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ABSTRACT

The rapid evolution of Multi-modality Large Language Models (MLLMs) has
catalyzed a shift in computer vision from specialized models to general-purpose
foundation models. Nevertheless, there is still an inadequacy in assessing the
abilities of MLLMs on low-level visual perception and understanding. To ad-
dress this gap, we present Q-Bench, a holistic benchmark crafted to systematically
evaluate potential abilities of MLLMs on three realms: low-level visual percep-
tion, low-level visual description, and overall visual quality assessment. a) To
evaluate the low-level perception ability, we construct the LLVisionQA dataset,
consisting of 2,990 diverse-sourced images, each equipped with a human-asked
question focusing on its low-level attributes. We then measure the correctness of
MLLMs on answering these questions. b) To examine the description ability of
MLLMs on low-level information, we propose the LLDescribe dataset consist-
ing of long expert-labelled golden low-level text descriptions on 499 images, and
a GPT-involved comparison pipeline between outputs of MLLMs and the golden
descriptions. c) Besides these two tasks, we further measure their visual quality
assessment ability to align with human opinion scores. Specifically, we design a
softmax-based strategy that enables MLLMs to predict quantifiable quality scores,
and evaluate them on various existing image quality assessment (IQA) datasets.
Our evaluation across the three abilities confirms that MLLMs possess preliminary
low-level visual skills. However, these skills are still unstable and relatively im-
precise, indicating the need for specific enhancements on MLLMs towards these
abilities. We hope that our benchmark can encourage the research community to
delve deeper to discover and enhance these untapped potentials of MLLMs.

1 INTRODUCTION

The emergent large language models (LLMs) such as ChatGPT and Bard, as well as their excellent
open-source counterparts (e.g., LLaMA (Touvron et al., 2023), MPT (Team, 2023)), have served
as powerful general-purpose assistants, which opens a new era for artificial intelligence (AI) from
targeting specific tasks towards general intelligence. Following the advancements of LLMs, multi-
modality large language models (MLLMs), as represented by LLaVA (Liu et al., 2023b), MiniGPT-
4 (Zhu et al., 2023), InstructBLIP (Dai et al., 2023), and Otter (Li et al., 2023a), have brought
exciting progresses on the vision field as well. They are capable of providing robust general-level
abilities on visual perception/understanding and can even seamlessly dialog and interact with hu-
mans through natural language. While such abilities of MLLMs have been explored and validated
on several vision-language tasks such as image captioning (Chen et al., 2015), visual question an-
swering (Antol et al., 2015), cross-modality grounding (Peng et al., 2023), and traditional vision
tasks such as image classification or segmentation (Lai et al., 2023), most attention is paid to the
high-level perception and understanding of visual contents. Meanwhile, the ability of MLLMs re-
mains not clear on low-level visual perception and understanding, which play significant roles in
image quality assessment (IQA) (Hosu et al., 2020; Fang et al., 2020) and its associated tasks on
perceiving visual distortions (noises, blurs) (Su et al., 2021; Wu et al., 2023d) and other low-level
attributes (color, lighting, composition, style, etc) (Kong et al., 2016) that may relate to aesthetics
and emotions of natural photos (Murray et al., 2012) and human preferences on emerging computer-
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Figure 1: In the proposed Q-Bench, we build the first benchmark on emerging abilities of MLLMs
on low-level vision, including perception of low-level attributes (by correctly answering diverse
queries) and description of low-level quality-related information via natural language. Furthermore,
the Q-bench also evaluates the quantitative assessment ability of MLLMs on traditional IQA tasks.

graphics generated (Zhang et al., 2023b) or AI-generated images (Li et al., 2023c; Xu et al., 2023).
These low-level visual abilities are strongly associated with a wide range of applications, such as
recommendation (Wu et al., 2023c), guidance on camera systems (Zhang et al., 2022), or visual
quality enhancement (Zhang et al., 2018). Henceforth, it is crucial to evaluate the current abilities
of these general-purpose foundation models in low-level visual perception and understanding, to
ideally relieve extensive human resources to give feedback on every specific low-level task.

In our work, we propose the first systematic benchmark to measure the low-level visual perception
and understanding abilities of MLLMs. Our benchmark is constructed around a key question:

How do MLLMs emulate human ability related to low-level visual perception and understanding?

A simple answer is language, which is the fundamental property of MLLMs. Specifically, we define
two emerging language abilities of MLLMs on low-level vision as follows:

• Ability 1 (A1): Perception of Low-level Attributes. As shown in Fig. 1(a), like a human,
an MLLM should be able to respond accurately to simple questions related to low-level
attributes, e.g answering ‘No’ for a blurry image when queried with ‘Is this image clear?’

• Ability 2 (A2): Description via Natural Language. As shown in Fig. 1(b), like a human, an
MLLM should be able to describe the quality and other low-level information for an image
with natural language. The descriptions should be both complete and accurate.

To systematically evaluate the low-level perception ability (A1) on various low-level attributes un-
der diverse circumstances, we construct the LLVisionQA dataset, including 2,990 images from 10
diverse sources. Aligned with existing practices (Liu et al., 2023c; Lu et al., 2023), each image in
LLVisionQA is equipped with a question, alongside a correct answer and false candidate answers. In
LLVisionQA, we design three diverse types of questions: Yes-or-No questions, What questions, and
How questions. Moreover, we divide low-level concerns into four quadrants, via two axes: (1) dis-
tortions (blur, noises, etc) vs other low-level attributes (color, lighting, composition, etc) (Guha et al.,

2



Published as a conference paper at ICLR 2024

2020). (2) global perception (e.g., sharpness of the whole picture) vs local content-related in-context
perception (e.g., whether the red flower is in focus) (Li et al., 2019). With three types of questions
and four quadrants of concerns, the proposed LLVisionQA dataset provides a holistic, diverse, and
balanced benchmark for the perception ability on low-level visual attributes of MLLMs.

For the description ability (A2), given that the output description is expected to be complex (without
fixed formats), we propose the LLDescribe dataset by inviting experts to write long golden low-level
descriptions (average 58 words per description) for 499 images, which serve as the reference texts
for the single-modal GPT to evaluate MLLM output descriptions. The quality of MLLM descrip-
tions is evaluated through three dimensions: completeness (punish missing information), preciseness
(punish outputs controversial with reference), as well as relevance (punish outputs irrelevant to low-
level attributes). With golden descriptions and the multi-dimensional evaluation process participated
by GPT, we comprehensively evaluate the low-level description ability of MLLMs.

Besides the two emerging language abilities, we also evaluate MLLMs on the traditional IQA task, a
more abstract task that requires understanding on human opinions of low-level attributes, as follows:

• Ability 3 (A3): Precise Assessment Aligned with Human Opinions. As depicted in Fig. 1(c),
an MLLM should be able to predict quantifiable quality scores for images, which can be
aligned with the human-rated mean opinion scores (MOS) on low-level visual appearances.

For the assessment ability (A3), we utilize plenty of existing IQA databases (Hosu et al., 2020; Lin
et al., 2019; Li et al., 2023c) that focus on various low-level appearances of images, to benchmark
MLLMs within conventional IQA settings. Specifically, we notice that MLLMs encounter difficul-
ties in providing sufficiently quantifiable outputs, whether instructed to directly rate with texts or
provide numerical outputs. To solve this challenge, we propose to extract the softmax pooling
result on the logits of the two most frequent tokens (good and poor) under the response template of
MLLMs (Fig 1(c)) as their quality predictions. Our studies prove that the proposed softmax-based
strategy is generally better correlated with human perception than direct token outputs of MLLMs
(via argmax), which bridges between these emergent MLLMs and the traditional IQA task settings.
Under this strategy, we evaluate all MLLMs on their precise assessment ability by measuring the
correlations between their predictions and human opinion scores in various IQA databases.

In summary, we systematically explore the potential of MLLMs on three low-level visual abilities:
perception, description, and assessment. The three realms compose into the proposed Q-Bench, a
MLLM benchmark on low-level visual tasks. Our contributions can be summarized as three-fold:

• We build a benchmark for MLLMs on low-level perception ability. To achieve this, we
construct a first-of-its-kind balanced and comprehensive LLVisionQA dataset with 2,990
images with one low-level-related question-answer pair for each image. The LLVisionQA
includes three question types and four quadrants of low-level concerns to ensure diversity.

• We define a benchmark process to evaluate the low-level description ability of MLLMs,
including an LLDescription dataset of 499 images with expert-labelled long golden quality
descriptions, and a GPT-assisted evaluation to rate MLLM-descriptions in terms of com-
pleteness, preciseness, and relevance compared with golden descriptions.

• To evaluate precise quality assessment ability, we propose a unified softmax-based quality
prediction strategy for all MLLMs based on their probability outputs. With its effective-
ness validated in our experiments, the proposed strategy sets up a bridge between general-
purpose MLLMs and traditional IQA tasks that requires quantifiable scores as outputs.

2 CONSTRUCTING THE Q-BENCH

2.1 GENERAL PRINCIPLES

Focusing on Low-level Visual Abilities of MLLMs. Unlike existing MLLM benchmarks (Li
et al., 2023b; Liu et al., 2023c; Lu et al., 2023) that aim at all-round abilities, the tasks in Q-Bench
are constrained with two basic principles: (1) Requiring perception and/or understanding on low-
level attributes of images; (2) Not requiring reasoning (i.e. why) or outside knowledge (Marino et al.,
2019). We adhere to the principles in designing the perception, description, and assessment tasks,
making the proposed Q-bench a focused reflection on the low-level visual abilities of MLLMs.
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Table 1: Overview of the 10 diverse image source datasets in the Q-Bench, and the respective
benchmark dataset size for each low-level ability among perception, descrption and assessment.
The Corrupted COCO denotes COCO-Captions images corrupted by Michaelis et al. (2019).

Type Image Source Dataset Sampled Size Sampled Size Full Dataset Size
in LLVisionQA in LLDescribe for Assessment Task

In-the-wild

KONiQ-10K (Hosu et al., 2020) 600 100 10,073
SPAQ (Fang et al., 2020) 800 130 11,125
LIVE-FB (Ying et al., 2020) 300 50 39,810
LIVE-itw (Ghadiyaram & Bovik, 2016) 300 50 1,169

Generated
CGIQA-6K (Zhang et al., 2023b) 200 30 6,000
AGIQA-3K (Li et al., 2023c) 198 30 2,982
ImageRewardDB (Xu et al., 2023) 194 29 not included in (A3)

Artificially-
distorted

KADID-10K (Lin et al., 2019) 81 20 10,125
LIVEMultiDistortion (Jayaraman et al., 2012) 15 10 not included in (A3)
Corrupted COCO (Chen et al., 2015) 302 50 not included in (A3)

Corresponding Ability/Task in Q-Bench (A1) Perception (A2) Description (A3) Assessment
Total Benchmark Size for Respective Task 2,990 499 81,284

Covering Diverse Low-level Appearances. To cover diverse low-level appearances, we collect
multi-sourced images for each task, as depicted in Tab. 1. Among all images in the perception
and description tasks, two-thirds are in-the-wild images directly collected from social media posts,
smartphones or professional photography. The rest one-third images are collected after various
artificial distortions, or via generative processes (CGI, AIGC). Furthermore, we employ k-means
clustering for the low-level attribute indicators to certify that the sub-sampled images retain high
diversity. In the assessment task, full images of 7 IQA datasets within all three source types are
evaluated through traditional IQA metrics. The diverse and multiple sources of images morph the
Q-bench into a holistic and balanced benchmark to fairly evaluate low-level-related abilities.

2.2 BENCHMARK ON LOW-LEVEL PERCEPTION ABILITY

In the first task of Q-Bench, we evaluate the low-level perception ability of MLLMs to examine
whether they can answer simple natural queries related to low-level attributes. For this purpose, we
first collect 2,990 images (I) from multiple sources (see Table 1) with diverse low-level concerns.
Then, we collect one low-level-related question (Q), one correct answer to the question (C), and 1-3
candidate false answers (F) for each image. The 2,990 (I,Q,C,F) tuples compose into the LLVi-
sionQA dataset (as illustrated in Fig. 2), the first visual question answering (VQA) dataset in the
low-level computer vision field. Specifically, the questions in LLVisionQA cover four quadrants of
distinct low-level concerns (in Sec. 2.2.1) and three question types (in Sec. 2.2.2). After constructing
the dataset, the (I,Q,C,F) are together fed into MLLMs for evaluation, while their outputs are
further examined by GPT to judge correctness (in Sec. 2.2.3). The details are elaborated as follows.

2.2.1 QUADRANTS FOR LOW-LEVEL VISUAL CONCERNS

Axis 1: Distortions vs Other Low-level Attributes. The primary axis differentiates two categories
of low-level perceptual attributes: 1) technical distortions (Su et al., 2021), seen as the low-level
characteristics that directly degrade the quality of images (Ying et al., 2020), and 2) aesthetic-related
other low-level attributes (Kong et al., 2016; Hou et al., 2023) which are discernible to human
perception and evoke varied emotions. Several studies (Talebi & Milanfar, 2018; Ying et al., 2020;
Guha et al., 2020) follow this paradigm and categorize them through a relative golden standard, that
whether the attributes directly improve or degrade picture quality (Yes→Distortions; No→Others).
Despite this standard, we also enumerate common types of distortions vs other low-level attributes
as extra guidance for constructing the LLVisionQA dataset, as listed in Sec. A.1.2.

Axis 2: Global Perception vs Local In-context Perception. In recent research on low-level vi-
sion, it is observed that human perceptions of low-level visuals often intertwine with higher-level
contextual comprehension (Li et al., 2019; Wang et al., 2021; Wu et al., 2023a). For instance, a
clear sky might lack complex textures yet display exceptional clarity. Furthermore, localized low-
level appearances can deviate from their overall counterparts, as observed by Wu et al. (2022); Ying
et al. (2021). Acknowledging these differences, we curate local in-context perception (Fig. 2 right)
questions, that require MLLMs to grasp the content or other context to answer correctly, while other
questions are categorized as global perception (Fig. 2 left). (More analysis in Sec. A.1.2.)
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Figure 2: A dataset card of LLVisionQA that evaluates the low-level perception ability of MLLMs.
2,990 (I,Q,C,F) tuples are collected to cover three question types and four quadrants of low-level
visual concerns, providing an all-around evaluation of low-level visual perception for MLLMs.

2.2.2 QUESTION TYPES

In the LLVisionQA dataset, we curate three question types, Yes-or-No, What, and How to simulate
multiple query forms from humans. The details of the three question types are defined as follows.

Type 1: Yes-or-No Questions. The fundamental type of questions is Yes-or-No, i.e., judgments.
Specifically, we notice that some MLLMs especially prefer to respond with yes rather than no. To
reduce such biases in our benchmark, though designing questions with answers as yes is easier, we
ensure that around 40% of all judgments are with correct answers as no, via querying on contrastive
low-level attributes or non-existing low-level attributes. We further measure the bias levels of dif-
ferent MLLMs and present a further de-biased evaluation among them, as discussed in Sec. A.3.2.

Type 2: What Questions. Despite Yes-or-No judgments, the what questions are also a common type
of queries in recent MLLM benchmarks such as Lu et al. (2023). In Q-bench, they classify low-level
attributes in pictures (e.g., What distortion occurs in the image?), or associated context given specific
low-level appearances (for in-context perception questions, e.g., Which object in the image is under-
exposed?). Unlike Yes-or-No questions, the What questions examine more comprehensive low-level
attribute understanding of MLLMs, by requiring correct perception on multiple attributes.

Type 3: How Questions. Despite the two common types, we also include a special type, the How
questions, to cover non-extreme appearances (Wu et al., 2023d) of low-level attribute dimensions
into our benchmark, as an extension to Yes-or-No questions. As shown in Fig. 2, we can query How
is the clarity of the image? for the image with both clear and blurry areas, and answer with Medium.
With this special question type, we broaden the Q-bench into finer-grained low-level perception.

2.2.3 GPT-ASSISTED EVALUATION PROCESS

After constructing the LLVisionQA dataset, we feed it to multiple MLLMs to evaluate their abilities
on low-level visual perception. The input format to query MLLMs is exemplified as follows:

#User: How is the clarity of the image? (Question) [IMAGE TOKEN] (Image)
Choose between one of the following options: A. High (Correct) B. Medium(Wrong) C. Low(Wrong)

The correct and wrong answers are shuffled during the actual evaluation. Moreover, while traditional
visual question answering (Antol et al., 2015; Marino et al., 2019) tasks typically employ traditional
language metrics (BLEU-4, CIDEr) to compare performance, as observed by recent studies (Ye
et al., 2023) and validated by us, most MLLMs cannot consistently provide outputs on instructed
formats. Given the question above, different MLLMs may reply “A.”, “High”, “The clarity of the
image is high.”, “The image is of high clarity.” (all correct), which are difficult to be exhaustively-
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This image has good lighting and vibrant colors, but there is 
overexposure on the surface and bottom of the petals. The focus is 
on the central flower, but it is not very sharp, while the texture of the 
stamen and petals is clear. The two flowers in the background are 
blurred with indistinct features. The background blur is severe, 
making it unrecognizable. The overall quality of the image is good.

The clarity of this photo is not very high, it has very serious noise, 
and the pixel count is also relatively low. However, the colors in the 
image are vibrant and rich. The composition is very dense, with all 
hot air balloons, and the details are relatively clear. Therefore, the 
quality of this photo is average.

Overall, this image is relatively clear. The content of the shark's head is 
presented well, and the details and texture are also well presented. 
However, there is a bit of noise, and the pixels are a bit too large. The 
motion blur made by rapid movement of another shark in the 
background also affects the presentation of the content of the front 
shark. Therefore, the quality of this image is generally poor.

This photo was taken underwater. The overall image has a blue color 
cast. Although the composition is clear and the subject is distinct, 
the focus is not very good, making it difficult to recognize fine details 
of the subject. There is also overexposure in the upper right corner of 
the water's surface. Therefore, the quality of this photo is low.

Overall, the focus of this image is somewhat poor. The details 
of the cow's face are presented very poorly, and the texture is 
very badly shown. The colors are okay, and the composition is 
also good. However, the content as a whole is too 
monotonous and lacks richness. Therefore, I personally 
believe that the overall quality of this image is very poor.

The clarity of this photo is relatively high, with rich details in the 
facial features of the central figure. However, the top of the head is 
out of frame and not entirely complete. The background behind is 
reasonably blurred, with vibrant colors and high saturation. 
Therefore, this photo has high quality.
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Figure 3: A dataset card of LLDescribe that evaluates the low-level description ability of MLLMs.
499 images from 10 diverse sources are labeled with golden descriptions, to serve as text references
for single-modal GPT to evaluate the completeness, preciseness, and relevance of MLLM outputs.

included under traditional metrics. To solve this problem, we design, validate, and employ a 5-round
GPT-assisted evaluation process inspired by Liu et al. (2023c). Under this process, the question,
correct answers, and MLLM replies are fed into GPT for evaluation (See Sec. A.2.1 for its details).

2.3 BENCHMARK ON LOW-LEVEL DESCRIPTION ABILITY

In the second task of Q-Bench, we evaluate the language description ability of MLLMs on low-level
information. This task is a sibling task of image captioning (Chen et al., 2015; Young et al., 2014;
Agrawal et al., 2019) that describes image content with natural language, with a specific concern on
the low-level appearance of images. To evaluate this ability automatically, we first derive a golden
low-level description dataset, denoted as LLDescribe (Sec. 2.3.1), including one long (average 40
words) golden description provided by experts for each of 499 images. With these golden text
descriptions, we are able to measure the quality of output low-level descriptions from MLLMs with
a single-modal GPT, under the three dimensions: completeness, preciseness, as well as relevance
(Sec 2.3.2). The discussions of the golden descriptions and the evaluation process are as follows.

2.3.1 DEFINING Golden LOW-LEVEL DESCRIPTIONS FOR IMAGES

For the description ability, MLLMs should accurately and completely describe low-level visual in-
formation of images. Thus, the ground truths for these MLLMs are also built within a basic principle
to cover as many low-level concerns as possible, so long as they are enumerated in Sec. 2.2.1 and
occur in images. The resulting golden descriptions in LLDescribe have an average duration of 58
words, notably longer than common high-level image caption datasets (11 for Agrawal et al. (2019),
10 for Chen et al. (2015)). Similar to the LLVisionQA dataset for the perception task, the 499 im-
ages in LLDescribe dataset also include all 10 sources (as in Tab. 1) to cover images with diverse
low-level appearances. The golden descriptions on different sources of images are depicted in Fig. 3.

2.3.2 EVALUATION WITH SINGLE-MODAL GPT

Recent studies (Zheng et al., 2023) have proved single-modal GPT (OpenAI, 2023) to be a reliable
evaluation tool for pure language tasks. Via the LLDescribe dataset, we convert the multi-modality
problem into a text-only setting, by matching the MLLM outputs with the golden descriptions with
single-modal GPT under three dimensions: (1) Completeness. More matched information with the
golden description is encouraged. (2) Preciseness. The controversial information with the golden
description is punished. (3) Relevance. More proportions of MLLM outputs should be related
to low-level information, instead of others. Each dimension is scored among [0,1,2]. Similar as
Sec. 2.2.3, we repeat 5 rounds for each single evaluation and collect the weighted average as the
final score. The detailed settings for GPT to evaluate the three dimensions are in Sec. A.2.2.
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# User : Rate the quality of the image # MLLM : The quality of the image is[IMAGE] .

User : Rate the quality of the image # MLLM : The quality of the image is[IMAGE] . [SCORE 
TOKEN]

0.2276 0.1909 0.1675 0.1530 0.1481 0.1392 …

good poor excellent high great bad …

xT
[SCORE_TOKEN]

T

Large Language Models 
(LLaMA, LLaMA2, Flan-T5, MPT)

Raw Logits of Tokens at [SCORE_TOKEN]
Softmax

81.2MLLM-Predicted Score

*Actual templates for different 
MLLMs may slightly differ.

ITU-standard Rescaling

Figure 4: The proposed softmax-based quality assessment strategy for MLLMs. Instead of directly
decoding tokens from the [SCORE TOKEN] position, the strategy extracts log probabilities (logits)
of good and poor, and predicts quantifiable score via a softmax pooling between the two logits.

2.4 BENCHMARK ON PRECISE QUALITY ASSESSMENT ABILITY

In the third task, we benchmark the ability of MLLMs to provide quantitative assessment on the
overall low-level appearance of images. Unlike the two tasks above, we utilize existing IQA datasets
that are collected across a variety of low-level appearances to evaluate how MLLMs can predict
quantitative quality scores aligned with human opinions. All the three types of IQA datasets (in-
the-wild, generated, artificially-distorted) as mentioned in Sec. 2.1 are evaluated, to provide a broad
range measurement of the assessment ability of MLLMs. Nevertheless, how to collect quantifiable
quality scores from MLLMs remains challenging as their outputs only have weak measurability
(Sec. 2.4.1). Noticing that MLLMs can provide probabilities of tokens, we employ softmax pooling
on the logits of good and poor under a simple and direct prompt template, deriving into quantifiable
quality score predicted by MLLMs (Sec. 2.4.2), as illustrated in Fig. 4. Details are as follows.

2.4.1 WEAK MEASURABILITY OF MLLM OUTPUTS

In Q-Bench, we aim to fairly compare the assessment ability between different MLLMs on di-
verse low-level appearances. Henceforth, our principle is to define a unified, simplest instruction
that is applicable for all MLLMs on all IQA datasets. Under this principle, we conduct toy ex-
periments on LLVisionQA on Shikra and LLaVA-v1, with two simple instruction strategies: (A)
Direct Instruction, in which the prompt is designed as simple as “Rate the quality of the image”.
The top-frequency answers are good (78%), and poor (20%), with other outputs almost negligible.
(B) Numerical Instruction, in which we specifically instruct numerical ratings, with the prompt:
“Score the quality of the image from 1 to 5, with 1 as lowest and 5 as highest.”. Under the numerical
strategy, the top-frequency answers are 5 (84%), 1 (9%), and 3 (5%); though within the score range,
the frequencies of scores 2 and 4 are both less than 1%. The toy experiments imply the weak mea-
surability of MLLM outputs, given that the answers are statistically 1) biased towards positive, 2)
biased towards extreme, and 3) with only two effective scales. Therefore, it is necessary to explore
extended strategies for MLLMs to provide truly quantifiable outputs for low-level assessment.

2.4.2 A SOFTMAX-BASED EVALUATION STRATEGY

Given the above observations, we design the softmax-based evaluation strategy (Fig. 4) to reduce
the negative impacts of the biases and lack of scales. To start with, we design our strategy within
the Direct Instruction, which is more general and less biased than the Numerical Instruction.
The strategy is based on the observation that two top-frequency outputs, good and poor, can be
considered as anchors for better and worse human perception, and the Direct Strategy can be ap-
proximated into a binary classification problem on the [SCORE TOKEN] position, or technically,
an argmax between the logits of good (xgood

SCORE TOKEN) and poor (xpoor
SCORE TOKEN) on this position. In

our revised strategy, we modify the argmax into softmax to collect better quantifiable scores:

qpred =
ex

good
SCORE TOKEN

ex
good
SCORE TOKEN + ex

poor
SCORE TOKEN

(1)

This simple and generally-applicable strategy enables us to collect quantifiable outputs (qpred) from
MLLMs with higher correlation to human ratings, as verified in our experimental analysis (Tab. 9).
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Table 2: Results on the test subset for the low-level Perception ability of MLLMs. MLLMs with
top-3 performance in each sub-category and the overall LLVisionQA is emphasized with boldface.

Sub-categories Question Types Quadrants of Low-level Concerns
Overall↑Model (variant) Yes-or-No↑ What↑ How↑ Distortion↑ Other↑ In-context In-context

Distortion↑ Other↑
random guess 50.00% 28.48% 33.30% 37.24% 38.50% 39.13% 37.10% 37.94%
LLaVA-v1.5 (Vicuna-v1.5-7B) 64.60% 59.22% 55.76% 47.98% 67.30% 58.90% 73.76% 60.07%
LLaVA-v1.5 (Vicuna-v1.5-13B) 64.96% 64.86% 54.12% 53.55% 66.59% 58.90% 71.48% 61.40%
InternLM-XComposer-VL (InternLM) 68.43% 62.04% 61.93% 56.81% 70.41% 57.53% 77.19% 64.35%
IDEFICS-Instruct (LLaMA-7B) 60.04% 46.42% 46.71% 40.38% 59.90% 47.26% 64.77% 51.51%
Qwen-VL (QwenLM) 65.33% 60.74% 58.44% 54.13% 66.35% 58.22% 73.00% 61.67%
Shikra(Vicuna-7B) 69.09% 47.93% 46.71% 47.31% 60.86% 53.08% 64.77% 55.32%
Otter-v1 (MPT-7B) 57.66% 39.70% 42.59% 42.12% 48.93% 47.60% 54.17% 47.22%
InstructBLIP (Flan-T5-XL) 69.53% 59.00% 56.17% 57.31% 65.63% 56.51% 71.21% 61.94%
InstructBLIP (Vicuna-7B) 70.99% 51.41% 43.00% 45.00% 63.01% 57.19% 64.39% 55.85%
VisualGLM-6B (GLM-6B) 61.31% 53.58% 44.03% 48.56% 54.89% 55.48% 57.79% 53.31%
mPLUG-Owl (LLaMA-7B) 72.45% 54.88% 47.53% 49.62% 63.01% 62.67% 66.67% 58.93%
LLaMA-Adapter-V2 66.61% 54.66% 51.65% 56.15% 61.81% 59.25% 54.55% 58.06%
LLaVA-v1 (Vicuna-13B) 57.12% 54.88% 51.85% 45.58% 58.00% 57.19% 64.77% 54.72%
MiniGPT-4 (Vicuna-13B) 60.77% 50.33% 43.00% 45.58% 52.51% 53.42% 60.98% 51.77%

GPT-4V (Close-Source Model) 77.92% 79.18% 62.68% 70.58% 73.03% 74.66% 77.95% 73.36%
Junior-level Human 82.48% 79.39% 60.29% 75.62% 72.08% 76.37% 73.00% 74.31%
Senior-level Human 84.31% 88.94% 72.02% 79.65% 79.47% 83.90% 87.07% 81.74%

3 RESULTS ON Q-BENCH

In Q-Bench, we evaluate 15 variants on 13 up-to-date popular and competitive open-source MLLMs,
together with GPT-4V, under zero-shot settings. More results and analyses are appended in Sec. A.3.

3.1 RESULTS AND OBSERVATIONS ON PERCEPTION

Open-Source MLLMs. For a holistic examination on the perception ability of MLLMs, we eval-
uate the multi-choice correctness of MLLMs on different sub-categories of the LLVision dataset,
which is equally divided as dev (Tab. 7, will be released) and test (Tab. 2, will keep private)
subsets. We are glad that the majority of MLLMs can significantly outperform random guess on all
sub-categories. Considering that all participating MLLMs are without any explicit training on low-
level visual attributes, these results show strong potentials for these general-purpose models when
further fine-tuned with respective low-level datasets. Among all MLLMs, the recently-released
InternLM-XComposer-VL reaches the best accuracy on this question-answering task, followed by
LLaVA-v1.5, QWen-VL and InstructBLIP (Flan-T5), which show rather close results. By achieving
more than 60% accuracy on both subsets, these models show exciting potentials as robust low-level
visual assistants in the future. Another key observation is that almost all methods perceive worse on
distortions than other low-level attributes. One exception is LLaMA-Adapter-V2, which is the only
MLLM that adopts multi-scale features as visual inputs. We also notice that all MLLMs prefer yes
than no among Yes-or-No questions, as analyzed in Tab. 8; qualitative comparisons are illustrated
in Fig. 10. For Kosmos-2, we specially adopt close-set inference for it, as discussed in Sec. A.2.1.

GPT-4V vs Human. To evaluate the low-level perception abilities of the commercial MLLM,
GPT-4V, we gauge its accuracy against human using the test subset of LLVision dataset. GPT-4V
exhibits competitive performance and outperforms open-source MLLMs by a large margin (+9%),
and on par accuracy with the Junior-level Human. Despite its prowess, there is still a way to go for
GPT-4V before it can match the overall proficiency of the Senior-level Human (with experiences on
low-level visual tasks, 8% better than GPT-4V). Furthermore, across all categories, the results show
that GPT-4V, much like its open-source counterparts, faces challenges in recognizing distortions.

3.2 RESULTS AND OBSERVATIONS ON DESCRIPTION

For the description ability, InternLM-XComposer-VL reaches best proficiency again, especially in
terms of the relevance dimension. Nevertheless, in the perspective of the completeness and precision
of the descriptions, even the best of all MLLMs cannot obtain an excellent score; on the contrary,
almost all MLLMs reach an acceptable standard (0.8/2.0). In general, all MLLMs at present are only
with relatively limited and primary ability to provide low-level visual descriptions. We also conduct
a qualitative comparison for MLLM descriptions in Sec. A.3.3.
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Table 3: Results on the low-level Description ability of MLLMs. Pi denotes frequency for score i.
Dimensions Completeness Precision Relevance

Sum.↑
Model (variant) P0 P1 P2 score↑ P0 P1 P2 score↑ P0 P1 P2 score↑
LLaVA-v1.5 (Vicuna-v1.5-7B) 27.48% 54.74% 17.78% 0.90 30.51% 26.04% 43.45% 1.13 10.85% 60.34% 28.81% 1.18 3.21
LLaVA-v1.5 (Vicuna-v1.5-13B) 27.68% 53.78% 18.55% 0.91 25.45% 21.47% 53.08% 1.28 6.31% 58.75% 34.94% 1.29 3.47
InternLM-XComposer-VL (InternLM) 19.94% 51.82% 28.24% 1.08 22.59% 28.99% 48.42% 1.26 1.05% 10.62% 88.32% 1.87 4.21
IDEFICS-Instruct (LLaMA-7B) 28.91% 59.16% 11.93% 0.83 34.68% 27.86% 37.46% 1.03 3.90% 59.66% 36.44% 1.33 3.18
Qwen-VL (QwenLM) 26.34% 49.13% 24.53% 0.98 50.62% 23.44% 25.94% 0.75 0.73% 35.56% 63.72% 1.63 3.36
Shikra (Vicuna-7B) 21.14% 68.33% 10.52% 0.89 30.33% 28.30% 41.37% 1.11 1.14% 64.36% 34.50% 1.33 3.34
Otter-v1 (MPT-7B) 22.38% 59.36% 18.25% 0.96 40.68% 35.99% 23.33% 0.83 1.95% 13.20% 84.85% 1.83 3.61
Kosmos-2 8.76% 70.91% 20.33% 1.12 29.45% 34.75% 35.81% 1.06 0.16% 14.77% 85.06% 1.85 4.03
InstructBLIP (Flan-T5-XL) 23.16% 66.44% 10.40% 0.87 34.85% 26.03% 39.12% 1.04 14.71% 59.87% 25.42% 1.11 3.02
InstructBLIP (Vicuna-7B) 29.73% 61.47% 8.80% 0.79 27.84% 23.52% 48.65% 1.21 27.40% 61.29% 11.31% 0.84 2.84
VisualGLM-6B (GLM-6B) 30.75% 56.64% 12.61% 0.82 38.64% 26.18% 35.18% 0.97 6.14% 67.15% 26.71% 1.21 2.99
mPLUG-Owl (LLaMA-7B) 28.28% 37.69% 34.03% 1.06 26.75% 18.18% 55.07% 1.28 3.03% 33.82% 63.15% 1.60 3.94
LLaMA-Adapter-V2 30.44% 53.99% 15.57% 0.85 29.41% 25.79% 44.80% 1.15 1.50% 52.75% 45.75% 1.44 3.45
LLaVA-v1 (Vicuna-13B) 34.10% 40.52% 25.39% 0.91 30.02% 15.15% 54.83% 1.25 1.06% 38.03% 60.91% 1.60 3.76
MiniGPT-4 (Vicuna-13B) 34.01% 32.15% 33.85% 1.00 29.20% 15.27% 55.53% 1.26 6.88% 45.65% 47.48% 1.41 3.67

Table 4: Main evaluation results on the zero-shot Assessment ability of MLLMs, in comparison with
NIQE and CLIP-ViT-Large-14, the visual backbone of most MLLMs. Metrics are SRCC/PLCC.

Dataset Type In-the-wild Generated Artificial AverageModel / Dataset KONiQ-10k SPAQ LIVE-FB LIVE-itw CGIQA-6K AGIQA-3K KADID-10K
NIQE (Mittal et al., 2013) 0.316/0.377 0.693/0.669 0.211/0.288 0.480/0.451 0.075/0.056 0.562/0.517 0.374/0.428 0.387/0.398
CLIP-ViT-Large-14 0.468/0.505 0.385/0.389 0.218/0.237 0.307/0.308 0.285/0.290 0.436/0.458 0.376/0.388 0.354/0.368
LLaVA-v1.5 (Vicuna-v1.5-7B) 0.463/0.459 0.443/0.467 0.305/0.321 0.344/0.358 0.321/0.333 0.672/0.738 0.417/0.440 0.424/0.445
LLaVA-v1.5 (Vicuna-v1.5-13B) 0.448/0.460 0.563/0.584 0.310/0.339 0.445/0.481 0.285/0.297 0.664/0.754 0.390/0.400 0.444/0.474
InternLM-XComposer-VL (InternLM) 0.564/0.615 0.730/0.750 0.360/0.416 0.612/0.676 0.243/0.265 0.732/0.775 0.546/0.572 0.541/0.581
IDEFICS-Instruct (LLaMA-7B) 0.375/0.400 0.474/0.484 0.235/0.240 0.409/0.428 0.244/0.227 0.562/0.622 0.370/0.373 0.381/0.396
Qwen-VL (QwenLM) 0.470/0.546 0.676/0.669 0.298/0.338 0.504/0.532 0.273/0.284 0.617/0.686 0.486/0.486 0.475/0.506
Shikra (Vicuna-7B) 0.314/0.307 0.320/0.337 0.237/0.241 0.322/0.336 0.198/0.201 0.640/0.661 0.324/0.332 0.336/0.345
Otter-v1 (MPT-7B) 0.406/0.406 0.436/0.441 0.143/0.142 -0.008/0.018 0.254/0.264 0.475/0.481 0.557/0.577 0.323/0.333
Kosmos-2 0.255/0.281 0.644/0.641 0.196/0.195 0.358/0.368 0.210/0.225 0.489/0.491 0.359/0.365 0.359/0.367
InstructBLIP (Flan-T5-XL) 0.334/0.362 0.582/0.599 0.248/0.267 0.113/0.113 0.167/0.188 0.378/0.400 0.211/0.179 0.290/0.301
InstructBLIP (Vicuna-7B) 0.359/0.437 0.683/0.689 0.200/0.283 0.253/0.367 0.263/0.304 0.629/0.663 0.337/0.382 0.389/0.446
VisualGLM-6B (GLM-6B) 0.247/0.234 0.498/0.507 0.146/0.154 0.110/0.116 0.209/0.183 0.342/0.349 0.127/0.131 0.240/0.239
mPLUG-Owl (LLaMA-7B) 0.409/0.427 0.634/0.644 0.241/0.271 0.437/0.487 0.148/0.180 0.687/0.711 0.466/0.486 0.432/0.458
LLaMA-Adapter-V2 0.354/0.363 0.464/0.506 0.275/0.329 0.298/0.360 0.257/0.271 0.604/0.666 0.412/0.425 0.381/0.417
LLaVA-v1 (Vicuna-13B) 0.462/0.457 0.442/0.462 0.264/0.280 0.404/0.417 0.208/0.237 0.626/0.684 0.349/0.372 0.394/0.416
MiniGPT-4 (Vicuna-13B) 0.239/0.257 0.238/0.253 0.170/0.183 0.339/0.340 0.252/0.246 0.572/0.591 0.239/0.233 0.293/0.300

3.3 RESULTS AND OBSERVATIONS ON ASSESSMENT

To measure the assessment ability, we evaluate the performance of 15 MLLMs on 7 IQA datasets
that are with at least 1,000 images and 15 human ratings per image (itu, 2000). Primarily, we
notice that the majority of MLLMs are notably better than NIQE on non-natural circumstances
(CGI, AIGC, artificial distortions), showing their potential towards general-purpose evaluators on a
broader range of low-level appearances. We also notice that without explicit alignment with human
opinions during training, the most excellent MLLM, which is again InternLM-XComposer-VL, can
already outperform CLIP-ViT-Large-14 by a large margin (20%), marking the dawn of MLLMs
as robust quality evaluators. Furthermore, we also design a synonym ensemble (see Sec. A.2.3)
strategy which can further generally improve IQA accuracy of MLLMs, whose results are analyzed
in Sec. A.3.5. Despite their proficiency, current MLLMs are still less accurate in finer-grained
situations (LIVE-FB, CGIQA-6K) for the assessment task, which could be enhanced in the future.

4 CONCLUSION

In this study, we construct the Q-Bench, a benchmark to examine the progresses of MLLMs on low-
level visual abilities. Anticipating these large foundation models to be general-purpose intelligence
that can ultimately relieve human efforts, we propose that MLLMs should achieve three important
and distinct abilities: accurate perception on low-level visual attributes, precise and complete lan-
guage description on low-level visual information, as well as quantitative assessment on image
quality. To evaluate the abilities, we collect two multi-modality benchmark datasets for low-level
vision, and propose a unified softmax-based quantitative IQA strategy on MLLMs. Our evaluation
proves that even without any low-level-specific training, several extraordinary MLLMs still have de-
cent low-level abilities. Nevertheless, there is still a long way to go for MLLMs to be truly-reliable
general low-level visual assistants. We sincerely hope that the observations found in the Q-Bench
can inspire future MLLMs to enhance the low-level perception and understanding abilities.
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A APPENDIX

A.1 MORE INFORMATION ON BENCHMARK DATASETS

A.1.1 SUBJECTIVE EXPERIMENT

A total of eleven experts, each with professional skills and extensive experience in photography, are
invited to participate in the subjective labeling experiment of Q-Bench. The subjective experiment
takes place in a laboratory environment with standard indoor lighting. A Dell-4K monitor, which
supports a resolution of 3840 × 2160, is used for displaying the interfaces. The screenshots of
interfaces can be referred to in Fig. 5. Each expert annotates up to 30 images a day to avoid fatigue,
and every annotation is carefully reviewed by at least three other experts before acceptance. In this
way, we ensure the accuracy and rigor of the Q-Bench labels to the greatest extent possible. This,
in turn, makes the performance testing capability of Q-Bench more precise and meaningful.

A.1.2 MORE DETAILS ON LLVISIONQA

The Enumeration on Distortions and Other Low-level Attributes:

Distortions: Blurs [lens blur (out-of-focus), motion blur, zoom blur, gaussian blur, glass blur], Noises [gaus-
sian noise, speckle noise, pepper noise], Artifacts [compression artifact, transmission error], Exposure Issues
[under-exposure, over-exposure], Miscellaneous Artificial Distortions [pixelate, color-diffusion, jitter, etc]
Other low-level attributes: Color [color style, color vividity], Lighting [bright, dim], Composition [Sym-
metrical, Rule-of-Thirds], Visual Styles [animation, realism, computer-generated, AI-generated], Photographic
Methods [background bokeh (shallow DOF), high contrast, motion blur (on fast-moving objects), etc]

Relationship between In-context Questions and Global Questions:

Distortions: Is this image blurred? → In-context Distortions: Is the tree in the image blurred?
Distortions: How is the clarity of the image? → In-context Distortions: How is the clarity of the man’s face?

Other low-level: Is this image colorful? → In-context Other: Is the house colorful?
Other low-level: How is brightness of the image? → In-context Other: Which is the darkest object?
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(a) Interface for the LLVisionQA dataset (Perception)

(b) Interface for the LLDescribe dataset (Description)

Figure 5: The illustration of the annotation interfaces for the LLVisionQA dataset (questions, an-
swers) on Peception ability, and the LLDescribe dataset (text description) on Description ability.

A.2 DETAILS ON BENCHMARK EVALUATION SETTINGS

A.2.1 EVALUATION DETAILS FOR PERCEPTION ABILITY

[Special Note] Multi-choice Question vs Close-Set Inference for Kosmos-2:

While Kosmos-2 performs generally well on the description and assessment tasks, we notice that
it is hardly capable of answering a multi-choice question with the general prompt form applicable
for other methods, as follows:

How is the clarity of the image? (Question) [IMAGE TOKEN] (Image)
Choose between one of the following options: A. High (Correct) B. Medium(Wrong) C. Low(Wrong)

For most situations (86%) in our primary sample test with the prompts above, Kosmos-2 will di-
rectly append a new candidate (e.g., D. Excellent or D. Very Low) answer instead of choosing one
option among them, denoted as prompt failure. This might be because the language model of
Kosmos-2 has smaller capacity (1B) than other MLLMs that are based on LLaMA/MPT (7B/13B).

Considering that the prompt failure is actually not directly related with low-level perception, we try
different prompt engineering techniques to reduce the prompt failure rate, and finalize with a simple
modification which can limit the prompt failure to less than 10% in our sample set, as follows:

How is the clarity of the image? (Question) [IMAGE TOKEN] (Image)
Choose between one of the following options: A. High (Correct) B. Medium(Wrong) C. Low(Wrong)
#Answer:

Nevertheless, we are still not able to eliminate the prompt failures for Kosmos-2. Henceforth, to
systematically remove the negative effect of prompt failures on multi-choice questions for Kosmos-
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Table 5: Perplexity-based close-set evaluation compared with normal evaluation on LLVisionQA;
after eliminating the prompt failures, the results of Kosmos-2 significantly improved.

Sub-categories Question Types Quadrants of Low-level Concerns
Overall↑ #↓Model (variant) Yes-or-No↑ What↑ How↑ Distortion↑ Other↑ In-context In-context

Distortion↑ Other↑
random guess 50.00% 28.18% 33.30% 37.54% 38.49% 38.70% 36.50% 37.87% -
⋆⋆Kosmos-2 (normal) 58.20% 29.13% 34.22% 38.10% 44.30% 40.93% 44.20% 41.47% ✗
⋆⋆Kosmos-2 (close-set) 61.48% 37.13% 40.76% 40.04% 50.88% 45.30% 58.15% 47.26% ✓

Figure 6: Image of example (1). Figure 7: Image of example (2). Figure 8: Image of example (3).

2, we conduct a choice-free special setting for it, i.e. close-set inference, via ranking the perplexity
of different answers and choose the answer with minimum generative loss:

How is the clarity of the image? [IMAGE TOKEN] #Answer: High → loss:7.43→ ✓ Choose this.
How is the clarity of the image? [IMAGE TOKEN] #Answer: Medium → loss:7.56→ ✗
How is the clarity of the image? [IMAGE TOKEN] #Answer: Low → loss:7.92→ ✗

As shown in Tab. 5, perplexity-based close-set inference can notably improve results of Kosmos-2.
Considering that it is still the MLLM with fewest parameters among the ten models, its results are
decent at its model size. More importantly, they validate that our observation on the prompt failure
is reasonable, and we will further delve deeper into this problem of MLLMs in our extended works.

Settings for GPT Evaluation:

Given GPT’s inherent variability, identical prompts can yield non-definitive responses. To address
the impact of such situations on our evaluation, we’ve implemented a 5-round voting strategy. Under
this approach, we pose the same prompt as defined in the following templates five times, taking the
popular votes of GPT’s answers to determine the final outcome. Our human analysis on a sample set
confirms that the 5-round voting strategy improves GPT evaluation accuracy from 93.2% to 98.4%,
reducing errors to only 1/4 compared with the single-round evaluation.

Prompt Templates for GPT Evaluation:

#System: You are a helpful assistant that grades answers related to image quality and aesthetics. There are a
lot of special terms or keywords related to image processing and photography. You will pay attention to the
context of ’quality evaluation’ when grading.

#User: Assuming you are a grader, you will now be provided with a question [question] and a set of options
[options] with option [options[0]] being the correct answer. Additionally, there will be an answer [answer]
provided by a respondent. Please determine whether the respondentś answer is correct considering the context
of the question. Even if the word choice is not completely the same, you can decide based on the given options
and see whether the one in the answer is close enough to the given correct answer, The result is 1 if the answer
is correct and else the result is 0. Please only provide the result in the following format: Result:

Examples for GPT Evaluation:

(1) “Rephrased” Answers. (Fig. 6)

Question: Which is the brightest part in this image?

Choices: [‘Capital letters E and S’, ‘ST’, ‘18’, ‘56’]

MLLM Answer:
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The brightest part in this image is the neon sign with the letters “E” and “S” in capital letters.

5-Round GPT Answers:
[“Score: 1”,“Score: 1”,“Score: 1”,“Score: 1”,“Score: 1”]
→ Final Correctness after Voting: ✓

(2) “Distracted” Answers. (Fig. 7)

Question: How’s the level of blur in the image?

Choices: [‘Some blur’, ‘Not blurry at all’, ‘Very blurry’]

MLLM Answer:

The image has some blur, but it is not very blurry.

5-Round GPT Answers:
[“Score: 1”,“Score: 1”,“Score: 1”,“Score: 1”,“Score: 1”]
→ Final Correctness after Voting: ✓

(3) “Both” Answers. (Fig. 8)

Question: Is the little boy emphasized in the center of the composition of the image?

Choices: [‘No’, ‘Yes’]

MLLM Answer:

A. No, the little boy is not emphasized in the center of the composition of the image. B. Yes,

5-Round GPT Answers:
[“Score: 1”,“Score: 0”,“Score: 0”,“Score: 1”,“Score: 0”]
→ Final Correctness after Voting: ✗

A.2.2 EVALUATION DETAILS FOR DESCRIPTION ABILITY

General Description Prompt for MLLMs:

#User: Describe the quality, aesthetics and other low-level appearance of the image in details.

Settings for GPT Evaluation:

Given GPT’s inherent variability, identical prompts can yield non-definitive responses. To address
the impact of such situations on our evaluation, we’ve implemented a 5-round average pooling
strategy. Under this approach, we pose the same prompt as defined in the following templates
five times, taking the mean result of GPT’s answers to determine the final outcome. This method
effectively mitigates the unpredictability associated with GPT, ensuring a more accurate score.

Prompt Templates for GPT Evaluation:

#System: You are a helpful assistant.

Completeness. #User: Evaluate whether the description [MLLM DESC] completely includes the low-level
visual information in the reference description [GOLDEN DESC].
Please rate score 2 for completely or almost completely including reference information, 0 for not including at
all, 1 for including part of the information or similar description.
Please only provide the result in the following format: Score:
Preciseness. #The precision metric punishes controversial low-level descriptions that output description
contrasts with the referencce, e.g., blur for clear, high quality for low quality, colorful for monotonous, noisy
for clean, bright for dark.
Evaluate whether output [MLLM DESC] precisely reflects reference [GOLDEN DESC].
Please rate score 2 for totally no controversial low-level description, 1 for less controversial low-level
description than matched descrpition, and 0 for more controversial low-level description than matched
description. Please only provide the result in the following format: Score:
Relevance. #User: Evaluate whether the description [MLLM DESC] is relevant to the low-level visual
information, which may include blur, noise, exposure, artifact, color, lighting, focus, composition, etc.
Please rate score 2 for completely relevant, 1 for partly relevant, and 0 for totally irrelevant.
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Please only provide the result in the following format: Score:

In the prompt template, the [MLLM DESC] denotes the output description from MLLMs, and
[GOLDEN DESC] denotes the golden description in the LLDescribe dataset.

Examples for GPT Evaluation:

(A) Completeness.

User Input:
#User: Evaluate whether the description [ The image is a large, clear, and detailed picture of a
white airplane flying in the sky. The airplane appears to be a JAL (Japan Airlines) passenger jet,
and it is flying at a relatively low altitude. The plane’s white color and its distinctive red logo are
clearly visible, making it easily discernable as a JAL aircraft. Overall, the image captures a clear,
beautiful scene of the airplane in flight, with a blue sky as the backdrop.] completely includes the
low-level visual information in the reference description [This image has poor lighting. The blue sky
has vivid colors, but the overall tone is dark. The focus is on the main subject, the aircraft. Apart
from the backlighting on the wings, the details of the aircraft are clear. The composition is slightly
incomplete, and the clarity of the background sky is average. Overall, the image quality is good.].
Please rate score 2 for completely or almost completely including reference information, 0 for not
including at all, 1 for including part of the information or similar description.
Please only provide the result in the following format: Score:

5-Round GPT Answers:
[“Score: 1”,“Score: 1”,“Score: 1”,“Score: 1”,“Score: 1”]
→ Final Score: 1.0

(B) Preciseness.

User Input:
#User: The precision metric punishes controversial low-level descriptions that output description
outputs contrast with the referencce, e.g., blur for clear, high quality for low quality, colorful for
monotonous, noisy for clean, bright for dark.
Evaluate whether output [The image quality is good, with a clear and well-exposed scene. The
lighting appears to be natural, as the sun is shining on the scene, which adds a warm and inviting
atmosphere to the image. The composition is well-balanced, with the focus on the trees and the
pathway, which creates a sense of depth and perspective. The aesthetics of the image are pleasing,
with the use of natural light and the greenery of the trees contributing to a visually appealing scene.
The overall feeling of the image is peaceful and serene, as the viewer is invited to walk down the
pathway surrounded by the trees and the cityscape in the background.] precisely reflect reference
[The overall clarity of this image is very low, with serious focusing issues and significant noise. The
lighting is adequate, but the colors are monotone. The main subjects are trees and distant buildings,
which are extremely blurry and lack any texture details. The composition is unbalanced, and the
background is very blurry. Therefore, the quality of this image is very poor.], Please rate score 2 for
no controversial low-level description, 1 for less controversial low-level description than matched
descrpition, and 0 for more controversial low-level description than matched description.
Please only provide the result in the following format: Score:

5-Round GPT Answers:
[“Score: 0”,“Score: 0”,“Score: 0”,“Score: 0”,“Score: 0”]
→ Final Score: 0.0

(C) Relevance.

User Input:
#User: Evaluate whether the description [ The image is a low-level shot of a white dog walking
through a dark forest. The dog appears to be somewhat blurry, suggesting a level of motion in the
picture. The photo is not very detailed, and the colors in the image might be somewhat muted due to
the darkness of the forest. Overall, the picture has a somewhat mysterious and moody atmosphere.]
is relevant to the low-level visual information, which may include blur, noise, exposure, artifact,
color, lighting, focus, composition, etc.
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Please rate score 2 for completely relevant, 1 for partly relevant, and 0 for totally irrelevant.
Please only provide the result in the following format: Score:

5-Round GPT Answers:
[“Score: 2”,“Score: 1”,“Score: 1”,“Score: 2”,“Score: 1”]
→ Final Score: 1.4

Algorithm 1 Pytorch-style Pseudo Code for Softmax-based Strategy for IQA with MLLMs

from PIL import Image
from my_mllm_model import Model, Tokenizer, embed_image_and_text

model, tokenizer = Model(), Tokenizer()

prompt = "##User: Rate the quality of the image.\n" \
"##Assistant: The quality of the image is"

good_idx, poor_idx = tokenizer(["good","poor"]).tolist()

image = Image.open("image_for_iqa.jpg")
input_embeds = embed_image_and_text(image, prompt)
output_logits = model(input_embeds=input_embeds).logits[0,-1]
q_pred = (output_logits[[good_idx, poor_idx]] / 100).softmax(0)[0]

A.2.3 EVALUATION DETAILS FOR ASSESSMENT ABILITY

Example Pseudo Code for MLLMs on IQA:

In Algo. 1, we provide an example on how to evaluate image quality with MLLMs. The algorithm
is simple with only 9 lines, and could be easily integrated with any new MLLMs (based on causal
LLMs), so as to allow these models to quantitatively predict the quality of images.

IQA Evaluation Strategy for CLIP-ViT-Large-14:

In Tab. 4, we compare the IQA performance of MLLMs with CLIP-ViT-Large-14, the visual back-
bone of the majority of MLLMs. Attempting to understand whether the new language part (LLM)
can do better than the original language part of CLIP, we try to compare between CLIP and MLLMs
in a relatively aligned setting. Firstly, noticing that most MLLMs will resize images into 224× 224
as their input sizes, we align this setting on CLIP, and ignore the strategies as proposed by (Wang
et al., 2022). Secondly, same as the strategy on MLLMs, we also apply softmax pooling between
good and poor, as in the CLIP’s zero-shot classification format: a photo of good quality and a photo
of poor quality. Besides the two alignments, similar as existing practices (Wang et al., 2022; Wu
et al., 2023b; Zhang et al., 2023c), the quality scores of CLIP-ViT-Large-14 are obtained as follows:

qpred,CLIP =
eCosineSimilarity(f[IMAGE],fa photo of good quality)

eCosineSimilarity(f[IMAGE],fa photo of good quality) + eCosineSimilarity(f[IMAGE],fa photo of poor quality)
(2)

Special IQA Settings for Flan-T5-based InstructBLIP:

For InstructBLIP (Dai et al., 2023) (Flan-T5-XL), different from the majority of LLaMA-based (or
MPT-based Otter-v1) MLLMs, the two top-frequency tokens are high (89%) and low (8%) instead
of the common good↔poor. Henceforth, based on our motivation to only modify the argmax
into softmax and follow the default top-frequency output tokens of MLLMs, we replace the
probabilities of good↔poor into those of high↔low in Eq. 1 for T5, defined as follows:

qpred,T5 =
ex

high
SCORE TOKEN

ex
high
SCORE TOKEN + ex

low
SCORE TOKEN

(3)
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Figure 9: Radar chart for the Perception ability, where the performance of all MLLMs is presented
by subtracting the accuracy of random guess. See Tab. 7 for the respective numerical results.
Table 6: A brief view of 15 open-source MLLMs evaluated in the Q-Bench in chronological order.

Month of ReleaseModel Names Vision Architectures (V) V→L Language Architectures (L)
Backbone #Size Alignment Backbone Type

Oct.LLaVA-v1.5 (Vicuna-v1.5-7B) (Liu et al., 2023a) CLIP-ViT-Large-14 336 project MLP Vicuna-v1.5-7B pure-decoder
Oct.LLaVA-v1.5 (Vicuna-v1.5-13B) (Liu et al., 2023a) CLIP-ViT-Large-14 336 project MLP Vicuna-v1.5-13B pure-decoder
Sept.InternLM-XComposer-VL (InternLM) (Zhang et al., 2023a) EVA-CLIP-Giant-14 224 Q-Former InternLM pure-decoder
Sept.IDEFICS-Instruct (LLaMA-7B) (Huggingface, 2023) CLIP-ViT-Huge-14 224 cross-attn LLaMA-7B pure-decoder
Jul.Qwen-VL (QwenLM) (Bai et al., 2023) CLIP-ViT-Giant-14 448 cross-attn QWenLM pure-decoder
Jul.Shikra (Vicuna-7B) (Chen et al., 2023) CLIP-ViT-Large-14 224 project layers Vicuna-7B pure-decoder
Jun.Otter-v1 (MPT-7B) (Li et al., 2023a) CLIP-ViT-Large-14 224 cross-attn MPT-7B pure-decoder
Jun.Kosmos-2 (Peng et al., 2023) CLIP-ViT-Large-14 224 project layers custom (1B) pure-decoder
May.InstructBLIP (Flan-T5-XL) (Dai et al., 2023) EVA-CLIP-Giant-14 224 Q-Former Flan-T5-XL encoder-decoder
May.InstructBLIP (Vicuna-7B) (Dai et al., 2023) EVA-CLIP-Giant-14 224 Q-Former Vicuna-7B pure-decoder
May.VisualGLM-6B (GLM-6B) (Du et al., 2022) EVA-CLIP-Giant-14 224 Q-Former GLM-6B encoder-decoder
May.mPLUG-Owl (LLaMA-7B) (Ye et al., 2023) CLIP-ViT-Large-14 224 Q-Former LLaMA-7B pure-decoder
Apr.LLaMA-Adapter-V2 (Gao et al., 2023) CLIP-ViT-Large-14 224 cross-attn LLaMA-7B pure-decoder
Apr.LLaVA-v1 (Vicuna-13B) (Liu et al., 2023b) CLIP-ViT-Large-14 336 project layers Vicuna-13B pure-decoder
Apr.MiniGPT-4 (Vicuna-13B) (Zhu et al., 2023) CLIP-ViT-Large-14 224 Q-Former Vicuna-13B pure-decoder

As validated in our experiments (Tab. 10, the high↔low pair generally predicts better than
good↔poor on majority of databases. The better performance on MLLM-specific top-frequency
tokens by side validates the effectiveness of our methodology for MLLMs on IQA.

Further Improving IQA Abilities of MLLMs with Synonym Ensemble:

The quality assessment scores for the synonym ensemble strategy can be derived as:

qpred =
e
∑t∈P

t xt
SCORE TOKEN

e
∑t∈P

t xt
SCORE TOKEN + e

∑t∈N
t xt

SCORE TOKEN
(4)

where P indicates the positive token set (from good, fine, high, etc.), while N represents the negative
token set (from poor, bad, low, etc.). The results of different P and N are listed in Tab. 11.

Special Validation Protocol for CGIQA-6K:

The CGIQA-6K (Zhang et al., 2023b) dataset contains two separate sub-sets which consist of 3,000
game images and 3,000 movie images respectively, with different instructions for human annota-
tors during its subjective experiments. Therefore, we validate the MLLMs’ assessment performance
on the two sub-sets individually and average the results for the final exhibition. The results of NIQE
and CLIP-ViT-Large-14 are also obtained under the same protocol for a fair comparison.
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Table 7: Results on the dev subset for the low-level Perception ability of MLLMs. MLLMs with
top-3 performance in each sub-category and the overall LLVisionQA is emphasized with boldface.

Sub-categories Question Types Quadrants of Low-level Concerns
Overall↑Model (variant) Yes-or-No↑ What↑ How↑ Distortion↑ Other↑ In-context In-context

Distortion↑ Other↑
random guess 50.00% 27.86% 33.31% 37.89% 38.48% 38.28% 35.82% 37.80%
LLaVA-v1.5 (Vicuna-v1.5-7B) 66.36% 58.19% 50.51% 49.42% 65.74% 54.61% 70.61% 58.66%
LLaVA-v1.5 (Vicuna-v1.5-13B) 65.27% 64.38% 56.59% 56.03% 67.13% 61.18% 67.35% 62.14%
InternLM-XComposer-VL (InternLM) 69.45% 65.27% 60.85% 61.67% 70.14% 56.91% 75.10% 65.35%
IDEFICS-Instruct (LLaMA-7B) 56.18% 44.69% 44.02% 42.80% 54.17% 44.74% 56.33% 48.70%
Qwen-VL (QwenLM) 63.09% 58.19% 56.39% 50.58% 62.73% 57.89% 73.88% 59.40%
Shikra (Vicuna-7B) 65.64% 47.35% 49.09% 48.83% 59.49% 50.00% 64.08% 54.65%
Otter-v1 (MPT-7B) 57.09% 40.71% 39.55% 42.22% 49.31% 44.08% 52.65% 46.35%
InstructBLIP (Flan-T5-XL) 67.64% 59.96% 55.98% 56.23% 65.51% 58.22% 69.39% 61.47%
InstructBLIP (Vicuna-7B) 71.64% 52.65% 43.81% 48.64% 62.50% 55.59% 64.90% 56.72%
VisualGLM-6B (GLM-6B) 60.18% 54.20% 46.25% 51.75% 54.40% 53.62% 57.14% 53.78%
mPLUG-Owl (LLaMA-7B) 66.0% 54.87% 44.02% 51.36% 55.09% 54.28% 65.71% 55.38%
LLaMA-Adapter-V2 66.18% 59.29% 52.13% 57.39% 56.25% 63.16% 64.90% 59.46%
LLaVA-v1 (Vicuna-13B) 54.00% 53.10% 55.38% 48.64% 54.63% 55.59% 63.27% 54.18%
MiniGPT-4 (Vicuna-13B) 55.82% 50.22% 40.37% 42.02% 48.38% 51.97% 61.22% 49.03%

A.3 EXTENDED EXPERIMENTAL RESULTS

A.3.1 ARCHITECTURES OF DIFFERENT MLLMS

As compared in Tab. 6, the 15 variants of MLLMs as evaluated in the Q-Bench are with varying
vision and language architectures, as well as the alignment strategies between the two modalities.
It can be noticed that all MLLMs are combined with a version of CLIP Radford et al. (2021) and
a large language model, which are generally connected under one among three strategies: direct
project layers (MLP or linear layer), Q-Former (a transformer to abstract visual features into LLM
tokens), or cross-attention (use visual features as conditions for text generation).

A.3.2 EXTENDED RESULTS FOR PERCEPTION

Results on the dev subset:

In Tab. 7, we list the results on the dev subset of the LLVisionQA benchmark set for the low-
level perception task. This subset is planned to be opened to public in the future. Therefore, the
performance in it will only be taken as a reference. At present, all MLLMs as evaluated have not
yet seen this subset, so it can be taken as a cross-validation with the test subset. From Tab. 7 and
Tab. 2, we validate that MLLMs perform pretty similar between the two subsets, suggesting that
LLVisionQA is a reliable and stable benchmark set for question answering on low-level vision.

Radar Chart for Different MLLMs:

In Fig. 9, we show the radar chart to compare the low-level perception abiliies among different
MLLMs. Despite the observations as revealed in Sec. 3.1, we also notice two extra fun facts: 1)
Adding the content context does not degrade the performance of MLLMs. On the contrary, MLLMs
can answer better on in-context questions. This result validates the aforementioned conjectures that
appropriate higher-level contexts as prompts may help improve the preciseness of low-level visual
perception; 2) MLLMs have strong capabilities of answering what questions, suggesting potential
reasoning abilities. In the future, we will excavate more interesting characteristics of MLLMs and
try to improve their perception accuracy through better guidance based on these characteristics.

“Yes or No?”: How Biased are MLLMs?

In this section, we take a deeper analysis on the Yes-or-No judgment ability of MLLMs, that whether
these models can get similar accuracy on questions that should be answered with Yes, as those
should be replied as No. Sadly, we notice that all MLLMs have higher prediction accuracy on
Yes-questions than No-questions, while some MLLMs are more very severe biased (e.g., IDEFICS-
Instruct). Considering that our LLVisionQA dataset contains more (62%) Yes-questions than No-
questions (38%) and may introduce biases while comparing different MLLMs, we further compute
a de-biased accuracy for all these methods, as the mean value of the accuracies on two types of
questions, and present the respective de-biased rank for all participating MLLMs, as listed in Tab 8.
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Table 8: Judgment accuracies of MLLMs on questions with correct answers as Yes or No.

Model (variant) all correct answer: Yes correct answer: No mean de-biased #↓
random guess 50.00% 50.00% 50.00% 50.00% -
Shikra (Vicuna-7B) 66.91% 71.79% 60.00% 65.90% 3
LLaVA-v1 (Vicuna-13B) 57.10% 60.29% 51.66% 55.97% 6
MiniGPT-4 (Vicuna-13B) 57.56% 70.00% 37.38% 53.69% 8
LLaMA-Adapter-V2 67.12% 68.80% 64.76% 66.78% 2
InstructBLIP (Flan-T5-XL) 68.67% 80.14% 50.23% 65.19% 4
InstructBLIP (Vicuna-7B) 71.40% 84.32% 50.47% 67.39% 1
Otter-v1 (MPT-7B) 57.74% 70.14% 37.38% 53.76% 7
IDEFICS-Instruct (LLaMA-7B) 59.74% 88.65% 13.09% 50.87% 9
mPLUG-Owl (LLaMA-7B) 69.31% 95.82% 26.67% 61.25% 5

Question: Is there any blur in this image? 
A. Yes, B. No.

Shikra: The answer is yes.

Correct Answer: A. Yes.

LLaVA-v1: B. No.
MiniGPT-4: A. Yes.
Kosmos-2: Yes.
LLaMA-Adapter-V2: Yes, there is blur in the image.
InstructBLIP-T5: A. Yes.
InstructBLIP-Vicuna: The answer is yes, there is 
blur in this image.

IDEFICS-Instruct: A. Yes.
mPLUG-Owl: Yes, there is blur in this image.

Otter-v1: B. No.

Question：Which part of the human is cropped out of the 
image? A. His head; B. His leg; C. His hand.

Shikra: The answer is arm.

Correct Answer: A. His head.

LLaVA-v1: The part of the human that is cropped out 
of the image is his leg.
MiniGPT-4: B. His leg.
Kosmos-2: His leg.
LLaMA-Adapter-V2: The image crops out the player's 
hand, focusing on the baseball player's leg as he slides into 
the base.
InstructBLIP-T5: A.
InstructBLIP-Vicuna: D. His arm

IDEFICS-Instruct: B. His leg.
mPLUG-Owl: The image crops out the man's leg.

Otter-v1: B. His leg.

(a) (b)

Figure 10: Qualitative comparison for MLLM perception responses.

We hope this study on the biases and the de-biased results can provide a fairer comparison among
them, as well as bring insights on the future improvements of MLLMs for low-level perception.

Qualitative examples of MLLM responses:

In Fig. 10, we show qualitative examples of MLLM responses on questions in the LLVisionQA
dataset, that MLLMs are still unstable on basic low-level attributes such as blurs (Fig. 10(a)), and
may fail on in-context questions that are easy to human (Fig. 10(b)). These unsatisfactory results
suggest that we still need to improve the basic low-level perception ability of these models.

A.3.3 EXTENDED RESULTS FOR DESCRIPTION

Bar Chart for Different MLLMs:

In Fig. 11, we show the bar chart to visualize MLLM capabilities on the three dimensions of low-
level visual description. From the figure, we notice that current MLLMs still struggle on describing
complete and accurate low-level information. As the relevance scores are generally higher (showing
that most MLLMs can follow this abstract instruction well), the results suggest that the main bottle-
neck of MLLMs on enhancing their description ability is still the perception on low-level attributes.

A Qualitative Comparison on the Descriptions:
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Figure 11: Bar chart for the Description ability, with scores in all dimensions normalized into [0, 1].

Table 9: Effectiveness of the proposed softmax probability-based strategy against the baseline
argmax strategy, on multiple MLLMs and different IQA datasets. Metrics are SRCC/PLCC.

Dataset Type In-the-wild Generated Artificial
Model / Dataset Strategy KONiQ-10k SPAQ LIVE-FB LIVE-itw AGIQA-3K KADID-10K
Shikra (Vicuna-7B) argmax 0.178/0.201 0.277/0.281 0.152/0.169 0.248/0.267 0.513/0.562 0.245/0.246
Shikra (Vicuna-7B) softmax 0.314/0.307 0.327/0.337 0.237/0.241 0.322/0.336 0.640/0.661 0.324/0.332
LLaVA-v1 (Vicuna-13B) argmax 0.038/0.045 0.101/0.108 0.036/0.035 0.059/0.075 0.240/0.297 0.005/0.005
LLaVA-v1 (Vicuna-13B) softmax 0.462/0.457 0.442/0.462 0.264/0.280 0.404/0.417 0.626/0.684 0.349/0.372
LLaMA-Adapter-V2 argmax 0.218/0.237 0.417/0.423 0.222/0.257 0.205/0.239 0.545/0.579 0.228/0.229
LLaMA-Adapter-V2 softmax 0.354/0.363 0.464/0.506 0.275/0.329 0.298/0.360 0.604/0.666 0.412/0.425
InstructBLIP (Vicuna-7B) argmax 0.284/0.352 0.662/0.664 0.156/0.249 0.195/0.264 0.505/0.567 0.305/0.307
InstructBLIP (Vicuna-7B) softmax 0.359/0.437 0.683/0.689 0.200/0.283 0.253/0.367 0.629/0.663 0.337/0.382
mPLUG-Owl (LLaMA-7B) argmax 0.111/0.154 0.463/0.469 0.081/0.123 0.169/0.237 0.410/0.466 0.203/0.204
mPLUG-Owl (LLaMA-7B) softmax 0.409/0.427 0.634/0.644 0.241/0.271 0.437/0.487 0.687/0.711 0.466/0.486

In Fig. 12 and Fig 12 we qualitatively compare among different MLLM low-level descriptions on
an AI-generated image and a natural photograph. While most MLLMs can precisely describe their
contents (which are actually not instructed in our user prompt), different MLLMs may have several
divergences on their quality and related low-level attributes, especially on the AI-generated image.
Some MLLMs describe it as clear, colorful, or aesthetically pleasing, which are typically incorrect;
on the contrary, some correct descriptions are also seen, such as colors are subdued, not as clear
as it could be, or not very detailed. This qualitative study validates our quantitative conclusion
that current MLLMs general cannot provide noise-free low-level visual descriptions of images in
a stable manner. Moreover, we notice that even given the same prompt, different MLLMs tend
to describe the image with diverse output styles and lengths, while the longer descriptions usually
come with a larger percentage of descriptions on irrelevant information.

A.3.4 EXTENDED RESULTS FOR ASSESSMENT

Radar Chart for Different MLLMs:

In Fig. 14, we visualize the IQA performance of different MLLMs on seven IQA datasets. The
visualization proves that MLLMs can notably positively correlate with human ratings, and could
very highly align with human perception on relatively coarse situations (AGIQA-3K, SPAQ). As
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User: Describe the quality, aesthetics and other low-level appearance of the image in details.

Shikra: The image features a portrait of a woman, with her hair parted to the side. Her facial features are realistic
and clear, and she appears to be looking to the side with a serious expression. The overall quality of the image is
good, with no obvious flaws or distortions in the depiction..

LLaVA-v1: The image is a pencil drawing of a woman with a serious expression. The quality of the drawing is
quite good, with a clear and detailed representation of the woman's facial features and hair. The exposure appears
to be well-balanced, and there is no significant noise level in the image. The aesthetics of the drawing are
characterized by the use of muted colors, which give the image a somewhat somber and serious tone. The
composition is well-balanced, with the woman's face taking up most of the space in the drawing. Overall, the
image has a professional and polished appearance, with a focus on the woman's facial expression and her overall
demeanor.

MiniGPT-4: The image is a portrait of a woman with long, straight black hair and a serious expression. The
woman has a pale complexion and dark eyes, which are focused on the viewer. The woman's face is oval in shape
and her features are well defined. The woman's nose is straight and her lips are thin and closed. The woman's
eyes are large and her eyebrows are thick and straight. The woman's face is symmetrical and her facial expression
is serious. The image is well lit and the lighting highlights the woman's features. The image is in color and the
colors are muted and subdued. The image is of high quality and the details are well defined. The image is
aesthetically pleasing and the overall appearance of the image is professional.

Kosmos-2: The image has a low-quality quality, as it is a painting of a woman with a long, dark hair. The quality
of the painting is not as clear as it could be, as the woman's face is not fully visible. The lighting is not well-
balanced, and the overall atmosphere is not pleasant. The painting lacks a sense of style and feels unfinished.

LLaMA-Adapter-V2: The image is a black and white drawing of a woman with a blue background. The quality
of the image is clear, with good exposure and no noticeable noise. The aesthetics of the image are simple and
minimalistic, with a focus on the woman's face and the blue background. The composition is balanced and well-
framed, drawing attention to the subject. The style of the drawing is realistic, capturing the essence of the
woman's facial features and expression. The overall feeling of the image is serene and contemplative, conveying
a sense of calm and introspection.

InstructBLIP-T5: The image depicts a portrait of a woman with long, dark hair and a brown background. The
image has a high level of quality and is well-executed in terms of color, contrast, and texture. It also has a strong
contrast between the light and dark parts of the image, which creates a sense of depth and dimension. Overall, the
image is well-executed in terms of quality, aesthetics, and other low-level appearance.

InstructBLIP-Vicuna: The image is a painting of a woman's face, depicted in a realistic style. The painting
features a close-up view of the woman's face, focusing on her eyes, nose, and mouth. Her hair is styled in a
simple yet elegant manner, emphasizing her facial features. The overall aesthetics of the painting convey a sense
of realism and attention to detail, capturing the subtle nuances of the woman's facial expression and appearance.
The painting also showcases the artist's skillful use of color and shading to create a lifelike representation of the
subject.

Otter-v1:. The image features a portrait of a woman with long hair, painted in an oil painting style. The
woman's face is the main focus of the painting, and her features, such as her eyes, nose, and mouth, are well-
defined. Her hair is described as dark, which adds depth and contrast to the overall composition. The painting
appears to be a close-up of the woman, emphasizing her facial features and creating a sense of depth and detail.

IDEFICS-Instruct: The image is a drawing of a woman with long hair. The woman has a small nose and a small
mouth. The hair is brown and the eyes are dark. The drawing is in shades of gray and the background is white.
The woman's hair is long and flowing. The drawing is not very detailed and the woman's face is not very clear.
The drawing is not very aesthetically pleasing and the woman's face is not very attractive.

mPLUG-Owl: The image is a portrait of a woman with a brownish-yellowish complexion, wearing a white
shirt. The woman's face is the focal point of the painting, and her eyes are the most prominent feature. The
painting has a soft, dreamy quality, with a warm, inviting atmosphere. The lighting is natural, creating a soft
glow on the woman's face and hair. The composition is well-balanced, with the woman's face taking up most of
the canvas, and the background providing a sense of depth and context. The style of the painting is realistic,
capturing the woman's likeness and emotions in a realistic manner. Overall, the painting is aesthetically pleasing
and evokes a sense of calm and serenity.

Golden Description: This photo has relatively low clarity, making it
difficult to discern the details of the brushstrokes in the center
artwork. There is substantial loss of detail, and the overall color
saturation is very low, giving it a dim and dull appearance. Therefore,
the quality of this photo is low.

Figure 12: A qualitative comparison for MLLM descriptions on an AI-generated image.
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User: Describe the quality, aesthetics and other low-level appearance of the image in details.

Shikra: The image presents a close-up view of a delicious dessert, which appears to be a piece of fruit or a scoop
of ice cream with berries on top. The dessert is topped with whipped cream, giving it an appetizing and visually
appealing appearance. In addition to the dessert, there are three red berries on top, adding a touch of color and
natural sweetness to the dish. The overall quality of the image is good, with a clear representation of the dessert
and the berries, making it an inviting and attractive scene for viewers.

LLaVA-v1: The image quality is high, with a clear and well-exposed shot of a delicious-looking dessert. The
dessert is a fruit-based dish, featuring a slice of peach with whipped cream on top. The lighting in the image is
bright and evenly distributed, which enhances the colors and overall appearance of the dessert. The composition
is visually appealing, with the fruit and whipped cream arranged in a pleasing manner. The aesthetics of the
image are further enhanced by the use of natural light, which adds a warm and inviting atmosphere to the scene.
Overall, the image is visually appealing, with a high level of quality and aesthetics that make it an enjoyable sight
for viewers.

MiniGPT-4: The image shows a close-up view of a dessert dish consisting of sliced peaches topped with
whipped cream and a sprig of mint. The peaches are fresh and ripe, with a vibrant color and a smooth, glossy
texture. The whipped cream is smooth and fluffy, adding a creamy texture and a sweet flavor to the dish. The
mint leaf adds a fresh and aromatic touch to the dish. The overall aesthetics of the image are pleasing and
appetizing. The bright colors of the peaches and the whipped cream are visually appealing and make the dish
look appetizing. The use of fresh ingredients and the attention to detail in the presentation of the dish make it
look appetizing and well-made. The lighting in the image is soft and natural, which enhances the colors and
texture of the dish. The quality of the image is high, with good resolution and clarity.

Kosmos-2: The fruit is displayed on a white plate, and the dessert is garnished with a sprig of mint and a few
berries. The quality of the photo is clear, with no distracting elements or noise. The aesthetics of the dessert are
pleasing, with the white plate and the fruit creating a visually appealing scene. The low-light conditions, such as
the white background and the bright colors of the fruit, contribute to the overall pleasant appearance of the
photograph.

LLaMA-Adapter-V2: The image has a high-quality, clear, and well-exposed photo of a blue and white dessert.
The aesthetics of the image are pleasing, with the blue and white color scheme creating a visually appealing and
appetizing presentation. The composition of the image is well-balanced, with the dessert placed prominently in
the center of the frame, surrounded by a white background. The style of the image is clean and professional,
showcasing the dessert in a way that highlights its beauty and appeal. The feeling of the image is inviting and
enticing, making it an ideal choice for sharing on social media or as a visual representation of a delicious dessert.

InstructBLIP-T5: The image captures a close-up of a dessert consisting of an apple, a strawberry, and a piece of
ice cream. The texture of the ice cream is smooth and creamy, with a hint of sweetness and a hint of tartness.
There is also a red berry on top of the ice cream, which adds a touch of color and flavor to the dessert. Overall,
the image has a high level of quality and aesthetic appeal.

InstructBLIP-Vicuna: In the image, there is a delicious-looking dessert displayed on a white plate. The dessert
consists of various fruits, such as peaches and berries, arranged in a visually appealing manner. The fruits are
placed on top of each other, creating a colorful and eye-catching display. Additionally, the dessert is adorned with
a sprig of fresh mint leaves, adding a touch of freshness and flavor to the dish. Overall, the image showcases a
well-presented and visually appealing dessert, highlighting the quality and aesthetics of the dish.

Otter-v1:. The image has a high-quality appearance with clear and sharp details, aesthetically pleasing colors,
and a balanced composition.

IDEFICS-Instruct: The image is clear and well-exposed, with no visible noise. The composition is well-
balanced, and the colors are vibrant and appealing. The style is artistic, and the feeling is refreshing and
invigorating.
mPLUG-Owl: The image is a close-up of a dessert with a slice of fruit on a plate. The dessert is presented in a
dish with a white background, which creates a clean and visually appealing appearance. The fruit slice is placed
on top of the dessert, adding a touch of color and contrast to the overall scene. The image is well-exposed, with
no noticeable noise or distortion. The aesthetics of the image are enhanced by the use of a shallow depth of field,
which focuses on the dessert and fruit slice, creating a sense of depth and drawing the viewer's attention to the
subject. The image has a simple and elegant style, making it an appealing and visually pleasing representation of
the dessert.

Golden Description: The overall clarity of this image is high, with
rich and vibrant colors. The composition is exquisite and
aesthetically pleasing. The texture details of the photographed fruit
subject are abundant and clear, accurately capturing the reflection
effect of light. Therefore, the quality of this image is very high.

Figure 13: A qualitative comparison for MLLM descriptions on an in-the-wild photograph.
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Figure 14: Radar chart for the Assessment ability, where the performance of all MLLMs is presented
by an average of SRCC/PLCC metrics. See Tab. 4 for the respective numerical results.

Table 10: Comparison between high↔low and good↔poor on InstructBLIP (Flan-T5-XL).

Dataset Type In-the-wild Generated Artificial
Model / Dataset tokens KONiQ-10k SPAQ LIVE-FB LIVE-itw AGIQA-3K KADID-10K
InstructBLIP (Flan-T5-XL) good↔poor 0.288/0.289 0.581/0.618 0.221/0.231 0.017/0.020 0.264/0.281 0.264/0.220
InstructBLIP (Flan-T5-XL) high↔low 0.334/0.362 0.582/0.599 0.248/0.267 0.113/0.113 0.378/0.400 0.211/0.179

such results are obtained via no direct alignment with human perception and from the simplest
prompts (“Rate the quality of the image.”), they suggest the exciting underlying abilities of general
intelligence to naturally understand “quality” via their vast training data. However, the performance
are still yet to be accurate on finer-grained situations, such as LIVE-FB, which is constructed by
more than 95% high-quality images (i.e. quality score > 50/100), or CGIQA-6K, made up entirely
by relatively high-quality images collected from video games or movies. This suggests that MLLMs
still need to improve the measurability on their predictions through well-designed fine-tuning.

A Deep Dive Into the Probabilities:

(A) Softmax vs Argmax:

In the first part of the deep dive, we quantitatively evaluate the correlation with human perception
on a simple argmax strategy between good↔bad and our proposed softmax strategy. In Tab. 9, we
confirm that for all MLLMs on all IQA datasets, the more measurable softmax strategy predicts
better than the argmax strategy, which degenerates into only two scores, 0 and 1. Though the result
is generally expected, the experiments validate that MLLMs have quantitative assessment ability
hidden behind their word outputs, and prove the effectiveness of our softmax-based IQA strategy.

(B) [For T5-based InstructBLIP] high↔low vs good↔poor:

We further conduct a special study for InstructBLIP (Flan-T5-XL). With a different LLM as lan-
guage backbone, even pre-trained with the same settings, the T5-version of InstructBLIP tends to
predict more high↔low than good↔poor, different from its Vicuna-7B-based counterpart. The ex-
perimental results in Tab 10 validate that the more probable high↔low tokens are more competitive
in IQA than good↔bad tokens, suggesting that top-frequency tokens are more quality-distinctive.
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Table 11: Evaluation results on the synonym ensemble strategy for the (A3) Assessment ability
on MLLMs with top-5 results in the default A3 leaderboard of the Q-Bench. After ensemble, the
rankings among them are not changed. Metrics are SRCC/PLCC.

Dataset Type In-the-wild Generated Artificial
Average

Prompt / Dataset KONiQ-10k SPAQ LIVE-FB LIVE-itw CGIQA-6K AGIQA-3K KADID-10K
LLaVA-v1.5 (Vicuna-v1.5-13B)
good↔poor 0.448/0.460 0.563/0.584 0.310/0.339 0.445/0.481 0.285/0.297 0.664/0.754 0.390/0.400 0.444/0.473
fine↔bad 0.449/0.487 0.583/0.597 0.316/0.360 0.466/0.513 0.349/0.365 0.650/0.749 0.425/0.437 0.463/0.501
high↔low 0.456/0.482 0.529/0.553 0.286/0.306 0.489/0.513 0.276/0.284 0.683/0.752 0.316/0.331 0.434/0.460
good+high↔poor+low 0.462/0.484 0.548/0.573 0.303/0.327 0.480/0.509 0.283/0.294 0.687/0.763 0.350/0.363 0.445/0.473
good+fine↔poor+bad 0.463/0.483 0.579/0.596 0.321/0.356 0.467/0.505 0.326/0.339 0.670/0.762 0.420/0.426 0.464/0.495
good+high+fine↔poor+low+bad 0.474/0.498 0.565/0.588 0.314/0.345 0.488/0.521 0.311/0.322 0.692/0.771 0.382/0.392 0.461/0.491
LLaVA-v1.5 (Vicuna-v1.5-7B)
good↔poor 0.463/0.459 0.443/0.467 0.305/0.321 0.344/0.358 0.321/0.333 0.672/0.738 0.417/0.440 0.424/0.445
fine↔bad 0.453/0.469 0.457/0.482 0.258/0.288 0.303/0.333 0.294/0.302 0.558/0.617 0.389/0.420 0.388/0.416
high↔low 0.474/0.476 0.370/0.386 0.261/0.262 0.432/0.429 0.266/0.269 0.669/0.716 0.304/0.331 0.397/0.410
good+high↔poor+low 0.491/0.491 0.416/0.436 0.293/0.300 0.696/0.751 0.413/0.416 0.298/0.304 0.359/0.389 0.424/0.441
good+fine↔poor+bad 0.482/0.482 0.461/0.485 0.300/0.320 0.644/0.708 0.339/0.357 0.327/0.336 0.425/0.451 0.425/0.449
good+high+fine↔poor+low+bad 0.512/0.513 0.443/0.465 0.303/0.315 0.408/0.415 0.318/0.324 0.697/0.752 0.392/0.421 0.439/0.458
mPLUG-Owl (LLaMA-7B)
good↔poor 0.409/0.427 0.634/0.644 0.241/0.271 0.437/0.487 0.148/0.180 0.687/0.711 0.466/0.486 0.432/0.458
fine↔bad 0.357/0.398 0.622/0.636 0.260/0.290 0.422/0.475 0.178/0.224 0.606/0.646 0.536/0.534 0.426/0.458
high↔low 0.353/0.369 0.610/0.624 0.176/0.187 0.436/0.464 0.110/0.124 0.662/0.663 0.361/0.378 0.387/0.401
good+high↔poor+low 0.382/0.402 0.626/0.642 0.208/0.228 0.446/0.483 0.125/0.144 0.684/0.697 0.409/0.432 0.411/0.432
good+fine↔poor+bad 0.403/0.430 0.635/0.645 0.260/0.292 0.444/0.493 0.172/0.213 0.664/0.694 0.525/0.527 0.443/0.471
good+high+fine↔poor+low+bad 0.395/0.421 0.633/0.647 0.233/0.258 0.455/0.496 0.147/0.173 0.685/0.704 0.463/0.483 0.430/0.455
Qwen-VL (QwenLM)
good↔poor 0.470/0.546 0.676/0.669 0.298/0.339 0.504/0.532 0.273/0.284 0.617/0.686 0.486/0.486 0.475/0.506
fine↔bad 0.467/0.507 0.352/0.365 0.205/0.238 0.451/0.472 0.188/0.185 0.599/0.627 0.354/0.378 0.374/0.396
high↔low 0.531/0.578 0.626/0.616 0.281/0.290 0.574/0.560 0.286/0.314 0.637/0.692 0.332/0.344 0.467/0.485
good+high↔poor+low 0.539/0.600 0.684/0.673 0.299/0.324 0.565/0.568 0.306/0.330 0.660/0.721 0.414/0.422 0.495/0.520
good+fine↔poor+bad 0.495/0.558 0.596/0.581 0.264/0.307 0.521/0.548 0.270/0.270 0.640/0.691 0.435/0.449 0.460/0.486
good+high+fine↔poor+low+bad 0.541/0.600 0.632/0.617 0.286/0.316 0.570/0.577 0.301/0.318 0.664/0.719 0.416/0.429 0.487/0.511
InternLM-XComposer-VL (InternLM)
good↔poor 0.564/0.615 0.730/0.750 0.360/0.416 0.612/0.676 0.243/0.265 0.732/0.775 0.546/0.572 0.541/0.581
fine↔bad 0.546/0.597 0.720/0.736 0.341/0.389 0.626/0.671 0.213/0.227 0.681/0.708 0.494/0.479 0.517/0.544
high↔low 0.543/0.590 0.704/0.720 0.331/0.372 0.612/0.656 0.223/0.251 0.716/0.755 0.490/0.500 0.517/0.549
good+high↔poor+low 0.564/0.613 0.723/0.743 0.354/0.405 0.621/0.676 0.238/0.264 0.734/0.775 0.522/0.546 0.537/0.575
good+fine↔poor+bad 0.573/0.626 0.735/0.755 0.366/0.420 0.629/0.687 0.236/0.260 0.732/0.771 0.531/0.551 0.543/0.581
good+high+fine↔poor+low+bad 0.571/0.621 0.728/0.748 0.360/0.410 0.629/0.683 0.236/0.261 0.734/0.773 0.521/0.538 0.540/0.576

A.3.5 Synonym Ensemble: FURTHER IMPROVING IQA ABILITY (A3) FOR MLLMS

As shown in Table 11, the synonym ensemble strategy (as proposed in Eq. 4) on top-5 methods (i.e.
InternLM-XComposer-VL, QWen-VL, LLaVA-v1.5 (13B), mPLUG-Owl, and LLaVA-v1.5 (7B))
can in average lead to up to 2% accuracy improvement (in average 1.3%). We believe it is a useful
boost to improve the performance of MLLMs on IQA task.

Nevertheless, we also notice that different MLLMs perform best with different specific prompt
combos. For example, the good+fine↔poor+bad performs best on InternLM-XComposer-VL, but
comes with reduced accuracy on QWen-VL compared with only good↔poor. While good↔poor is
proved overall best single word pair for the evaluation and shows stable results across MLLMs, we
decide to keep the current strategy in Q-Bench to evaluate MLLMs.

B STATEMENT ON DATA CONTAMINATION

The Q-bench contains three tasks, where the first two tasks, (A1) perception and (A2) description,
are evaluated with our own datasets proposed with the paper. For these two tasks, the questions,
answers, or low-level descriptions in the two datasets are not seen by any existing MLLMs. Half of
LLVisionQA (i.e. the test subset) and full of LLDescribe labels are kept private, to avoid being
added to the training sets of any MLLMs. We hope that this measure will allow Q-Bench to have
long-term significance as an indicator of low-level visual abilities.

For the third task, (A3) assessment, the situation is a bit more complicated. For open-source models
as tested, almost all of them have provided their technical reports, and as far as we know, no image
quality assessment (IQA) dataset has participated in the multi-modality training stages of them.
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While text knowledge about image quality assessment should have been injected to them (e.g. a
blurry image is a low quality image) during their pure-language training stages, we think this
should not be regarded as data contamination for IQA, because the images cannot be seen by a
language model. Instead, they are important knowledge for MLLMs to better link particular visual
attributes (blur) to human opinions (quality), which motivates us to explore MLLMs for these tasks.

C LIMITATIONS AND DISCUSSIONS

In Section A.3.2, we observed that MLLMs frequently respond with ‘yes’ to Yes-or-No questions.
It’s worth noting that the current LLVisionQA dataset is skewed, with 62% of its questions being
Yes-questions and only 38% being No-questions. This imbalance could introduce biases when com-
paring various MLLMs. To fully address this, we aim to balance the dataset by preparing a reversed
version for each question in our subsequent work, ensuring a less biased evaluation.

For the description task, we acknowledge that judging whether a description matches the gold
description is a subjective process, which may not have an absolute standard. Even when evaluated
by humans, the scores rated for the MLLM descriptions are subject to individual differences. Though
we have employed the 5-round GPT-assisted evaluation protocol, which could be the most reliable
and reproducible way at present, it may still unavoidably contain hallucinations (from GPT). We
will continue to explore how to design a more reliable evaluation protocol for the low-level visual
description task in our follow-up works.

While the proposed Q-Bench has offered a comprehensive evaluation on the low-level visual capa-
bilities of MLLMs, it does not provide direct guidance on enhancing these capabilities. As our next
steps, we intend to progressively scale up the LLDescribe and LLVisionQA datasets to eventually
allow a reliable low-level visual instruction tuning process that can further improve the low-level
abilities for MLLMs.
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