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A MATHEMATICAL DETAILS

Derivation of Eq. (4). First, according to Eq. (2), z,,—1 can be sampled as:

Zn—1 = V0n_1(20 + Mm-1€) + /1 — Gpn_1€n_1, (12)
= \/@WL—1ZO+\/an—177n—le+ \/1_54n—1€n—17 (13)
—_—

~N(0,(1=an—1)I)
where €, _1 ~ N(0, I). Second, for z,, defined in Eq. and z,_; defined in Eq. , we have:

Zn—1 = knzO + mpz, + ope, (14)
= knzo + mn(vVan(zo + nne) + V1 — anen) + one, (15)
= (kn + MaV @) 20 + Mpv/anine + muV/1 — Qpép + o€, (16)

~N(0,(m3, (1=an)+0o3)T)

where ¢, ~ N(0,I)and e ~ N(0, I). By combining Eq. and Eq. (16), we obtain the following

equations:
vV ap_1=kn+m, v Qn,
VOn—1Mn—1 = Mp/OnMn, (I7)
1—ap_1 =m2(1 —ay,) +o2.
Note that, referring to DDIM (Song et al.,[2021)), we set o,, = 0 for simplicity. By solving Eq. (I7),
we have:

— 1 — Q-1 = )1_077171 Tin Vl_dn/\/dn
kn = vOlp-1— — V &n,y n — — 5 = — — . 18
-t G 1 1—-a, Tin—1 \/l_an—l/\/an—l (18)

1—a,

Therefore, 7,, can be defined as:

\/l_dn

n — A 5 19
U Jan (19)
where we set A = \/713‘22\7 to ensure 7y = 1.
Derivation of Eq. (8). Substituting Eq. (6) into Eq. (7), we have:
. Zn V1—ay, Zn V1—a,
120 = 20]13 = (%= = ~—=—="6) — (== — ~—=—"¢0(zn, c:n))[3, (20)
VvV On VvV On VvV On V On
T—a T—a,
I, - Y e e
1—a,, .
= 1€, — €o(zn,c,n)|[3. (22)

B EXPERIMENTAL DETAILS

Evaluation of third-party models. The quality factor of BPG (Bellard, 2014)) was selected from
{43, 45,46, 48,49,51}. For VVC (Bross et al.,[2021), we used the reference software VTM—23.
with intra configuration. The quality factor was selected from the set {41,43,45,47,49,52}. To
compare ELIC (He et al.,|2022) and HiFiC (Mentzer et al.,2020) at extremely low bitrates, we uti-
lized their PyTorch implementatio and retrained the model to achieve higher compression ratios,
enabling a more direct comparison with our proposed method. For PerCo (Carelil et al., 2024), since
the official source codes and models are not available, we used a reproduced versio as a substitute,
which employs stable diffusion as the latent diffusion model. For MS-ILLM (Muckley et al.,|2023)),
VQIR (Wei et al., [2024), Text+Sketch (Lei et al.,[2023) and DiffEIC (Li et al., [2024b), we used the

https://vegit.hhi. fraunhofer.de/jvet /VVCSoftware_VIM/-/tree/VIM-23.0
*https://github.com/JiangWeibeta/ELIC
‘nttps://github.com/Justin-Tan/high-fidelity-generative-compression
*https://github.com/Nikolail0/PerCo/tree/master
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Figure 9: Quantitative performance on the MS-COCO 30k dataset.

publicly released checkpoints from their GitHub repositories, and used them for evaluation with the
provided code.

Additional implementation details. We use Stable Diffusion 2.1-base as the specific implemen-
tation of stable diffusion. Throughout all our experiments, the weights of stable diffusion remain
frozen. Similar to DiffEIC (Li et al.,[2024b), the control module in our RDEIC has the same encoder
and middle block architecture as stable diffusion and reduces the channel number to 20% of the orig-
inal. The variance sequence {3;}7_; used for adding noise is identical to that in Stable Diffusion.
The number N of denoising steps is set to 300. For the update of codebook, we use the clustering

strategy proposed in CVQ-VAE (Zheng & Vedaldi [2023).

For training, we use the Adam (Kingma & Bal [2014) optimizer with 8; = 0.9 and 3 = 0.999
for a total of 300K iterations. To achieve different compression ratios, we train five models with
A selected from {2, 1, 0.5, 0.25, 0.1}. The batch size is set to 4. As described in Section the
training process is divided into two stages. /) Independent training. During this stage, the initial
learning rate is set to 1 x10~* and images are randomly cropped to 512x512 patches. We first train
the proposed RDEIC with )\, = 2 for 100K iterations. The learning rate is then reduced to 2x10~°
and the model is trained with target A, for another 100K iterations. 2) Fixed-step fine-tuning. In this
stage, the learning rate is set to 2x 10~ and images are randomly cropped to 256 x256 patches. We
fine-tune the model through the entire reconstruction process for 100K iterations. When A, € {2, 1},
the fixed number L is set to 2, otherwise, it is 5. All experiments are conducted on a single NVIDIA
GeForce RTX 4090 GPU.

C FURTHER ABLATION EXPERIMENTS

Robustness and generalization ability. To assess the robustness and generalization ability of
RDEIC, we conducted additional experiments on the larger MS-COCO 30k dataset, which com-
prises 30,000 images spanning a diverse range of categories and content types. This dataset was
constructed by selecting the same images from the COCO2017 training set (Caesar et al.}, [2018)) as
[Careil et al. (2024).

As shown in Fig. [9] RDEIC maintains consistent performance across this expanded dataset, demon-
strating its ability to generalize effectively to unseen data, even in scenarios with more diverse and
challenging content. Visualized examples of reconstructed images are provided in Fig. [T6]to further
illustrate the robustness of our approach.

Role of the diffusion mechanism. To further investigate the role of the diffusion mechanism in
RDEIC, we design two variants for comparison: 1) W/o denoising process: In this variant, the
compression module is trained jointly with the noise estimator, but the denoising process is bypassed
during the inference phase. 2) W/o diffusion mechanism: In this variant, the compression module
is trained independently, completely excluding the influence of the diffusion mechanism.

As shown in Fig. bypassing the denoising process results in significant degradation, particu-
larly in perceptual quality. This demonstrates that the diffusion mechanism plays a crucial role in
enhancing perceptual quality during reconstruction. As shown in Fig. the diffusion mechanism
effectively adds realistic and visually pleasing details.

16



Under review as a conference paper at ICLR 2025

—e— W)/o diffusion mechanism  —=— W/o denoising process =~ —e— RDEIC-2 (Ours) = —s— RDEIC-5 (Ours)

LPIPS | DISTS | PSNR 1 MS-ILLM 1
28 0.94

035 0.92

e
N
o
N
]

0.30 0.90
0.88

e

N

>
N
>

0.86

N
o

0.84

0.82
0.80
0.78

0.02 0.04 0.06 0.08 0.10 0.12 0.02 0.04 0.06 0.08 0.10 0.12 0.02 0.04 0.06 0.08 0.10 0.12 0.02 0.04 0.06 0.08 0.10 0.12
bpp bpp bpp bpp

N
X

N
Iy

e o
[
5 &
o e <
° =
S )

Figure 10: Ablation studies of the diffusion mechanism on CLIC2020 dataset. In the W/o denois-
ing process setting, we train the compression module jointly with the noise estimator but bypass the
denoising process during inference. In the W/o diffusion mechanism setting, we train the compres-
sion module independently, completely excluding the influence of the diffusion mechanism.
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Figure 11: Impact of diffusion mechanism on reconstruction results.

By comparing the performance of W/o diffusion mechanism and W/o denoising process in Fig.
and Fig. [T1] we observe that the compression module trained jointly with the noise estimator
outperforms the one trained independently. This demonstrates that the diffusion mechanism also
contributes to the compression module. Moreover, Fig. [[2]a) visualizes an example of bit allocation.
It is evident that the model trained jointly with the noise estimator allocates bits more efficiently,
assigning fewer bits to flat regions (e.g., the sky in the image). Fig. [I2{b) visualizes the cross-
correlation between each spatial pixel in (y — p)/o and its surrounding positions. Specifically, the
value at position (4, j) represents cross-correlation between spatial locations (x, y) and (x +14,y+j)
along the channel dimension, averaged across all images on Kodak dataset. It is evident that the
model trained jointly with the noise estimator exhibits lower latent correlation, suggesting reduced
redundancy and more compact feature representations. These results indicate that the diffusion
mechanism provides additional guidance for optimizing the compression module during training,
enabling it to learn more efficient and compact feature representations.

D ADDITIONAL EXPERIMENTAL RESULTS

BD-rate (%) on the CLIC2020 dataset. To provide a more intuitive comparison of overall per-
formance on CLIC2020 dataset, we set DiffEIC (L1 et al., [2024b)) as the anchor and compute the

17



Under review as a conference paper at ICLR 2025

Wi/o diffusion W/ diffusion Wi/o diffusion W/ diffusion

00349 00321 00231 00271 00312 00357 | 008% 00321 00269

0.0487 bpp 0.0460 bpp 0.0667 bpp 0.0654 bpp

(a) Bit allocation (b) Cross-correlation

Figure 12: Impact of the diffusion mechanism on the compression module. W/o diffusion denotes
the compression module trained independently, while W/ diffusion denotes the compression module
trained jointly with the noise estimator. All results are obtained from models trained with A, = 0.5.
(a) An example of bit allocation on the Kodak dataset, with the values normalized for consistency.
(b) Latent correlation of (y — u)/o.

Table 3: BD-rate (%) for different methods on the CLIC2020 dataset with DiffEIC as the anchor.
For distortion-oriented methods (i.e., BPG, VVC, and ELIC), we omit their perceptual metrics. The
best and second best results are highlighted in bold and underline.

Methods Perception Distortion Average
DISTS FID KID NIQE LPIPS | PSNR MS-SSIM SSIM &
BPG - - - - - | -66.2 -32.8  -40.3 -
vvC - - - - - | -77.8 -51.3  -58.6 -
ELIC - - - - - | -82.7 -54.6  -66.7 -
HiFiC 201.8 2482 372.6 -28.7 634 | -29.1 2.7 14.7 105.7
VQIR 71.8 1839 156.7 324 51.3 16.4 439 578 76.8
PerCo 66.1 67.6 65.1 52 67.7 339 69.2 777 56.6
MS-ILLM 28,5 409 346 -854 447 | -754 -447  -385 -21.5
RDEIC(Ours) | -17.9 -18.3 -22.1 -837 -408 | -61.3 327 327 | -38.7

BD-rate (Bjontegaard, [2001) for each metric. As shown in Table [3] our method outperforms all
perception-oriented comparison methods, achieving the lowest average BD-rate value among them.

Quantitative comparisons on the Tecnick and Kodak datasets. We present the performance of
the proposed and compared methods on the Tecnick and Kodak datasets in Fig. [I4]and Fig. [T3] re-
spectively. The proposed RDEIC achieves state-of-the-art perceptual performance and significantly
outperforms other diffusion-based methods in terms of distortion metrics. Since the Kodak dataset
is too small to reliably calculate FID and KID scores, we do not report these results for this dataset.

Smoothness-sharpness trade-off. As shown in Fig.[17] Fig. [18] and Fig. [19] we control the balance
between smoothness and sharpness by adjusting the parameter )4, which regulates the amount of
high-frequency details introduced into the reconstructed image.

E LIMITATIONS

Using pre-trained stable diffusion may generate hallucinated lower-level details at extremely low
bitrates. For instance, as shown in Fig. [I3] the generated human faces appear realistic but are
inaccurate, which may lead to a misrepresentation of the person’s identity. Furthermore, although
the proposed RDEIC has shown promising compression results, the potential of incorporating a text-
driven strategy has not yet been explored within our framework. We leave detailed study of this to
future work.
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Figure 13: Faces generated at extremely low bitrates.
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Figure 14: Quantitative comparisons with state-of-the-art methods on the Tecnick dataset.
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Figure 15: Quantitative comparisons with state-of-the-art methods on the Kodak dataset.
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Figure 16: Visualization results of RDEIC on the MS-COCO 30k dataset at different bitrates.
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Figure 17: More results regarding the balance between smoothness and sharpness.
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Figure 18: More results regarding the balance between smoothness and sharpness.
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Figure 19: More results regarding the balance between smoothness and sharpness.
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