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ABSTRACT

One of the central problems of statistical learning theory is quantifying the gen-
eralization ability of learning algorithms within a probabilistic framework. Algo-
rithmic stability is a powerful tool for deriving generalization bounds, however, it
typically builds on a critical assumption that losses are bounded. In this paper, we
relax this condition to unbounded loss functions with subweibull diameter. This
gives new generalization bound for algorithmic stability and also includes existing
results of subgaussian and subexponential diameters as specific cases. Our main
probabilistic result is a general concentration inequality for subweibull random
variables, which may be of independent interest.

1 INTRODUCTION

Algorithmic stability has been a topic of growing interest in learning theory. It is a standard theoretic
tool to prove the generalization bounds based on the sensitivity of the algorithm to changes in the
learning sample, such as leaving one of the data points out or replacing it with a different one.
This approach can be traced back to the foundational works of Vapnik & Chervonenkis (1974),
which analyzed the generalization bound for the algorithm of hard-margin Support Vector Machine.
The ideas of stability were further developed by Rogers & Wagner (1978), Devroye & Wagner
(1979a;b), Lugosi & Pawlak (1994) for the k-Nearest-Neighbor algorithm, k-local algorithms and
potential learning rules, respectively. Interesting insights into stability have also been presented by
many authors, such as (Kearns & Ron, 1997; Hardt et al., 2016; Gonen & Shalev-Shwartz, 2017;
Kuzborskij & Lampert, 2018; Bassily et al., 2020; Liu et al., 2017; Maurer, 2017; Foster et al., 2019;
Yuan & Li, 2023), to mention but a few.

Stability arguments are known for only providing in-expectation error bounds. An extensive analy-
sis of various notions of stability and the corresponding (sometimes) high probability generalization
bounds are provided in the seminal work (Bousquet & Elisseeff, 2002). To give high probability
bounds, McDiarmid’s exponential inequality (McDiarmid, 1998) plays an essential role in the anal-
ysis. To satisfy the bounded difference condition in McDiarmid’s inequality, a popularly used notion
of stability allowing high probability upper bounds called uniform stability is introduced in (Bous-
quet & Elisseeff, 2002). In the context of uniform stability, a series of papers (Feldman & Vondrak,
2018; 2019; Bousquet et al., 2020; Klochkov & Zhivotovskiy, 2021) provide sharper generaliza-
tion bounds with probabilities. High probability bounds are necessary for inferring generalization
when the algorithm is used many times, which is common in practice. Therefore, as compared
to the in-expectation ones, high probability bounds are preferred in the study of the generalization
performance.

However, the uniform stability implies the boundedness of the loss function, which might narrow the
range of application of these results as the generalization analysis of unbounded losses is becoming
increasingly important in many situations (Haddouche et al., 2021), such as regularized regression
(Kontorovich, 2014), signal processing (Bakhshizadeh et al., 2020), neural networks (Vladimirova
et al., 2019), sample bias correction (Dudı́k et al., 2005), domain adaptation (Cortes & Mohri, 2014;
Ben-David et al., 2006; Mansour et al., 2009), boosting (Dasgupta & Long, 2003), and importance-
weighting (Cortes et al., 2019; 2021), etc. For a relaxation, Kutin & Niyogi (2012) introduce a
notion of “almost-everywhere” stability and proved valuable extensions of McDiarmid’s exponential
inequality. It is shown in (Kutin & Niyogi, 2012) that the generalization error can still be bounded
when the stability of the algorithm happens only on a subset of large measure. This influential result
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has been invoked in a number of interesting papers (El-Yaniv & Pechyony, 2006; Shalev-Shwartz
et al., 2010; Hush et al., 2007; Mukherjee et al., 2002; Agarwal & Niyogi, 2009; Rubinstein &
Simma, 2012; Rakhlin et al., 2005). However, as noted by Kontorovich (2014), the approach of
Kutin & Niyogi (2012) entails too restrictive conditions. It is demonstrated in Kontorovich (2014)
that the boundedness of loss functions can be dropped at the expense of a stronger notion of stability
and a bounded subgaussian diameter of the underlying metric probability space. This fantastic
argument is further, recently, improved to subexponential diameter by Maurer & Pontil (2021).

In this work, we move beyond the subgaussian and subexponential diameters and consider the gen-
eralization under a much weaker tail assumption, so-called subweibull distribution (Kuchibhotla &
Chakrabortty, 2022; Vladimirova et al., 2020). The subweibull distribution includes the subgaus-
sian and subexponential distributions as specific cases and is inducing more and more attention in
learning theory due to that it falls under a broad class of heavy-tailed distributions (Zhang & Wei,
2022; Bong & Kuchibhotla, 2023; Li & Liu, 2022; Madden et al., 2020). In this paper, our con-
tributions are two-fold. Firstly, we provide novel concentration inequalities for general functions
of independent subweibull random variables. The technical challenge here is that the subweibull
distribution is heavy-tailed so the proof method in the related work (Kontorovich, 2014; Maurer &
Pontil, 2021) does not hold in this paper. To counter this difficulty, we address it from the perspective
of moment inequality. It should be noted that our probabilistic inequalities may be of independent
interest. Secondly, we prove high probability generalization bounds for algorithmic stability with
unbounded losses. To this end, we define the subweibull diameter of a metric probability space and
prove that it can be used to relax the boundedness condition. The heavy tailedness of subweibull
distributions also hinders standard proof techniques. With an application to regularized metric re-
gression, our generalization bound extends results in (Kontorovich, 2014; Maurer & Pontil, 2021)
to more scenarios.

The paper is organized as follows. We present our main results in Section 2. The preliminaries
relevant to our discussion are stated in Section 2.1. The probabilistic inequalities are provided in
Section 2.2. Section 2.3 is devoted to provide generalization bounds for algorithmic stability with
unbounded losses. We give proofs in Section 3. In the last, Section 4 concludes this paper. The
omitted proof and auxiliary lemmas are deferred to the Appendix.

2 MAIN RESULTS

In this section, we present the main results.

2.1 PRELIMINARIES

This paper considers metric space. A metric probability space (X , d, µ) is a measurable space
X whose Borel σ-algebra is induced by the metric d, endowed with the probability measure µ.
We use upper-case letters for random variables and lower-case letters for scalars. Let (Xi, di, µi),
i = 1, ..., n, be a sequence of metric probability spaces. We define the product probability space

Xn = X1 ×X2 × ...×Xn

with the product measure

µn = µ1 × µ2 × ...× µn

and ℓ1 product metric

dn(x, x′) =

n∑
i=1

di(xi, x
′
i), x, x′ ∈ Xn.

We write Xi ∼ µi to mean that Xi is an Xi-valued random variable with law µi, i.e., P(Xi ∈ A) =

µi(A) for all BorelA ⊂ Xi. We use the notationXj
i = (Xi, ..., Xj) for all sequences. This notation

extends naturally to sequences: Xn
1 ∼ µn. A function ϕ : X → R is L-Lipschitz if

|ϕ(x)− ϕ(x′)| ≤ Ld(x, x′), x, x′ ∈ X .
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We now define subweibull random variables. A real-valued random variable X is said to be sub-
weibull if it has a bounded ψα-norm. The ψα-norm of X for any α > 0 is defined as

∥X∥ψα = inf

{
σ ∈ (0,∞) : E exp

((
|X|
σ

)α)
≤ 2

}
.

As shown in (Kuchibhotla & Chakrabortty, 2022; Vladimirova et al., 2020), the subweibull random
variable is characterized by the right tail of the Weibull distribution and generalizes sub-Gaussian
and sub-exponential distributions. Particularly, when α = 1 or 2, subweibull random variables
reduce to subexponential or subgaussian random variables, respectively. It is obvious that the smaller
α is, the heavier tail the random variable has. Further, we define the subweibull diameter ∆α(Xi) of
the metric probability space (Xi, di, µi) as

∆α(Xi) = ∥di(Xi, X
′
i)∥ψα ,

where Xi, X
′
i ∼ µi are independent.

2.2 CONCENTRATION INEQUALITIES

This section presents our main probabilistic inequalities, which will be used in the next section,
generalization bound with unbounded losses for algorithmic stability.
Theorem 1. Let X1, ...., Xn are independent random variables with values in a measurable space
X and f : Xn → R is a measurable function. Denote S = f(X1, ..., Xi−1, Xi, Xi+1, ..., Xn)
and Si = f(X1, ..., Xi−1, X

′
i, Xi+1, ..., Xn), where (X ′

1, ..., X
′
n) is an independent copy of

(X1, ...., Xn). Assume moreover that

|S − Si| ≤ Fi(Xi, X
′
i)

for some functions Fi : X 2 → R, i = 1, ..., n. Suppose that ∥Fi(Xi, X
′
i)∥ψα < ∞ for all i. Then

for any 0 < δ < 1/e2, with probability at least 1− δ

(1) if 0 < α ≤ 1, let cα = 2((log 2)1/α + e3Γ1/2( 2
α + 1) + e33

2−α
3α supp≥2 p

−1
α Γ1/p( pα + 1)), we

have

|f(X1, ..., Xn)− Ef(X1, ..., Xn)|

≤cα

√log(
1

δ
)

(
n∑
i=1

∥Fi(Xi, X
′
i)∥2ψα

) 1
2

+ log1/α(
1

δ
) max
1≤i≤n

∥Fi(Xi, X
′
i)∥ψα

 ;

(2) if α > 1, let 1/α∗ + 1/α = 1 and c′α = max{8e + 2(log 2)1/α, 8e(1/α)1/α(1 − α−1)1/α
∗},

and let (∥F (X,X ′)∥ψα) = (∥F1(X1, X
′
1)∥ψα , ..., ∥Fn(Xn, X

′
n)∥ψα) ∈ Rn, we have

|f(X1, ..., Xn)− Ef(X1, ..., Xn)|

≤c′α

√log(
1

δ
)

(
n∑
i=1

∥Fi(Xi, X
′
i)∥2ψα

) 1
2

+ log1/α(
1

δ
)∥(∥F (X,X ′)∥ψα)∥α∗

 .

Remark 1. In the context of the subweibull diameter, Theorem 1 is (1) if 0 < α ≤ 1, we have

|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≤ cα

√log(
1

δ
)

(
n∑
i=1

∆2
α(Xi)

) 1
2

+ log
1
α (

1

δ
) max
1≤i≤n

∆α(Xi)

 ;

(2) if α > 1, let (∆α(X )) = (∆α(X1), ...,∆α(Xn)), we have

|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≤ c′α

√log(
1

δ
)

(
n∑
i=1

∆2
α(Xi)

) 1
2

+ log
1
α (

1

δ
)∥(∆α(X ))∥α∗

 .

We now discuss the impact of the value of α on the inequality. For the constant cα, according to
the property of Gamma function, Γ( 2

α + 1) becomes bigger as α becomes smaller. As for the term
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supp≥2 p
−1
α Γ1/p( pα + 1), the Stirling formula easily gives a concise form that only depends on α

(refer to the appendix for details), and we can find that the smaller α is, the bigger this term is.
For the constant c′α, we have the inequality 8e + 2(log 2)1/α ≥ 8e(1/α)1/α(1 − α−1)1/α

∗
, which

suggests that the smaller α is, the bigger c′α is. For the subweibull diameter ∆α(Xi), according to
the definition, we know that the smaller α is, the bigger this subweibull diameter is and the heavier
tail the random variable has. By the above analysis, we conclude that the smaller the α, the bigger
the value of the inequality. This result is consistent with the intuition: heavier-tailed distribution,
i.e., smaller α, will lead to a bigger upper bound.

Let us see how Theorem 1 compares to previous results on some examples. Theorem 1 in (Kon-
torovich, 2014) states that if f is 1-Lipschitz function, then

P(|f(X1, ..., Xn)− Ef(X1, ..., Xn)| > t) ≤ 2 exp

(
− t2

2
∑n
i=1 ∆

2
2(Xi)

)
.

Theorem 11 in (Maurer & Pontil, 2021) shows that if f is 1-Lipschitz function, a one-sided inequal-
ity holds

P(f(X1, ..., Xn)− Ef(X1, ..., Xn) > t) ≤ exp

(
−t2

4e
∑n
i=1 ∆

2
1(Xi) + 2emaxi∆1(Xi)t

)
.

By comparison, it is clear that when α = 2 or α = 1, our inequalities, respectively, reduce to the
ones in Kontorovich (2014); Maurer & Pontil (2021), respectively, up to constants. Our inequalities
are two-sided compared to the one in (Maurer & Pontil, 2021). As for proof techniques, the goal of
McDiarmid’s inequality is to deal with the concentration of the general function f . Related work
Kontorovich (2014) used the martingale method to decompose f − Ef , while Maurer & Pontil
(2021) use the sub-additivity of entropy to decompose the general function f − Ef . After the
decomposition, the next step of Kontorovich (2014) and Maurer & Pontil (2021) is to bound the
moment generating function (MGF) (EeλX ) or a variant MGF (EZ2eλX ), respectively. The MGF
is bounded for sub-Gaussian and sub-exponential random variables, however it is unbounded for
subweibull variables because there is some convexity lost. The standard technique to prove the MGF
failed for the heavy-tailed subweibull random variables. This implies that if we do not study the
MGF, we need to consider different decomposition on the general function f − Ef . To counter this
difficulty, we address it from the perspective of p-th moment inequality via an induction approach.
We introduce a technical lemma, i.e., Lemma 4. In the proof of Lemma 4, a key step is that we need
to construct a function t→ h(ϵnFn(Xn, X

′
n) + t) to apply our induction assumption. This Lemma

is very useful. For example, one can use Lemma 4 to prove more McDiarmid-type inequalities,
e.g., the polynomially decaying random variables, which will enrich the family of McDiarmid-type
inequalities. With Lemma 4, we firstly decompose the concentration of the general function f to the
sum of independent subweibull random variables. Rather than bounding the MGF, we then bound
the p-th moment of the sum of subweibull random variables, refer to Lemma 5. Thanks to the fact
that subweibull random variables are log-convex for α ≤ 1 and log-concave for α ≥ 1, we can
apply Latała’s inequality (Lemma 7 and Lemma 8) to bound this p-th moment. However, it is not
a direct application of the Latała’s inequality. Latała’s inequality holds for the p-th moment of the
symmetric random variables. On one hand, we need to carefully construct new random variables to
satisfy the symmetry condition, for example, we introduce random variables Yi, Zi in the proof of
Lemma 5. On the other hand, since we study the weighted summation, Khinchin-Kahane inequality
is also required to use. Please refer to the proof in Section 3 for more details.

2.3 ALGORITHMIC STABILITY WITH UNBOUNDED LOSSES

In this section, the metric probability space (Zi, di, µi) will have the structure Zi = Xi × Yi where
Xi and Yi are the instance and label space of the i-th example, respectively. Under the i.i.d as-
sumption, the (Zi, di, µi) are identical for all i ∈ N, and so we will henceforth drop the subscript
i from these. We are given an i.i.d sample of points S = Zn1 ∼ µn, and a learning algorithm
A : (X × Y)n → YX maps a training sample to a function mapping the instance space X into
the space of labels Y . The output of the learning algorithm based on the sample S will be denoted
by AS . The quality of the function returned by the algorithm is measured using a loss function
ℓ : Y × Y → R+. The empirical risk Rn(A, S) is typically defined as

Rn(A, S) =
1

n

n∑
i=1

ℓ(AS , zi)
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and the population risk R(A, S) as

R(A, S) = Ez∼µ[ℓ(AS , z)].

One of the fundamental questions in statistical learning is to estimate the risk R(A, S) of an algo-
rithm from the sample S in terms of the empirical one. A large body of work has been dedicated
to obtaining generalization bounds, i.e., high probability bounds on the error of the empirical risk
estimator: R(A, S)−Rn(A, S). The widely used notion of stability allowing high probability upper
bounds is called uniform stability. We mention a variant of uniform stability provided in (Rakhlin
et al., 2005), which is slightly more general than the original notion in (Bousquet & Elisseeff, 2002).
The algorithm A is said to be γ-uniform stable if for any z̄ ∈ Z , the function ψ : Zn → R given by
ψ(zn1 ) = ℓ(Azn1

, z̄) is γ-Lipschitz with respect to the Hamming metric on Zn:

∀z, z′ ∈ Zn,∀z̄ ∈ Z : |ψ(z)− ψ(z′)| ≤ γ

n∑
i=1

I{zi ̸=z′i}.

Most previous work of stability required the loss to be bounded by some constant M < ∞. We
make no such restriction in this paper. To relax the boundedness condition, we use a different notion
of stability proposed in (Kontorovich, 2014). Specifically, the algorithm A is said to be γ-totally
Lipschitz stable if the function ψ : Zn+1 → R given by ψ(zn+1

1 ) = ℓ(Azn1
, zn+1) is γ-Lipschitz

with respect to the ℓ1 product metric on Zn+1:

∀z, z′ ∈ Zn+1 : |ψ(z)− ψ(z′)| ≤ γ

n+1∑
i=1

d(zi, z
′
i).

We now give a generalization bound of stable algorithms.
Lemma 1. Suppose A is a symmetric, γ-totally Lipschitz stable learning algorithm over the metric
probability space (Z, d, µ) with ∆α(Z) <∞. Then

E[R(A, S)−Rn(A, S)] ≤ c(α)γ∆α(Z),

where c(α) = (log 2)1/α if α > 1 and c(α) = 2Γ( 1
α + 1) if 0 < α ≤ 1.

Remark 2. This proof is delayed to the Appendix. The heavy tailedness of subweibull distributions
hinders standard proof techniques, such as the Jensen’s inequality.

The next lemma discusses Lipschitz continuity.
Lemma 2 (Lemma 2 in (Kontorovich, 2014)). Suppose A is a symmetric, γ-totally Lipschitz stable
learning algorithm and define the function f : Zn → R by f(z) = R(A, z)−Rn(A, z). Then f is
3γ-Lipschitz.

Combining Lemma 2 with Theorem 1 and together with Lemma 1 yields the following high proba-
bility generalization bound.
Theorem 2. Suppose A is a symmetric, γ-totally Lipschitz stable learning algorithm over the metric
probability space (Z, d, µ) with ∆α(Z) <∞. Then, for training samples S ∼ µn and any 0 < δ <
1/e2, with probability at least 1− δ

(1) if 0 < α ≤ 1, let cα = 2
√
2((log 2)1/α + e3Γ1/2( 2

α + 1) + e33
2−α
3α supp≥2 p

−1
α Γ1/p( pα + 1)),

we have

R(A, S)−Rn(A, S) ≤ c(α)γ∆α(Z) + 3γcα

(√
n log(

1

δ
)∆α(Z) + log

1
α (

1

δ
)∆α(Z)

)
,

(2) if α > 1, let 1/α∗ +1/α = 1 and c′α = max{8e+2(log 2)1/α, 8e(1/α)1/α(1−α−1)1/α
∗}, we

have

R(A, S)−Rn(A, S) ≤ c(α)γ∆α(Z) + 3γc′α

(√
n log(

1

δ
)∆α(Z) + log

1
α (

1

δ
)n

1
α∗ ∆α(Z)

)
,

where c(α) = (log 2)1/α if α > 1 and c(α) = 2Γ( 1
α + 1) if 0 < α ≤ 1.
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Remark 3. Similar to the discussion in Remark 1, the relationship between α and the generalization
in Theorem 2 is that a heavier-tailed random variable, i.e., a smaller α, results in a bigger bound,
i.e., a looser generalization bound. Next, we compare Theorem 2 with previous results. For a pair
of non-negative functions f, g the notation f ≲ g will mean that for some universal constant c > 0
it holds that f ≤ cg. In the related work, the basic and the best known result is the high probability
upper bound in (Bousquet & Elisseeff, 2002) which states that, with probability at least 1− δ,

R(A, S)−Rn(A, S) ≲
(
γ2 +

M√
n

)√
log(

1

δ
),

where γ denotes the uniform stability and M is the upper bound of the loss ℓ. Kontorovich (2014)
extends this bound to the unbounded loss with subgaussian diameter, and their Theorem 2 states
that, with probability at least 1− δ,

R(A, S)−Rn(A, S) ≲ γ2∆2
2(Z) + γ∆2(Z)

√
n log(

1

δ
),

where, in this case, γ denotes the totally Lipschitz stability and ∆2(Z) is the subgaussian diame-
ter. If we instead consider the subexponential distributions, the generalization bound in (Maurer &
Pontil, 2021) is

R(A, S)−Rn(A, S) ≲ γ∆1(Z) + γ∆1(Z)

√
n log(

1

δ
) + γ∆1(Z) log(

1

δ
).

As shown in the above three bounds and related results on algorithmic stability, the stability γ
is required at the least of the order 1/

√
n for nontrivial convergence decay. By comparison to

the relevant bounds in (Bousquet & Elisseeff, 2002; Kontorovich, 2014; Maurer & Pontil, 2021),
our generalization bounds in Theorem 2 give results for unbounded loss functions with subweibull
diameter, which includes the results of (Kontorovich, 2014; Maurer & Pontil, 2021) as specific cases
and substantially extends the existing results to a large broad class of unbounded losses. Recently,
Yuan & Li (2023) provide sharper high probability generalization bounds for unbounded losses up
to subexponential distributions (i.e., α = 1) in the sense of (Bousquet et al., 2020; Klochkov &
Zhivotovskiy, 2021). As a comparison, our generalization bounds allow heavy-tailed distributions
(i.e., 0 < α < 1). It would be interesting to study whether our techniques can be used to give sharper
bounds for heavy-tailed subweibull distributions in the spirit of (Bousquet et al., 2020; Klochkov &
Zhivotovskiy, 2021; Yuan & Li, 2023).
Remark 4 (Application to Regularized Metric Regression). We first give some necessary notations
of the regularized regression. We assume the label space Y to be all of R. A simple no-free-
lunch argument shows that it is impossible to learn functions with arbitrary oscillation, and hence
Lipschitzness is a natural and commonly used regularization constraint (Shalev-Shwartz & Ben-
David, 2014; Tsybakov, 2003; Wasserman, 2006). We will denote by Fλ the collection of all λ-
Lipschitz functions f : X → R. The learning algorithm A maps the sample S = Zni=1, with
Zi = (Xi, Yi) ∈ X × R, to the function f̂ ∈ Fλ by minimizing the empirical risk

f̂ = arg min
f∈Fλ

1

n

n∑
i=1

|f(Xi)− Yi|

over all f ∈ Fλ, where we have chosen the absolute loss ℓ(y, y′) = |y − y′|. In the general metric
space, Gottlieb et al. (2017) proposed an efficient algorithm for regression via Lipschitz extension,
a method that can be traced back to the seminal work (von Luxburg & Bousquet, 2004), which
is algorithmically realized by 1-nearest neighbors. This approach very facilitates generalization
analysis. For any metric space (X , d), we associate it to a metric space (Z, d̄), where Z = X × R
and d̄((x, y), (x′, y′)) = d(x, x′) + |y − y′|, and we suppose that (Z, d̄) is endowed with a measure
µ such that ∆α(Z) = ∆α(Z, d̄, µ) <∞.

Here, the standard order of magnitude notation such as O(·) and Ω(·) will be used. If none of the
n + 1 points (n sample and 1 test) is too isolated from the rest, Kontorovich (2014) shows that the
regression algorithm is γ = O(λ/n)-totally Lipschitz stable. In the case of subgaussian distribution,
with probability 1−n exp(−Ω(n)), each of the n+1 points is within distanceO(∆2(Z)) of another
point. Hence, Kontorovich (2014) states that, with probability at least 1− n exp(−Ω(n))− δ

R(A, S)−Rn(A, S) ≲
(
λ

n
∆2(Z)

)2

+
λ√
n
∆2(Z)

√
log(

1

δ
).
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While in the case of subweibull distribution, according to Theorem 2.1 in (Vladimirova et al., 2020),
with probability 1 − n exp(−Ω(nα)), each of the n + 1 points is within distance O(∆α(Z)) of
another point. Thus, by Theorem 2, our bound is, with probability at least 1− n exp(−Ω(nα))− δ,
(1) if 0 < α ≤ 1,

R(A, S)−Rn(A, S) ≲
λ

n
∆α(Z) +

λ

n

(√
n log(

1

δ
)∆α(Z) + log

1
α (

1

δ
)∆α(Z)

)
;

(2) if α > 1, let 1/α∗ + 1/α = 1,

R(A, S)−Rn(A, S) ≲
λ

n
∆α(Z) +

λ

n

(√
n log(

1

δ
)∆α(Z) + log

1
α (

1

δ
)n

1
α∗ ∆α(Z)

)
.

As a comparison, our results allow a substantial extension of existing generalization bounds to
heavy-tailed distributions.

3 PROOFS

This section proves Theorem 1. To proceed, we state three technical lemmas.
Lemma 3. Let h : R → R be a convex functions, ϵ1, ...., ϵn a sequence of independent Rademacher
variables and a1, ..., an, b1, ..., bn two sequences of nonnegative real numbers, such that for every i
ai ≤ bi. Then

Eh

(
n∑
i=1

aiϵi

)
≤ Eh

(
n∑
i=1

biϵi

)
.

Lemma 4. Let h : R → R be a convex function and S = f(X1, ..., Xi−1, Xi, Xi+1, ..., Xn),
where X1, ...., Xn are independent random variables with values in a measurable space X and f :
Xn → R is a measurable function. Denote as usual Si = f(X1, ..., Xi−1, X

′
i, Xi+1, ..., Xn), where

(X ′
1, ..., X

′
n) is an independent copy of (X1, ...., Xn). Assume moreover that |S−Si| ≤ Fi(Xi, X

′
i)

for some functions Fi : X 2 → R, i = 1, ..., n. Then,

Eh(S − ES) ≤ Eh

(
n∑
i=1

ϵiFi(Xi, X
′
i)

)
,

where ϵ1, ..., ϵn is a sequence of independent Rademacher variables, independent of (Xi)
n
i=1 and

(X ′
i)
n
i=1.

Next lemma provides a moment inequality for the sum of independent subweibull random variables.
Lemma 5. Suppose X1, X2, ..., Xn are independent subweibull random variables with mean zero.
For any vector a = (a1, ..., an) ∈ Rn, let b = (a1∥X1∥ψα , ..., an∥Xn∥ψα) ∈ Rn. Then for p ≥ 1,

• if 0 < α ≤ 1, let cα = 2
√
2((log 2)1/α+e3Γ1/2( 2

α+1)+e33
2−α
3α supp≥2 p

−1
α Γ1/p( pα+1)),∥∥∥∥∥

n∑
i=1

aiXi

∥∥∥∥∥
p

≤ cα

(√
p∥b∥2 + p1/α∥b∥∞

)
.

• if α > 1, let 1/α∗+1/α = 1 and c′α = max{8e+2(log 2)1/α, 8e(1/α)1/α(1−α−1)1/α
∗},∥∥∥∥∥

n∑
i=1

aiXi

∥∥∥∥∥
p

≤ c′α

(√
p∥b∥2 + p1/α∥b∥α∗

)
.

Proof. Without loss of generality, we assume ∥Xi∥ψα = 1. Define Yi = (|Xi| − (log 2)1/α)+, then
it is easy to check that P(|Xi| ≥ t) ≤ 2e−t

α

, which also implies that P(Yi ≥ t) ≤ e−t
α

. According
to the symmetrization inequality (e.g., Proposition 6.3 of (Ledoux & Talagrand, 1991)), we have

∥
n∑
i=1

aiXi∥p ≤ 2∥
n∑
i=1

ϵiaiXi∥p = 2∥
n∑
i=1

ϵiai|Xi|∥p,

7
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where {ϵi}ni=1 are independent Rademacher random variables and we have used that ϵiXi and ϵi|Xi|
are identically distributed. By triangle inequality,

2∥
n∑
i=1

ϵiai|Xi|∥p ≤ 2∥
n∑
i=1

ϵiai(Yi + (log 2)1/α)∥p ≤ 2∥
n∑
i=1

ϵiaiYi∥p + 2(log 2)1/α∥
n∑
i=1

ϵiai∥p.

Next, we will bound the second term of the RHS of the above bound. By Khinchin-Kahane inequal-
ity (Lemma 6 in the Appendix), we have

∥
n∑
i=1

ϵiai∥p ≤
(p− 1

2− 1

)1/2∥ n∑
i=1

ϵiai∥2 ≤ √
p∥

n∑
i=1

ϵiai∥2 =
√
p(E(

n∑
i=1

ϵiai)
2)1/2

=
√
p
(
E(

n∑
i=1

ϵ2i a
2
i + 2

∑
1≤i<j≤n

ϵiϵjaiaj)
)1/2

=
√
p
( n∑
i=1

a2i
)1/2

=
√
p∥a∥2.

Let {Zi}ni=1 be independent symmetric random variables satisfying P(|Zi| ≥ t) = exp(−tα) for all
t ≥ 0, we have

∥
n∑
i=1

ϵiaiYi∥p ≤ ∥
n∑
i=1

ϵiaiZi∥p = ∥
n∑
i=1

aiZi∥p,

since ϵiZi and Zi have the same distribution due to symmetry. Combining the above inequalities
together, we reach

∥
n∑
i=1

aiXi∥p ≤ 2(log 2)1/α
√
p∥a∥2 + 2∥

n∑
i=1

aiZi∥p.

In the case of 0 < α ≤ 1,N(t) = tα is concave. Then Lemma 7 and Lemma 8 (a) (in the Appendix)
gives for p ≥ 2

∥
n∑
i=1

aiZi∥p ≤ e inf{t > 0 :

n∑
i=1

logψp(e
−2(

aie
2

t
)Zi) ≤ p} ≤ e inf{t > 0 :

n∑
i=1

pMp,Zi(
aie

2

t
) ≤ p}

= e inf{t > 0 :

n∑
i=1

(max{(aie
2

t
)p∥Zi∥pp, p(

aie
2

t
)2∥Zi∥22}) ≤ p}

≤ e inf{t > 0 :

n∑
i=1

(
aie

2

t
)p∥Zi∥pp +

n∑
i=1

p(
aie

2

t
)2∥Zi∥22 ≤ p}

≤ e inf{t > 0 : 2pΓ(
p

α
+ 1)

e2p

tp
∥a∥pp ≤ p}+ e inf{t > 0 : 2p2Γ(

2

α
+ 1)

e4

t2
∥a∥22}] ≤ p},

where we have used ∥Zi∥pp = pΓ( pα + 1). Thus,

∥
n∑
i=1

aiZi∥p ≤
√
2e3(Γ1/p(

p

α
+ 1)∥a∥p +

√
pΓ1/2(

2

α
+ 1)∥a∥2).

By homogeneity, we can assume that
√
p∥a∥2 + p1/α∥a∥∞ = 1. Then ∥a∥2 ≤ p−1/2 and ∥a∥∞ ≤

p−1/α. Therefore, for p ≥ 2,

∥a∥p ≤ (

n∑
i=1

|ai|2∥a∥p−2
∞ )1/p ≤ (p−1−(p−2)/α)1/p = (p−p/αp(2−α)/α)1/p ≤ 3

2−α
3α p−1/α

= 3
2−α
3α p−1/α(

√
p∥a∥2 + p1/α∥a∥∞),

where we used p1/p ≤ 31/3 for any p ≥ 2, p ∈ N. Therefore, for p ≥ 2,

∥
n∑
i=1

aiXi∥p ≤ 2(log 2)1/α
√
p∥a∥2 + 2

√
2e3(Γ1/p(

p

α
+ 1)∥a∥p +

√
pΓ1/2(

2

α
+ 1)∥a∥2)

≤ 2
√
2((log 2)1/α + e3Γ1/2(

2

α
+ 1) + e33

2−α
3α p

−1
α Γ1/p(

p

α
+ 1))

√
p∥a∥2

+ 2
√
2e3+

2−α
eα Γ1/p(

p

α
+ 1)∥a∥∞).

8
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Let cα = 2
√
2((log 2)1/α + e3Γ1/2( 2

α + 1) + e33
2−α
3α supp≥2 p

−1
α Γ1/p( pα + 1)), we have

∥
n∑
i=1

aiXi∥p ≤ cα(
√
p∥a∥2 + p1/α∥a∥∞).

In the case of α > 1, N(t) = tα is convex with N∗(t) = α− 1
α−1 (1 − α−1)t

α
α−1 . Then Lemma 7

and Lemma 7 (b) (in the Appendix) gives for p ≥ 2

∥
n∑
i=1

aiZi∥p ≤ e inf{t > 0 :

n∑
i=1

logψp(
4ai
t
Zi/4) ≤ p}+ e inf{t > 0 :

n∑
i=1

pMp,Zi(
4ai
t
) ≤ p}

≤ e inf{t > 0 :

n∑
i=1

p−1N∗(p|4ai
t
|) ≤ 1}+ e inf{t > 0 :

n∑
i=1

p(
4ai
t
)2 ≤ 1}

= 4e(
√
p∥a∥2 + (p/α)1/α(1− α−1)1/α

∗
∥a∥α∗),

where α∗ is mentioned in the statement. Therefore, for p ≥ 2,

∥
n∑
i=1

aiXi∥p ≤ (8e+ 2(log 2)1/α)
√
p∥a∥2 + 8e(1/α)1/α(1− α−1)1/α

∗
p1/α∥a∥α∗ .

Let c′α = max{8e+ 2(log 2)1/α, 8e(1/α)1/α(1− α−1)1/α
∗}, we have

∥
n∑
i=1

aiXi∥p ≤ c′α(
√
p∥a∥2 + p1/α∥a∥α∗).

Replacing a with b, the proof is complete.

Proof of Theorem 1. Using Lemma 4 with h(t) = |t|p, for p ≥ 2,

∥f(X1, ..., Xn)− Ef(X1, ..., Xn)∥p ≤

∥∥∥∥∥
n∑
i=1

ϵiFi(Xi, X
′
i)

∥∥∥∥∥
p

.

Then, using Lemma 5 and setting ai = 1 for all i = 1, ..., n, we have if 0 < α ≤ 1, ∥f(X1, ..., Xn)−

Ef(X1, ..., Xn)∥p ≤ cα(
√
p
(∑n

i=1 ∥Fi(Xi, X
′
i)∥2ψα

) 1
2

+ p1/αmax1≤i≤n ∥Fi(Xi, X
′
i)∥ψα);

while if α > 1, ∥f(X1, ..., Xn) − Ef(X1, ..., Xn)∥p ≤ c′α(
√
p(
∑n
i=1 ∥Fi(Xi, X

′
i)∥2ψα)

1
2 +

p1/α∥(∥Fi(Xi, X
′
i)∥ψα)∥α∗).

For any t > 0, by Markov’s inequality,

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ t) ≤ E|f(X1, ..., Xn)− Ef(X1, ..., Xn)|p

tp
.

By setting t such that exp(−p) = E|f(X1, ..., Xn)− Ef(X1, ..., Xn)|p/tp, we get

P (|f(X1, ..., Xn)− Ef(X1, ..., Xn)| ≥ e∥f(X1, ..., Xn)− Ef(X1, ..., Xn)∥p) ≤ exp(−p).

Let δ = exp(−p), we have p = log(1/δ) and 0 < δ < 1/e2. Putting the above results together, the
proof is complete.

4 CONCLUSIONS

In this paper, we provided generalization bounds for algorithmic stability with unbounded losses.
The technical contribution is a concentration inequality for subweibull random variables. In future
work, it would be important to show that some other common learning algorithms, such as stochastic
gradient descent, are also stable in the notion of totally Lipschitz stability.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Shivani Agarwal and Partha Niyogi. Generalization bounds for ranking algorithms via algorithmic
stability. Journal of Machine Learning Research, 10(2), 2009.

Milad Bakhshizadeh, Arian Maleki, and Shirin Jalali. Using black-box compression algorithms for
phase retrieval. IEEE Transactions on Information Theory, 66(12):7978–8001, 2020.
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A PROOF OF LEMMA 1

Proof. Given any samples S = {z1, ..., zn} ∈ Zn and Si = {z1, ..., zi−1, z
′
i, zi+1, ..., zn} ∈ Zn,

according to Lemma 7 in (Bousquet & Elisseeff, 2002), for all i ∈ [n],

E[R(A, S)−Rn(A, S)] = ES,z′i [ℓ(AS , z
′
i)− ℓ(ASi , z

′
i)].

For fixed i ∈ [n] and Zi−1
i , Zni+1, define

Vi(Zi, Z
′
i) = ℓ(AZn1

, Z ′
i)− ℓ(AZi−1

1 ,Z′
i,Z

n
i+1
, Z ′

i).

The totally Lipschitz stable condition implies that

|Vi(Zi, Z ′
i)| ≤ γd(Zi, Z

′
i).

This gives

E[R(A, S)−Rn(A, S)] ≤ γEd(Zi, Z ′
i). (1)

We now consider two cases separately. In the case of α > 1, (1) gives

exp

((E[R(A, S)−Rn(A, S)]
γ∥d(Zi, Z ′

i)∥ψα

)α)
≤ exp

(( |E[R(A, S)−Rn(A, S)]|
γ∥d(Zi, Z ′

i)∥ψα

)α)
≤ exp

(( |γEd(Zi, Z ′
i)|

γ∥d(Zi, Z ′
i)∥ψα

)α)
≤ E exp

(( γ|d(Zi, Z ′
i)|

γ∥d(Zi, Z ′
i)∥ψα

)α)
≤ 2,

where the third inequality follows from the Jensen’s inequality and the last inequality uses the defi-

nition E exp
((

|d(Zi,Z′
i)|

∥d(Zi,Z′
i)∥ψα

)α)
≤ 2. Thus, taking logarithms yields the estimate

E[R(A, S)−Rn(A, S)] ≤ (log 2)1/αγ∥d(Zi, Z ′
i)∥ψα = (log 2)1/αγ∆α(Z).

In the case of 0 < α ≤ 1,

E[d(Zi, Z ′
i)] ≤

∫ ∞

0

P(|d(Zi, Z ′
i)| > x)dx =

∫ ∞

0

P

(
e

(
|d(Zi,Z

′
i)|

∥d(Zi,Z′
i
)∥ψα

)α
> e

(
x

∥d(Zi,Z′
i
)∥ψα

)α)
dx

≤
∫ ∞

0

E[e
(

|d(Zi,Z
′
i)|

∥d(Zi,Z′
i
)∥ψα

)α

]

e
( x
∥d(Zi,Z′

i
)∥ψα

)α
dx ≤ 2

∫ ∞

0

e
−( x

∥d(Zi,Z′
i
)∥ψα

)α

dx

= 2∥d(Zi, Z ′
i)∥ψα

1

α

∫ ∞

0

e−uu
1
α−1du = 2∥d(Zi, Z ′

i)∥ψα
1

α
Γ(

1

α
) = 2∥d(Zi, Z ′

i)∥ψαΓ(
1

α
+ 1).

Thus, we get

E[R(A, S)−Rn(A, S)] ≤ 2Γ(
1

α
+ 1)γ∥d(Xi, X

′
i)∥ψα = 2Γ(

1

α
+ 1)γ∆α(Z).

The proof is complete.

B AUXILIARY LEMMAS

Lemma 6 (Theorem 1.3.1 in (De la Pena & Giné, 2012)). Let a1, ..., an a finite non-random se-
quence, {ϵi}ni=1 be a sequence of independent Rademacher variables and 1 < p < q <∞. Then,

∥
n∑
i=1

ϵiai∥q ≤
(
q − 1

p− 1

)1/2

∥
n∑
i=1

ϵiai∥p.

Lemma 7 (Theorem 2 of (Latała, 1997)). Let X1, ..., Xn be a sequence of independent symmetric
random variables, and p ≥ 2. Then,

e− 1

2e2
∥(Xi)∥p ≤ ∥X1 + ...+Xn∥ ≤ e∥(Xi)∥p,

where ∥(Xi)∥p := inf{t > 0 :
∑n
i=1 logψp(Xi/t) ≤ p} with ψp(X) := E|1 +X|p.
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Lemma 8 (Example 3.2 and 3.3 of (Latała, 1997)). Assume X be a symmetric random variable
satisfying P(|X| ≥ t) = e−N(t). For any t ≥ 0, we have

(a) If N(t) is concave, then logψp(e
−2tX) ≤ pMp,X(t) := max{(tp∥X∥pp), (pt2∥X∥22)}.

(b) For convex N(t), denote the convex conjugate function N∗(t) := sups>0{ts−N(s)} and

Mp,X(t) :=

{
p−1N∗(p|t|), if p|t| ≥ 2

pt2, if p|t| < 2.

Then logψp(tX/4) ≤ pMp,X(t).

C PROOFS OF LEMMA 3 AND LEMMA 4

Proof of Lemma 3. It is enough to prove the monotonicity of function f(t) = Eh(a+tϵ1), for every
choice of the parameter a. By the convexity assumption we have for 0 < s < t

h(a+ t)− h(a+ s)

t− s
≥ h(a− s)− h(a− t)

t− s
.

Equivalently,

f(s) =
1

2
(h(a+ s) + h(a− s)) ≤ 1

2
(h(a+ t) + h(a− t)) = f(t).

The proof is complete.

Proof of Lemma 4. We will use induction with respect to n. For n = 0 the statement is obvious,
since Eh(S − ES) = Eh (

∑n
i=1 ϵFi(Xi, X

′
i)) = h(0). Let us thus assume that the Theorem is true

for n− 1. Then

Eh(S − ES) = Eh(S − EX′
n
Sn + EXnS − ES)

≤ Eh(S − Sn + EXnS − ES) = Eh(Sn − S + EXnS − ES)
= Eh(ϵn|S − Sn|+ EXnS − ES)
≤ Eh(ϵnFn(Xn, X

′
n) + EXnS − ES),

where the equalities follow from the symmetry, the first inequality follows from the Jensen’s in-
equality and the convexity of h, and the last inequality follows from Lemma 3. Now, denoting
Z = EXnS, Zi = EXnSi, we have for i = 1, ..., n− 1

|Z − Zi| = |EXnS − EXnSi| ≤ EXn |S − Si| ≤ Fi(Xi, X
′
i),

and thus for fixed Xn, X ′
n and ϵn, we can apply the induction assumption to the function t →

h(ϵnFn(Xn, X
′
n) + t) instead of h and EXnS instead of S, to obtain

Eh(S − ES) ≤ Eh

(
n∑
i=1

ϵiFi(Xi, X
′
i)

)
.

The proof is complete.

D PROOF OF REMARK 1

Proof of Remark 1. The Stirling formula gives a concise form of the term supp≥2 p
−1
α Γ1/p( pα +1).

By the Stirling formula

n! =
√
2πnnne−n+θn , |θn| <

1

12n
, n > 1,

14
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we get the following result

p−
1
αΓ1/p(

p

α
+ 1) ≤ p−

1
α (
√
2πp/α(

p

eα
)
p
α e

α
12p )1/p

= p−
1
α (

√
2π

α
)1/pp1/2p(

p

α
)1/αeα/12p

2−1/α

≤ (

√
2π

α
)1/pe1/2e

1

(eα)1/α
eα/12p

2

≤ (

√
2π

α
)1/2e1/2e

1

(eα)1/α
eα/48,

where the first inequality uses the Stirling formula and the second inequality uses the fact that p1/p ≤
e1/e.
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