ

= Õ
(
d2T ν

√
T
)
.
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where we ignore constant factors and α = 1
2 + ν. We also note that TB ≤ T and

∑B
i=1 Tb = T

Thus, with probability at least 1− δ, the list complexity is bounded by (2d+ 1)B−1.

(1, 1− ϵ)

(0, 0)

(0, 1− ϵ)

(1, 0)
µ1

µ2

Figure 2: Coloring of 2-dimensional cuboid for k = 3. Colors blue, red, and green are identified
with coloring with arms 1,2, and 3 respectively. Point (x, y) is associated with instance (x, y, 1/2).
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