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ABSTRACT

Metal–organic frameworks (MOFs) are of immense interest in applications such
as gas storage and carbon capture due to their exceptional porosity and tunable
chemistry. Their modular nature has enabled the use of template-based methods
to generate hypothetical MOFs by combining molecular building blocks in accor-
dance with known network topologies. However, the ability of these methods to
identify top-performing MOFs is often hindered by the limited diversity of the
resulting chemical space. In this work, we propose MOFDiff: a coarse-grained
(CG) diffusion model that generates CG MOF structures through a denoising dif-
fusion process over the coordinates and identities of the building blocks. The
all-atom MOF structure is then determined through a novel assembly algorithm.
Equivariant graph neural networks are used for the diffusion model to respect the
permutational and roto-translational symmetries. We comprehensively evaluate
our model’s capability to generate valid and novel MOF structures and its effective-
ness in designing outstanding MOF materials for carbon capture applications with
molecular simulations1.

1 INTRODUCTION

Metal–organic frameworks (MOFs), characterized by their permanent porosity and highly tun-
able structures, are emerging as a versatile class of materials with applications spanning gas stor-
age (Gomez-Gualdron et al., 2014; Li et al., 2018), gas separations (Lin et al., 2020; Qian et al., 2020),
catalysis (Yang & Gates, 2019; Bavykina et al., 2020; Rosen et al., 2022), and drug delivery (Cao
et al., 2020; Lawson et al., 2021). These frameworks are constructed from metal ions or clusters
(“nodes”) coordinated to organic ligands (“linkers”), forming a vast and diverse family of crystal
structures (Moghadam et al., 2017). Unlike traditional solid-state materials, MOFs offer unparalleled
tunability, as their structure and function can be engineered by varying the choice of metal nodes
and organic linkers. The surge in interest surrounding MOFs is evident in the increasing number of
research studies dedicated to their synthesis, characterization, and computational design (Kalmutzki
et al., 2018; Boyd et al., 2017a; Yusuf et al., 2022).

The modular nature of MOFs naturally lends itself to template-based representations and algorithmic
assembly. These algorithms create hypothetical MOFs by connecting metal nodes and organic linkers
(collectively, building blocks) along connectivity templates known as topologies (Boyd et al., 2017a;
Yaghi, 2020; Lee et al., 2021). Given a combination of topology, metal nodes, and organic linkers, the
MOF structure is obtained through heuristic algorithms that arrange the building blocks, aligning them
with the vertices and edges designated by the chosen topology, followed by a structural relaxation
process based on classical force fields.

The template-based approach to MOF design has led to the use of high-throughput computational
screening approaches (Boyd et al., 2019), variational autoencoders (Yao et al., 2021), genetic algo-
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Figure 1: (a) MOFDiff encodes a coarse-grained (CG) representation of MOF structures and decodes
CG MOF structures with a denoising diffusion process. To generate a CG MOF structure, the lattice
parameters L and the number of building blocks K are predicted from the latent vector z to initialize
a random structure. A denoising diffusion process conditional on z generates the building block
identities and coordinates. Inverse design is enabled through gradient-based optimization over z in
the latent space. (b) The all-atom MOF structure is recovered from the coarse-grained representation
through three steps: (1) the building block identities are decoded from the learned representation; (2)
building block orientations are randomly initialized, then the assembly algorithm (Figure 4) is run to
re-orient the building blocks; (3) the assembled structure goes through an energetic minimization
process using the UFF force field. The relaxed structure is then used to compute structural and gas
adsorption properties. Atom color code: Zn (purple), O (red), C (gray), N (blue), H (white).

rithms (Day & Wilmer, 2020; Zhou & Wu, 2022; Park et al., 2022), Bayesian optimization (Comlek
et al., 2023), and reinforcement learning (Zhang et al., 2019; Park et al., 2023b) to discover new
combinations of building blocks and topologies to identify top-performing materials. However,
template-based methods enforce a set of pre-curated topology templates and building block identities.
This inherently narrows the range of designs these hypothetical MOF construction methods can
produce (Moosavi et al., 2020), possibly excluding materials suited for some applications. Therefore,
we aim to derive a generative model based on 3D representations of MOFs without the need for
pre-defined templates that often rely on chemical intuition.

Diffusion models (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021) have made significant
progress in generating molecular and inorganic crystal structures (Shi et al., 2021; Luo et al., 2021;
Xie et al., 2022; Xu et al., 2022; 2023; Hoogeboom et al., 2022; Jing et al., 2022; Corso et al., 2022;
Ingraham et al., 2022; Luo et al., 2022; Yim et al., 2023; Watson et al., 2023; Lee et al., 2023; Gruver
et al., 2023; Park et al., 2023c; Jiao et al., 2023). Recent work (Park et al., 2023a) also explored using
a diffusion model to design linker molecules in specific MOFs. In terms of data characteristics, both
inorganic crystals and MOFs are represented as atoms in a unit cell. However, a typical MOF unit
cell contains hundreds of atoms (Figure 1), while the most challenging dataset studied in previous
works (Xie et al., 2022; Lyngby & Thygesen, 2022) only focused on inorganic crystals with less than
20 atoms in the unit cell. Training a diffusion model for complex MOF systems with atomic-scale
resolution is not only technically challenging and computationally expensive but also suffers from
extremely poor data efficiency. To name one challenge, without accounting for the internal structures
of the metal clusters and the molecular linkers, directly applying diffusion models over the atomic
representation of MOFs can very easily lead to unphysical structures for the inorganic nodes and/or
organic linkers.

To address the challenges above, we propose MOFDiff, a coarse-grained diffusion model for generat-
ing 3D MOF structures that leverages the modular and hierarchical structure of MOFs (Figure 1 (a)).
We derive a coarse-grained 3D representation of MOFs, a diffusion process over this CG MOF repre-
sentation, and an assembly algorithm for recovering the all-atom MOF structure. In our experiments,
we adapt the MOF dataset from Boyd et al. 2019 (BW-DB) that contains hypothetical MOF structures
and computed property labels related to separation of carbon dioxide (CO2) from flue gas. We train
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Figure 2: MOF decomposition with connections visualized. Connection points are light blue. (a) A
MOF unit cell. (b) For visibility, we visualize the metal node and one other organic linker, one at a
time. (c) All four building blocks in this example MOF.

MOFDiff on BW-DB and use MOFDiff to generate and optimize MOF structures for carbon capture.
In summary, the contributions of this work are:

• We derive a coarse-grained representation for MOFs where we specify the identities and
coordinates of structural building blocks. We propose to learn a contrastive embedding to
represent the vast building block design space.

• We formulate a diffusion process for generating coarse-grained MOF 3D structures. We
then design an assembling algorithm that, given the identities and coordinates of building
blocks, re-orients the building blocks to recover the atomic MOF structures. The generated
atomic structures are further refined with force field relaxation (Figure 1 (b)).

• We demonstrate that MOFDiff can generate valid and novel MOF structures. MOFDiff
surpasses the scope of previous template-based methods, producing MOFs that extend
beyond simple combinations of pre-specified building blocks.

• We use MOFDiff to optimize MOF structures for carbon capture and evaluate the perfor-
mance of the generated MOFs using molecular simulations. We show that MOFDiff can
discover MOFs with exceptional CO2 adsorption properties with excellent efficiency.

2 REPRESENTATION OF 3D MOF STRUCTURES

Like any solid-state material, a MOF structure can be represented as the periodic arrangement of
atoms in 3D space, defined by the infinite extension of a 3-dimensional unit cell. A unit cell that
includes N atoms is described by three components: (1) atom types A = (a1, ..., aN ) ∈ AN , where
A denotes the set of all chemical elements; (2) atom coordinates X = (x1, ...,xN ) ∈ RN×3; and
(3) periodic lattice L = (l1, l2, l3) ∈ R3×3. The periodic lattice defines the periodic translation
symmetry of the material. Given M = (A,X,L), the infinite periodic structure is represented as,

{(a′i,x′
i)|a′i = ai,x

′
i = xi + k1l1 + k2l2 + k3l3, k1, k2, k3 ∈ Z}, (1)

where k1, k2, k3 are any integers that translate the unit cell using L to tile the entire 3D space. A
MOF generative model aims to generate 3-tuples M that correspond to valid2, novel, and functional
MOFs. As noted in the introduction, prior research (Xie et al., 2022) employed a diffusion model
on atomic types and coordinates to produce valid and novel inorganic crystal structures, specifically
with fewer than 20 atoms in the unit cell. However, MOFs present a distinct challenge: their unit
cells typically comprise tens to hundreds of atoms, composed of a diverse range of metal nodes and
organic linkers. Directly applying the atomic diffusion model to MOFs poses formidable learning
and computational challenges due to their increased size and complexity. This necessitates a new
approach that can leverage the hierarchical nature of MOFs.

Hierarchical representation of MOFs. A coarse-grained 3D structural representation of a MOF
can be derived from the coordinates and identities of the building blocks constituting the MOF. Such
a representation is attractive, as the number of building blocks (denoted K) in a MOF is generally
orders of magnitude smaller than the number of atoms (denoted N , K ≪ N ). We denote a coarse-
grained MOF structure with K building blocks as MC = (AC ,XC ,L). The three components:

2Assessing the validity of MOF 3D structures is hard in practice. We defer our protocol for validity
determination to the experiment section.
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Figure 3: (a) Learning a compact representation of building blocks for CG diffusion. Building
blocks are extracted from MOF structures and embedded through a GemNet-OC encoder. The
representation is trained through a contrastive learning loss such that similar building blocks have
similar embeddings. (b) The distribution of the number of atoms and the distribution of the number
of connection points for the building blocks extracted from BW-DB. Atom color code: Cu (brown),
Zn (purple), O (red), N (blue), C (gray), H (white).

(1) AC = (aC1 , ..., a
C
K) ∈ BK are the identities of the building blocks, where B denotes the set of

all building blocks; (2) XC = (xC
1 , ...,x

C
K) ∈ RK×3 are the coordinates of the building blocks;

(3) L are the lattice parameters. To obtain this coarse-grained representation, we need a systematic
procedure to determine which atoms constitute which building blocks. In other words, we need
an algorithm to assign the N atoms to K connected components, which correspond to K building
blocks.

Luckily, multiple methods have been developed for decomposing MOFs into building blocks based on
network topology and MOF chemistry (Bucior et al., 2019; Nandy et al., 2022; Bonneau et al., 2018;
Barthel et al., 2018; Li et al., 2014; O’Keeffe & Yaghi, 2012). We employ the metal-oxo algorithm
from the popular MOF identification method MOFid (Bucior et al., 2019). Figure 1 (a) demonstrates
the coarse-graining process: the atoms of each building block are identified with MOFid and assigned
the same color in the visualization. From these segmented atom groups, we can compute the building
block coordinates XC and identities AC for all K building blocks to construct the coarse-grained
representation. Each building block is extracted by removing single bonds that connect it to other
building blocks. Every atom that forms such bonds to another building block is then assigned a special
pseudo atom, called a connection point, at the midpoint of the original bonds that were removed.
Figure 2 illustrates this process. We can now compute building block coordinates XC by computing
the centroid of the connection points for each building block3.

The building block identities AC are, on the other hand, tricky to represent because there is a huge
space of possible building blocks for any non-trivial dataset. Furthermore, many building blocks share
an identical chemical composition, varying only by small geometric variations and translation/rotation.
Example building blocks are visualized in Figure 3 (a). To illustrate the vast space of building blocks,
we extracted 2 million building blocks from the training split of the BW-DB dataset (289k MOFs).
To quantify the extent of geometric variation among building blocks with the same molecule/metal
cluster, we computed the ECFP4 fingerprints (Rogers & Hahn, 2010) for each building block using
their molecular graphs and found 242k unique building block identities. This building block space is
too large to be represented as a categorical variable in a generative model. A brief introduction to the
tools such as MOFid is included in Appendix B.3.

Contrastive representation of building blocks. In order to construct a compact representation of
building blocks for diffusion-based modeling, we use a contrastive learning approach (Hadsell et al.,

3We compute the coarse-grained coordinates based on the connection points because the assembly algorithm
introduced later relies on matching the connection points to align the building blocks.
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Figure 4: The MOF assembly process. Connection points (light blue) are highlighted for visibility.

2006; Chen et al., 2020) to embed building blocks into a low dimensional latent space. A building
block i is encoded as a vector bi using a GemNet-OC encoder (Gasteiger et al., 2021; 2022), an
SE(3)-invariant graph neural network model. We then train the GNN building block encoder using
a contrastive loss to map small geometric variations of the same building block to similar latent
vectors in the embedding space. In other words, two building blocks are a positive pair for contrastive
learning if they have the same ECFP4 fingerprint. Figure 3 (a) illustrates the contrastive learning
process, while Figure 3 (b) shows the distribution of the number of atoms and the distribution of
the number of connection points for building blocks extracted from BW-DB. The contrastive loss is
defined as:

LC = − 1

|B|
∑
i∈B

log

∑
j∈B+

i
exp(si,j/τ)∑

j∈B\B+
i
exp(si,j/τ)

(2)

where B is a training batch, B+
i are the other data points in B that have the same ECFP4 fingerprint

as i, si,j is the similarity between building block i and building block j, and τ is the temperature factor.
We define si,j = pT

i pj/(||pi||||pj ||), which is the cosine similarity between projected embeddings
pi and pj . The projected embedding is obtained by projecting the building block embedding bi using
a multi-layer perceptron (MLP) projection head: pi = MLP(bi). The projection layer is a standard
practice in contrastive learning frameworks for improved performance.

With a trained building block encoder, we encode all building blocks extracted from a MOF to
construct the building block identities in the coarse-grained representation: AC = (b1, ..., bK) ∈
RK×d, where d is the embedding dimension of the contrastive building block encoder (d = 32 for
BW-DB). The contrastive embedding allows accurate retrieval through finding the nearest neighbor
in the embedding space.

3 MOF DESIGN WITH COARSE-GRAINED DIFFUSION

MOFDiff. Equipped with the CG MOF representation, we encode MOFs as latent vectors and decode
MOF structures with conditional diffusion. The MOFDiff model is composed of four components
(Figure 1 (a)): (1) A periodic GemNet-OC encoder4 that outputs a latent vector z = PGNNE(M

C);
(2) an MLP predictor that predicts the lattice parameters and the number of building blocks from
the latent code z: L̂, K̂ = MLPL,K(z); (3) a periodic GemNet-OC denoiser that denoises random
structures to CG MOF structures conditional on the latent code: sAC , sXC = PGNND(M̃

C
t , z),

where sAC , sXC are the predicted scores for building block identities AC and coordinates XC , and
M̃C

t is a noisy CG structure at time t in the diffusion process; (4) an MLP predictor that predicts
properties c (such as CO2 working capacity) from z: ĉ = MLPP(z).

The first three components are used to generate MOF structures, while the property predictor MLPP

can be used for property-driven inverse design. To sample a CG MOF structure from MOFDiff,
we follow three steps: (1) randomly sample a latent code z ∼ N (0, I); (2) decode the lattice
parameters L and the number of building blocks K from z, use L and z to initialize a random
coarse-grained MOF structure M̃C = (ÃC , X̃C ,L); (3) generate the coarse-grained MOF structure
MC = (AC ,XC ,L) through the denoising diffusion process conditional on z. Given the final
building block embedding AC ∈ RK×d, we decode the building block identities by finding the
nearest neighbors in the building block embedding space of the training set. More details on the
training and diffusion processes and the training schematics (Figure 10) are included in Appendix B.1.

4We refer interested readers to Xie & Grossman 2018; Chen et al. 2019; Xie et al. 2022 for details about
handling periodicity in graph neural networks.
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Recover all-atom MOF structures. The orientations of building blocks are not specified by the
CG MOF representation, but they can be determined by forming connections between the building
blocks. We design an assembly algorithm that optimizes the building block orientations to match the
connection points of adjacent building blocks such that the MOF becomes connected (visualized in
Figure 4). This optimization algorithm places Gaussian densities at the position of each connection
point and maximizes the overlap of these densities between compatible connection points. Two
connection points are compatible if they come from two different building blocks: one is from a
metal atom, and the other is from a non-metal atom (Figure 2). The radius of the Gaussian densities is
gradually reduced in the optimization process: at the beginning, the radius is high, so the optimization
problem is smoother, and it is simpler to find an approximate solution. At the end of optimization,
the radius of the densities is small, so the algorithm can find accurate orientations for matching
the connection points closely. This overlap-based loss function is differentiable with regard to the
building block orientation, and we optimize for the building block orientations using the L-BFGS
optimizer (Byrd et al., 1995). Details regarding the assembly algorithm are included in Appendix B.2.

The assembly algorithm outputs an all-atom MOF structure that is fed to a structural relaxation
procedure using the UFF force field (Rappé et al., 1992). We modify a relaxation workflow from
previous work (Nandy et al., 2023) implemented with LAMMPS (Thompson et al., 2022) and LAMMPS
Interface (Boyd et al., 2017b) to refine both atomic positions and the lattice parameters using the
conjugate gradient algorithm.

Full generation process. Six steps are needed to generate a MOF structure: (1) sample a latent
vector z; (2) decode the lattice parameters L and the number of building blocks K from z, use L
and K to initialize a random coarse-grained MOF structure; (3) generate the coarse-grained MOF
structure through the denoising diffusion process conditional on z; (4) decode the building block
identities by finding their nearest neighbors from the building block vocabulary; (5) use the assembly
algorithm to re-orient building blocks such that compatible connection points’ overlap is maximized;
(6) relax the all-atom structure using the UFF force field to refine the lattice parameter and atomic
coordinates. All steps are demonstrated in Figure 1.

4 EXPERIMENTS

Our experiments aim to evaluate two capabilities of MOFDiff:

1. Can MOFDiff generate valid and novel MOF structures?

2. Can MOFDiff design functional MOF structures optimized for carbon capture?

We train and evaluate our method on the BW-DB dataset, which contains 304k MOFs with less than
20 building blocks (as defined by the metal-oxo decomposition algorithm) from the 324k MOFs
in Boyd et al. 2019. We limit the size of MOFs within the dataset under the hypothesis that MOFs
with extremely large primitive cells may be difficult to synthesize. The median lattice constant in the
primitive cell of an experimentally realized MOF in the Computation-Ready, Experiment (CoRE)
MOF 2019 dataset is, for example, only 13.8 Å (Chung et al., 2019). We use 289k MOFs (95%) for
training and the rest for validation. We do not keep a test split, as we evaluate our generative model
on random sampling and inverse design capabilities. On average, each MOF contains 185 atoms (6.9
building blocks) in the unit cell; each building block contains 26.8 atoms on average.

4.1 GENERATE VALID AND NOVEL MOF STRUCTURES

Determine the validity and novelty of MOF structures. Assessing MOF validity is generally
challenging. We employ a series of validity checks:

1. The number of metal connection points and the number of non-metal connection points
should be equal. We call this criterion Matched Connection.

2. The MOF atomic structure should successfully converge in the force field relaxation process.

3. For the relaxed structure, we adopt MOFChecker (Jablonka, 2023) to check validity.
MOFChecker includes a variety of criteria: the presence of metal and organic elements,
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Figure 5: MOFDiff samples match the reference distribution for various structural properties.

porosity, no overlapping atoms, no non-physical atomic valences or coordination envi-
ronments, no atoms or molecules disconnected from the primary MOF structure, and no
excessively large atomic charges. We refer interested readers to Jablonka 2023 for details.

All Match Valid VNU BW-DB
0

20

40

60

80

100

Pe
rc

en
t

Figure 6: The validity of
MOFDiff samples for increas-
ingly strict criteria. “Match”
stands for matched connec-
tion. “VNU” stands for valid,
novel, and unique. Almost all
valid samples are also novel
and unique. The last column
shows the validity percentage
of BW-DB under our criteria.

We say a MOF structure is valid if all three criteria above are satis-
fied. For novelty, we adopt the MOF identifier extracted by MOFid
and say a MOF is novel if its MOFid differs from any other MOFs
in the training dataset. We also count the number of unique gener-
ations by filtering out replicate samples using their MOFid. We are
ultimately interested in the valid, novel, and unique (VNU) MOFs
discovered.

MOFDiff generates valid and novel MOFs. A prerequisite for
functional MOF design is the capability to generate novel and valid
MOF structures. We randomly sample 10,000 latent vectors from
N (0, I), decode through MOFDiff, assemble, and apply force field
relaxation to obtain the atomic structures. Figure 6 shows the num-
ber of MOFs satisfying the validity and novelty criteria: out of the
10,000 generations, 5,865 samples satisfy the matching connection
criterion; 3012 samples satisfy the validity criteria, and 2998 MOFs
are valid, novel, and unique. To evaluate the structural diversity of
the MOFDiff samples, we investigate the distribution of four im-
portant structural properties calculated with Zeo++ (Willems et al.,
2012): the diameter of the smallest passage in the pore structure,
or pore limiting diameter (PLD); the surface area per unit mass, or
gravimetric surface area; the mass per unit volume, or density; and the ratio of total pore volume to
total cell volume, or void fraction (Martin & Haranczyk, 2014). These structural properties, which
characterize the geometry of the pore network within the MOF, have been shown to correlate directly
with important properties of the bulk material (Krishnapriyan et al., 2020). The distributions of
MOFDiff samples and the reference distribution of BW-DB are shown in Figure 5. We observe
that the property distribution of generated samples matches well with the reference distribution of
BW-DB, covering a wide range of property values.

4.2 OPTIMIZE MOFS FOR CARBON CAPTURE

Climate change is one of the most significant and urgent challenges that humanity needs to address.
Carbon capture is one of the few technologies that can mitigate current CO2 emissions, for which
MOFs are promising candidate materials (Trickett et al., 2017; Ding et al., 2019). In this experiment,
we evaluate MOFDiff’s capability to optimize MOF structures for use as CO2-selective sorbents in
point-capture applications.

Molecular simulations for gas adsorption property calculations. For faithful evaluation, we carry
out grand canonical Monte Carlo (GCMC) simulations to calculate the gas adsorption properties of
MOF structures. We implement the protocol for simulation of CO2 separation from simulated flue
gas with vacuum swing regeneration proposed in Boyd et al. 2019 from scratch, using egulp to
calculate per-atom charges on the MOF (Kadantsev et al., 2013; Rappe & Goddard III, 1991) and
RASPA2 to carry out GCMC simulations (Dubbeldam et al., 2016) since the original simulation code
is not publicly available. Parameters for CO2 and N2 were taken from Garcia-Sanchez et al. 2009 and
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Figure 7: CO2 adsorption properties for MOFDiff optimized samples (top-5 annotated with green
boxes) compared to the reference distribution and selected literature MOFs (grey boxes). The four
small panels breakdown working capacity to more fundamental gas adsorption properties.

TraPPE (Potoff & Siepmann, 2001), respectively. Under this protocol, the adsorption stage considers
the flue exhaust a mixture of CO2 and N2 at a ratio of 0.15:0.85 at 298 K and a total pressure of 1 bar.
The regeneration stage uses a temperature of 363 K and a vacuum pressure of 0.1 bar for desorption.
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Figure 8: The validity of
MOFDiff samples optimized
for CO2 working capacity. Al-
most all valid samples are also
novel and unique.

The key property for practical carbon capture purposes is high CO2
working capacity, the net quantity of CO2 capturable by a given
quantity of MOF in an adsorption/desorption cycle. Several factors
contribute to a high working capacity, such as the CO2 selectivity
over N2, CO2/N2 uptake for each condition, and CO2 heat of adsorp-
tion, which reflects the average binding energy of the adsorbing gas
molecules. In the appendix, Figure 11 shows the benchmark results
of our implementation compared to the original labels of BW-DB,
which demonstrate a strong positive correlation with our implemen-
tation underestimating the original labels by an average of around
30%. MOFDiff is trained over the original BW-DB labels and uses
latent-space optimization to maximize the BW-DB property values.
In the final evaluation, we use our re-implemented simulation code.

MOFDiff discovers promising candidates for carbon capture.
We randomly sample 10,000 MOFs from the training dataset and
encode these MOFs to get 10,000 latent vectors. We use the Adam optimizer (Kingma & Ba, 2015) to
maximize the model-predicted CO2 working capacity for 5,000 steps with a learning rate of 0.0003.
The resulting optimized latent vectors are then decoded, assembled, and relaxed. After conducting
the validity checks described in Section 4.1, we find 2054 MOFs that are valid, novel, and unique
(Figure 7 (a)). These 2054 MOFs are then simulated with our GCMC workflow to compute gas
adsorption properties. Given the systematic differences between the original labels of BW-DB and
those calculated with our reimplemented GCMC workflow, we randomly sampled 5,000 MOFs from
the BW-DB dataset and recalculated the gas adsorption properties using our GCMC workflow to
provide a fair baseline for comparison. Figure 7 shows the CO2 working capacity distribution of
the BW-DB MOFs and the MOFDiff optimized MOFs: the MOFs generated by MOFDiff have
significantly higher CO2 working capacity. The four smaller panels break down the contributions to
CO2 working capacity from CO2/N2 selectivity, CO2 heat of adsorption, as well as CO2 uptake at the
adsorption (0.15 bar, 298 K) and the desorption stages (0.1 bar, 363 K). We observe that MOFDiff
generates a distribution of MOFs that are more selective towards CO2, have higher CO2 uptakes
under adsorption conditions, and bind more strongly to CO2.

From an efficiency perspective, GCMC simulations take orders of magnitude more computational
time (tens of minutes to hours) than other components of the MOF design pipeline (seconds to tens
of seconds). These simulations can also be made more accurate at significantly higher computational
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Working capacity: 3.70 mol/kg 
 selectivity: 19.8 CO2/N2

Working capacity: 3.65 mol/kg 
 selectivity: 50.6 CO2/N2

Working capacity: 3.61 mol/kg 
 selectivity: 19.1 CO2/N2

Working capacity: 3.61 mol/kg 
 selectivity: 45.6 CO2/N2

MOFDiff-1 MOFDiff-2 MOFDiff-3 MOFDiff-4 MOFDiff-5 

MOFDiff-6 MOFDiff-7 MOFDiff-8 MOFDiff-9 MOFDiff-10 

Figure 9: The top ten samples from MOFDiff in terms of the highest CO2 working capacity. Atom
color code: Cu (brown), Zn (purple), S (yellow), O (red), N (blue), C (gray), H (white).

costs (days) by converging sampling to tighter confidence intervals or using more advanced techniques,
such as including blocking spheres, which prohibit Monte Carlo insertion of gas molecules into
kinetically prohibited pores of the MOF, and calculating atomic charges with density functional
theory (DFT). Therefore, the efficiency of a MOF design pipeline can be evaluated by the average
number of GCMC simulations required to find one qualifying MOF for carbon capture applications.
Naively sampling from the BW-DB dataset requires, on average, 58.1 GCMC simulations to find one
MOF with a working capacity of more than 2 mol/kg. For MOFDiff, only 14.6 GCMC simulations
are needed to find one MOF with a working capacity of more than 2 mol/kg, a 75% decrease in
compute cost per candidate structure.

Compare to carbon capture MOFs from literature. Beyond efficiency, MOFDiff’s generation
flexibility also allows it to discover top MOF candidates that are outstanding for carbon capture. We
compute gas adsorption properties of 27 MOFs that have been investigated for CO2 adsorption from
previous literature (Madden et al., 2017; Coelho et al., 2016; González-Zamora & Ibarra, 2017; Boyd
et al., 2019; Yao et al., 2021) using our GCMC simulation workflow. We compare the gas adsorption
properties of the top ten MOFs discovered from our 10,000 samples (visualized in Figure 9) to these
27 MOFs in Table 1 of Appendix C and annotate selected MOFs in Figure 7. MOFDiff can discover
highly promising candidates, making up 9 out of the top 10 MOFs. In particular, Al-PMOF is the top
MOF selected by authors of Boyd et al. 2019 from BW-DB. GMOF-1 to GMOF-9 are the top carbon
capture candidates proposed in Yao et al. 2021. This comparison confirms MOFDiff’s capability in
advancing functional MOF design.

5 CONCLUSION

We proposed MOFDiff, a coarse-grained diffusion model for metal–organic framework design. Our
work presents a complete pipeline of representation, generative model, structural relaxation, and
molecular simulation to address a specific carbon capture materials design problem. To design 3D
MOF structures without using pre-defined templates, we derive a coarse-grained representation and
the corresponding diffusion process. We then design an assembly algorithm to realize the all-atom
MOF structures and characterize their properties with molecular simulations. MOFDiff can generate
valid and novel MOF structures covering a wide range of structural properties as well as optimize
MOFs for carbon capture applications that surpass state-of-the-art MOFs in molecular simulations.
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Almudena Garcia-Sanchez, Conchi O Ania, José B Parra, David Dubbeldam, Thijs JH Vlugt,
Rajamani Krishna, and Sofia Calero. Transferable force field for carbon dioxide adsorption in
zeolites. The Journal of Physical Chemistry C, 113(20):8814–8820, 2009.
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A RELATED WORKS

Machine learning generative models for MOF design. MOF generative models combined with
template-based assembly (Martin & Haranczyk, 2014; Lee et al., 2021) have been studied by several
previous works. These models use a qualitative representation of MOF that describes the identity
of the metal node, linker molecule, and topology template. The generative model can sample a
combination of these components, while the 3D MOF structure is determined by the assembly
software. In particular, Yao et al. 2021 proposes a variational autoencoder and property-driven inverse
design is enabled through latent-space Bayesian optimization. Other works employ monte-carlo tree
search (Zhang et al., 2019), Bayesian optimization (Comlek et al., 2023), genetic algorithm (Day &
Wilmer, 2020; Zhou & Wu, 2022; Park et al., 2022), and deep reinforcement learning (Park et al.,
2023b), respectively, to iteratively optimize MOF structures for desired properties with feedback
from molecular simulation or a surrogate property predictor. Distinct from previous works, our
method does not rely on predefined templates. Instead, we use a diffusion model to directly generate
coarse-grained 3D structures of MOFs and maintain the physical symmetries through the use of
equivariant and invariant networks. Additionally, we adopt a contrastive learning approach to model
a vast space of building blocks directly extracted from MOF datasets, without the need to curate the
building blocks for template compatibility.

Diffusion Models aims to generate samples from the training data distribution through a denoising
diffusion process (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021). The iterative refinement
sampling procedure has achieved great progress in generating 3D configurations, which is reflected in
various applications spanning 3D point clouds and shapes in computer vision (Cai et al., 2020; Luo &
Hu, 2021), molecular and protein conformation generation (Shi et al., 2021; Xu et al., 2022; Jing et al.,
2022; Xu et al., 2023; Yim et al., 2023), protein-ligand interactions (Corso et al., 2022), molecular
and protein design (Hoogeboom et al., 2022; Luo et al., 2022; Ingraham et al., 2022; Watson et al.,
2023; Gruver et al., 2023), as well as inorganic crystal design (Xie et al., 2022; Jiao et al., 2023).
Compared to previous works, the novelty of this paper from the diffusion model perspective lies in the
treatment of coarse-grained building block representation. While existing molecular diffusion models
commonly use discrete diffusion to generate discrete atom/amino-acid types, our model denoises
learned embedding, encompassing a vast space of building blocks that is unfeasible to represent with
a discrete variable.

Equivariant and invariant neural networks have shown great advantages in various machine
learning tasks for molecules and materials (Schütt et al., 2017; Thomas et al., 2018; Xie & Grossman,
2018; Chen et al., 2019; Qiao et al., 2020; Schütt et al., 2017; Gasteiger et al., 2020; 2021; Liu
et al., 2021; Wang et al., 2022; Batzner et al., 2022; Musaelian et al., 2022; Gasteiger et al., 2022).
These network architectures respect the permutational, translational, and rotational symmetries in
molecular systems while being expressive. The current work employs SE(3)-invariant representation
for encoding building blocks and MOF and an SE(3)-equivariant network for score prediction.

B MODEL DETAILS

B.1 MOFDIFF

Building block representation. The building block encoder is a GemNet-OC model that inputs the
3D configuration of the building block, including the connection points, and outputs building block
embedding b. A radius-cutoff graph is built as the building block for message passing. In addition to
the contrastive loss LC , we also train the building block latent representation to encode the number
of atoms Nb, the number of connection points Cb, and the largest distance between any pair of atoms
l in the building block by predicting these quantities. Cross-entropy loss is used for Nb and Cb, while
mean squared error loss is used for l:

LB = CrossEntropy(Nb, N̂b) + CrossEntropy(Cb, Ĉb) + ||l − l̂||2 (3)

where N̂b, Ĉb, l̂ are model predictions. These quantities are important indicators of the size and
connection pattern of the building block. The overall loss for the building block encoder is:

LBB = LC + LB + βb||b||2 (4)
where the last term is an L2 regularization over the building block embedding with a loss weighting
of βb = 0.0001 to constrain the norm of building block embedding. The regularization makes
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the embedding numerically stable to use in diffusion modeling later. We do not apply weighting
over LC and LB. Hyperparameters of the building block encoder are reported in Table 2. GemNet-
OC hyperparameters are the default values for the Base version from Gasteiger et al. 2022 unless
otherwise noted. After being trained to convergence, the building block encoder is frozen and used
for encoding all building blocks to construct the CG representation of MOFs.

MOFDiff encoding. Before feeding the MOF structures to the periodic GNN encoder, we normalize
all MOFs by dividing all lattice lengths by the mean lattice length and dividing all building block
embedding by the mean of all building block embedding’s L2–norms. This normalization makes it
easier to select the noisy distributions for diffusion modeling. The coarse-grained diffusion model
only operates on the coarse-grained representation. To encode a CG MOF structure, we build
the coarse-grained graph with the CG connections inferred from the all-atom inter-building-block
connections: two building blocks i and j have an edge with the periodic image I if an atom in
building block i has a bond connection to an atom in building block j (considering periodic image
I). We refer interested readers to Xie et al. 2022 for more details on the multi-graph representation
of crystals. The periodic GNN encoder is an SE(3)-invariant GemNet-OC model. After invariant
message passing, we apply pooling to the node embedding to obtain the CG MOF latent code z.

Diffusion process. The forward diffusion process injects noise into the coarse-grained MOF MC =

AC ,XC ,L) to obtain the noisy structure M̃C
t = (ÃC

t , X̃
C
t ,L) for t = 0 to T , where at t = T

the data is diffused to the prior distribution. At time step t, the denoiser PGNND inputs the noisy
structure MC

t , latent code z, and the time step t then predicts scores sAC
t ,z, sXC

t ,z for building block
embedding and coordinates. The lattice parameter remains fixed throughout the diffusion process.
With contrastive building block embedding in RK×d (d = 32 for BW-DB), we employ a DDPM (Ho
et al., 2020) (variance-preserving) forward process for type embedding:

q(ÃC
t |ÃC

t−1) = N (
√
1− βt · ÃC

t−1, βtI) (5)

q(ÃC
t |ÃC

0 ) = N (
√
ᾱt · ÃC

0 , (1− ᾱt)I) (6)

where β1, . . . , βT is the variance schedule, αt := 1 − βt and ᾱt =
∏t

s=1 αs. The corresponding
reverse diffusion sampling process is:

q(ÃC
t−1|M̃C

t , z) = N
(

1
√
αt

(
AC

t −
1− αt√
1− ᾱt

sAC
t ,z

)
,
1− ᾱt−1

1− ᾱt
βtI

)
(7)

We refer interested readers to Ho et al. 2020 for a more detailed derivation of the DDPM diffusion
process. We use the same noise schedule as Hoogeboom et al. 2022, a, for the building block type
diffusion.

With building block coordinates in RK×3, we employ a variance-exploding forward diffusion process
for the coordinates:

q(X̃C
t |X̃C

0 ) = N (X̃C
0 , σ2

t I) (8)

where σ1, . . . , σT are noise levels. The corresponding reverse diffusion sampling process is:

q(X̃C
t−1|M̃C

t , z) = N
(
X̃C

t −
√
σ2
t − σ2

t−1 · sXC
t ,z,

σ2
t−1(σ

2
t − σ2

t−1)

σ2
t

I

)
(9)

We refer interested readers to Song et al. 2021 for a more detailed derivation of the variance-exploding

diffusion process. We use the same noise schedule as Song et al. 2021: σt = σmin

(
σmax

σmin

) t−1
T−1

. We
handle the denoising target under periodicity similarly as Xie et al. 2022 and direct readers interested
in further details to this reference.

To train the denoising score network PGNND, we use the following loss functions:

LA = Et,MC ,ϵA

[
||ϵA − sAC

t ,z||2
]

and LX = Et,MC ,ϵX

[
σ2
t ||ϵX − sXC

t ,z||2
]

(10)
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Figure 10: Training and sampling schematics of MOFDiff. Steps that are only used for training are
represented with blue arrows. Steps that are only used for sampling are represented with green arrows.
Steps that are used in both training and sampling are represented with black arrows. The training
steps lead to the loss functions. The sampling steps lead to CG MOF samples.

where ϵA, ϵX ∼ N (0, I) are sampled Gaussian noises, injected through the forward diffusion
processes defined in Equation (6) and Equation (8). The reverse diffusion process defined in
Equation (7) and Equation (9) are used for sampling MOF structures at inference time.

In addition to the diffusion losses LA and LX , MOFDiff is also trained to predict the lattice
parameters L̂, the number of building blocks K̂ and property labels ĉ from the latent code z. We use
a mean squared error loss for the lattice parameters and the property labels, and a cross-entropy loss
for the number of building blocks:

LL,K,c = ||L− L̂||2 +CrossEntropy(K, K̂) + ||c− ĉ||2 (11)

The entire MOFDiff is then trained end-to-end with the loss function:

LMOFDiff = LA + LX + LL,K,c + βKLLKL (12)

Where the LKL is the KL regularization for variational autoencoders. We did not use weighting over
the different loss terms except for the KL regularization, which is weighted with βKL = 0.01 (Higgins
et al., 2016). The training and sampling process is illustrated in Figure 10. All hyperparameters are
reported in Table 3.

B.2 RECOVER ATOMIC MOF STRUCTURES

The coarse-grained MOF structures generated by the diffusion model specify the lattice parameters,
building block identities, and building block coordinates (the centroid of connection points). However,
they do not specify the orientations of building blocks. The assembly algorithm finds the orientations
of the building blocks to connect them to each other. Throughout the assembly process, we fix the
centroids of the building blocks, the internal structures (atom relative coordinates) of the building
blocks, and the lattice parameters. The building block orientations are the only variables that are
allowed to change (Figure 4). As we change the orientation of a building block, all atoms and
connection points within rotate around its centroid.

For any ground truth structure, the connection points (as defined in Section 2) of adjacent building
blocks will perfectly overlap since they are midpoints of the bonds connecting inter-building-block
atoms. Therefore, a viable objective for the assembly algorithm is to maximize the overlap of
compatible inter-building-block connection points. Two connection points are compatible if (1) one
connection point is from a metal atom, and the other is from a non-metal atom; (2) they are not from
the same building block. We denote the set of all connection points as C, the number of connection
points as C, the coordinate of connection point i as xi, the Euclidean distance between connection
points i and j as dij := ||xi − xj ||, and the connection points compatible with i as Ci. We define
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Algorithm 1 Optimize building block orientations for MOF assembly

1: Input: MOF structure M = (AC ,XC ,L), the number of optimization rounds U , Gaussian
kernel width σ1 > · · · > σU , number of nearest neighbors for overlap evaluation k1 > · · · > kU

2: Output: Building block orientations: Ω =
{
ωaC

i
for all aCi ∈ AC

}
3: Randomly initialize building block orientations Ω
4: for round u = 1, . . . , U do
5: Let σ ← σu, k ← ku
6: minimize LO,k,σ(Ω) with respect to Ω using L-BFGS
7: end for

the objective function:

LO,k,σ = − 1

C

∑
i∈C

∑
j∈Ci

exp(
−dij
σ2

) · I(||{q : q ∈ Ci, diq ≤ dij}|| ≤ k) (13)

Where I is the indicator function. This loss can be thought of as measuring the inverse of the overlap
under a Gaussian kernel of width σ, and the overlap is only evaluated for the k nearest neighbors
among the compatible connection points. Minimizing this loss maximizes the overlap. This loss is
related to the building block orientations because the coordinate of a connection point xi is related to
the orientation ωa (under the axis-angle representation) and CG coordinate xC

a of the corresponding
building block a through:

xi = xC
a + va,iRa (14)

where va,i is the vector from the building block centroid to the connection point under a canonical
orientation (which is invariant throughout the assembly process), and Ra is the rotation matrix
corresponding to ωa. The distance between a pair of connection points dij can then be related
to the orientations of the two corresponding building blocks through Equation (14). LO,k,σ is
twice-differentiable with respect to building block rotations ω for all building blocks as LO,k,σ is
twice-differentiable with respect to dij for all connection points i, j, and dij is twice-differentiable
with respect to ωa and ωb. This allows us to use L-BFGS, a second-order optimization algorithm.

We can now define an annealed optimization process by gradually reducing σ and k: at the beginning,
the width σ and the number of other connection points we evaluate overlap with k are high, so it is
easier to find overlap between connection points, and the optimization problem becomes smoother.
This makes it simpler to find an approximate solution. At the end of optimization, the kernel width σ
is small, and we are only computing the overlap for the closest compatible connection points. At
this stage, the algorithm should have already found an approximate solution, and a stricter evaluation
over overlapping can let the algorithm find more accurate orientations for matching the connection
points closely.

The assembly algorithm starts by randomly initializing the orientations of the building blocks. Using
the L-BFGS method, the algorithm iteratively minimizes LO,k,σ by adjusting the building block
orientations Ω: ωaC

i
(using the axis-angle representation) for all building blocks aCi . We use the

axis-angle representations because rotation matrices need to follow specific constraints. As explained
above, we start with a relatively high σ and k and gradually reduce them in the optimization process
to gradually refine the optimized orientations. The full algorithm is shown in Algorithm 1. In our
experiments, we use 3 rounds: U = 3, with σ = [3, 1.65, 0.3] and k = [30, 16, 1]. An example
assembly process is visualized in Figure 4.

Force field relaxation. The relaxation process is modified from a workflow proposed in Nandy et al.
2022 and has four rounds of energy minimization using the UFF force field and the conjugate gradient
algorithm in LAMMPS. At each round, we use LAMMPS’s minimize function with etol=1× 10−8,
ftol=1 × 10−8, maxiter=1 × 106, and maxeval=1 × 106. In the first and third rounds, we
only relax the atom coordinates while keeping the lattice parameters frozen. In the second and fourth
rounds, we relax both atom coordinates and the lattice parameters. The relaxation process can refine
the all-atom structures based on the complete MOF configuration and correct minor errors in the
previous steps (such as slightly smaller/bigger unit cells). Structural optimization using classical
force field is commonly done in materials and MOF design (Lee et al., 2021; Nandy et al., 2022).
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Figure 11: Benchmark GCMC results. PCC stands for “Pearson correlation coefficient”.

B.3 MOF REPRESENTATION METHODS AND NETWORK ARCHITECTURE

Building block identification. We use the widely adopted Extended-Connectivity Fingerprints
(ECFPs) (Rogers & Hahn, 2010) for building block identification. The fingerprint is built by iteratively
updating an identifier for each atom that reflects its neighboring atoms. After de-duplication, the
fingerprint bit array is obtained by hashing the final atom identifiers. For ECFP4, the number of
interactions is two and the largest possible fragment will have a width of 4 bonds.

MOF deconstruction is through the metal-oxo algorithm (Bucior et al., 2019). The inorganic
building blocks are first identified as metal-oxo clusters. These clusters include oxides, bound
hydroxide, peroxide, and various node water species. The remaining fragments are identified as
organic building blocks. Carboxylate functional groups, including the oxygen atoms, are considered
part of the organic building blocks because they are covalently bonded to the rest of the molecule.

MOF identification. MOFid (Bucior et al., 2019) is a systematic identifier developed to represent
MOFs and facilitate their analysis. It deconstructs the MOF to analyze its building blocks and
topology to provide a string that contains the identities of the MOF building blocks and the metadata
about the simplified overall topology. MOFid can be used to unambiguously tag individual MOF
structures and is therefore used for determining the novelty and uniqueness of a MOF structure.

Network Architecture. All graph neural networks use the GemNet-OC architecture (Gasteiger et al.,
2022). GemNet-OC is an improved version of the GemNet architecture, a symmetry-respecting
message-passing neural network that incorporates directional, angular, and dihedral information in
the embedding process of the edge features. On top of GemNet, GemNet-OC implements a series of
enhancements in radial/angular basis functions, interaction hierarchy, and hyperparameters to achieve
impressive performance on the OC20 Chanussot et al. (2021) benchmark. We refer interested readers
to Gasteiger et al. 2021; 2022 for further details on GemNet-OC.

C EXPERIMENT DETAILS

Molecular simulation. As stated in Section 4.2, we implement a GCMC simulation workflow
from scratch, which may produce different results compared to the closed-source workflow used
in BW-DB (Boyd et al., 2019). Per-atom charges on the MOF were calculated with egulp using
the MEPO parameter set and the default configuration. GCMC simulations were performed with
RASPA2 using the default configuration unless otherwise noted. Charge-charge interactions were
modeled with Ewald sums at a precision of 1× 10−6 J. Other interactions were modeled with the
Lennard-Jones 12-6 potential using UFF parameters for the MOF atoms with the epsilon parameters
scaled by 0.635, parameters from Garcia-Sanchez et al. 2009 for CO2, and TraPPE parameters for N2.
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Figure 12: Principle component analysis of the MOFDiff latent space of the validation set, color-
coded with various structural and gas adsorption properties.

A 12.0 Å cutoff was applied to all interactions, with potentials shifted to zero at the cutoff radius.
The minimum sized supercell was constructed for each MOF such that all lattice vectors were greater
than 24.0 Å in length. The allowed Monte Carlo moves for gas atoms were identity change, swap,
translation, rotation, and reinsertion at a likelihood ratio of 2:2:1:1:1, and the MOF atoms were held
constant throughout the simulation.

Simulations were run for 2000 equilibrium cycles followed by 2000 production cycles, with the uptake
of each gas calculated as the average loading over the 2000 production cycles as implemented in
RASPA2. Similarly, each enthalpy of adsorption was calculated as the average internal energy of guest
molecules within the MOF averaged over the 2000 production cycles as implemented in RASPA2
and converted to heat of adsorption by changing the sign. Adsorption conditions were modeled using
a mixture of CO2 and N2 at a partial pressure ratio of 0.15:0.85, an external temperature of 298
K, and an external pressure of 1 bar. Regeneration conditions were modeled using only CO2, an
external temperature of 363 K, and an external pressure of 0.1 bar. Working capacity was calculated
as the difference in CO2 uptake under adsorption and regeneration conditions. CO2/N2 selectivity
was calculated as the ratio of each gas’s respective uptake under adsorption conditions.

Figure 11 shows a benchmark that compares the gas adsorption labels obtained from BW-DB (original
labels) and the labels obtained from our workflow (our implementation) for 5,000 randomly sampled
MOFs from BW-DB. The Pearson correlation coefficient (PCC) is also reported for each property.
We observe a strong positive correlation, while the working capacity is generally underestimated.
Our model is trained with the original labels, and for property optimizing inverse design, we use a
property predictor trained over the original labels. Our model still demonstrates significant property
improvement (Figure 7), which demonstrates the robustness of our method under a shifted property
evaluator.
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Figure 13: The percent of
valid samples declines with
more building blocks.

MOF latent space. In Figure 12, we conduct a principle component
analysis (Jolliffe, 2002) to produce two-dimensional visualization
of the MOFDiff latent space. The latent space exhibits smooth tran-
sitions for property values, indicating a smooth property landscape.

Compare to literature MOFs. In Table 1, we compare the top-ten
MOFs generated by MOFDiff and 27 MOFs from previous litera-
ture (Madden et al., 2017; Coelho et al., 2016; González-Zamora &
Ibarra, 2017; Boyd et al., 2019; Yao et al., 2021). Notably, Al-PMOF
was proposed in Boyd et al. 2019, synthesized, and validated through
real-world experiments. GMOF-1 to GMOF-9 are the top carbon
capture candidates proposed in Yao et al. 2021.

One limitation of MOFDiff is its generated samples have a lower
validity rate when the size of the MOF becomes bigger. Figure 13
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shows a declining validity percentage for samples of more building blocks. This result is unsurprising
since a bigger MOF with more building blocks is inherently more complex. For a generated structure
to be valid, the coordinates of every atom need to be correct, especially at every connection. The
lattice parameters also need to be very accurate. Reformulating the diffusion process to enable the
iterative refinement of the lattice parameters through the generation process and regularizing the
diffusion process with known templates are two future directions to overcome this challenge.

Software versions. MOFid-v1.1.0, MOFChecker-v0.9.5, egulp-v1.0.0, RASPA2-v2.0.47,
LAMMPS-2021-9-29, and Zeo++-v0.3 are used in our experiments. Neural network modules are
implemented with PyTorch-v1.11.0 (Paszke et al., 2019), Pyg-v2.0.4 (Fey & Lenssen, 2019),
and Lightning-v1.3.8 (Falcon & The PyTorch Lightning team, 2019) with CUDA 11.3. OVITO-
v3.8.3 (Stukowski, 2010) is used for visualization.

Table 1: Carbon capture properties of top ten MOFDiff optimized samples and MOFs from previous
literature, sorted by CO2 working capacity.

CO2 working
capacity [mol/kg]

CO2/N2
selectivity

CO2 uptake [mol/kg]
(0.15 bar, 298 K)

CO2 uptake [mol/kg]
(0.1 bar, 363 K)

CO2 heat of
adsorption [kcal/mol]

(0.15 bar, 298 K)

CO2 heat of
adsorption [kcal/mol]

(0.1 bar, 363 K)

MOFDiff-1 4.89 197.66 7.05 2.16 10.13 10.05
MOFDiff-2 4.86 65.17 6.57 1.71 9.39 9.00
MOFDiff-3 4.03 39.55 5.08 1.05 7.85 8.44
MOFDiff-4 4.03 26.21 4.85 0.82 9.05 8.41
MOFDiff-5 3.87 1026.38 13.27 9.40 12.61 11.27
Al-PMOF 3.82 8.74 4.95 1.13 6.97 8.26
MOFDiff-6 3.80 73.34 4.73 0.93 9.13 9.02
MOFDiff-7 3.70 19.80 4.28 0.57 7.36 7.90
MOFDiff-8 3.65 50.62 4.68 1.02 8.94 8.98
MOFDiff-9 3.61 19.13 4.18 0.57 8.07 7.77
MOFDiff-10 3.61 45.60 4.57 0.96 9.41 9.51
InOF-1 3.11 9.26 3.43 0.32 7.61 6.69
AKOXIJ clean 2.53 11.18 3.46 0.92 8.29 7.71
SABVOH manual 2.26 5.16 2.57 0.31 6.90 6.09
GMOF-4 2.20 11.46 2.53 0.33 7.96 7.57
GMOF-1 2.19 7.35 2.51 0.33 7.65 7.30
YEZKUL clean 2.15 21.13 2.64 0.49 8.41 8.01
RUBTAK01 SL 2.11 19.15 2.70 0.59 7.82 8.72
AlFu 2.08 5.30 2.46 0.38 6.95 6.45
GMOF-3 1.56 4.97 1.78 0.23 7.04 6.60
SIFSIX-3-Cu 1.22 inf 2.69 1.47 11.80 11.79
NOTT-400 0.95 3.57 1.09 0.13 6.03 5.54
QOWRAV 0.88 3.11 1.02 0.14 5.93 5.66
DICRO-3-Ni-i 0.61 10.36 0.69 0.07 7.54 7.47
GMOF-2 0.59 2.44 0.69 0.10 5.58 5.27
CIGXIA manual 0.53 3.61 0.63 0.10 5.82 6.88
GMOF-8 0.47 0.92 0.61 0.14 4.44 3.51
OCUNAC manual 0.38 2.87 0.46 0.08 5.29 5.06
CuBTC 0.36 2.21 0.45 0.09 5.52 5.82
GMOF-9 0.35 0.64 0.48 0.12 3.18 2.40
DMOF-1 0.35 2.10 0.41 0.07 5.07 4.82
FAWCEN SL 0.33 2.42 0.38 0.05 5.37 5.16
NIMXAK clean 0.27 1.71 0.32 0.05 4.86 4.70
GMOF-5 0.20 0.45 0.29 0.08 2.68 2.11
GMOF-6 0.18 0.41 0.28 0.10 2.96 2.38
GMOF-7 0.10 0.30 0.16 0.06 2.06 1.59
MOF-5 0.09 1.02 0.12 0.03 3.34 3.11
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Table 2: Hyperparameters for building block representation learning.

Hyperparameter Value

building block embedding dimension 32

GNN hidden layer dimension 256

projection dimension 128

# encoder GNN layers 3

radius cutoff 20 Å
maximum number of neighbors 50

temperature (τ ) 0.1

βb 0.0001

batch size 512

optimizer Adam
initial learning rate 0.0003

learning rate scheduler ReduceLROnPlateau
learning rate patience 10 epochs

learning rate factor 0.6

Table 3: Hyperparameters for MOFDiff.

Hyperparameter Value

latent dimension 256

GNN hidden layer dimension 256

# encoder GNN layers 3

# decoder GNN layers 3

radius cutoff 4 (after normalization)
maximum number of neighbors 24

total number of diffusion steps (T ) 2000

σmin for coordinate diffusion 0.001

σmax for coordinate diffusion 10

noise schedule for coordinate diffusion σt = σmin

(
σmax

σmin

) t−1
T−1

noise schedule for embedding diffusion Hoogeboom et al. 2022
time step embedding Fourier

time step embedding dimension 64

βKL 0.01

batch size 128

optimizer Adam
initial learning rate 0.0003

learning rate scheduler ReduceLROnPlateau
learning rate patience 50 epochs

learning rate factor 0.6
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