
Supplement to "Improving Transformer with an Admixture of
Attention Heads"

A Experiment Details
In this section, we provide model and training details for experiments in Section 3. In our experiments,
we consider the number of global attention matrices as a hyper parameter to finetune. We observe
that in all of our experiments, choosing the global attention matrices in FiSH to be 1/4 and 1/2 of the
number attention heads in the original MHA results in models with good accuracy and efficiency. All
of our experiments are conducted on a server with 4 NVIDIA A100 GPUs.

A.1 Language Modeling
Datasets and metrics WikiText-103 consists of articles from Wikipedia and is a dataset with long
contextual dependencies. The training set is made up of about 28K articles containing 103M running
words; this corresponds to text blocks of about 3600 words. The validation and test sets are composed
of 218K and 246K running words, respectively. Each of them contains 60 articles and about 268K
words. Our experiment follows the standard setting [46, 66] and splits the training data into L-word
independent long segments. For evaluation, we use a batch size of 1 and go through the text sequence
with a sliding window of size L. We consider only the last position for computing perplexity (PPL)
except in the first segment, where all positions are evaluated as in [2, 66].

A.2 Machine Translation
Datasets and metrics The dataset IWSLT’14 De-En contains about 170K training sentence pairs,
7K validation pairs, and 7K test pairs. In this task, the model does the translation from German to
English. The WMT dataset is a rich-resource English-German machine translation dataset, containing
about 4.5M training sentence pairs. Validation and test data are from the corresponding newest data.
The BLEU score [54] is used to measure the performance of the trained model.

A.3 Image Classification
Datasets and metrics The ImageNet dataset [63] contains about 1.281M training images and 50K
validation images, the model learns to predict which one of 1000 classes an image belongs to.
Our Swin Transformer [44] experiments are based on the public code https://github.com/microsoft/
Swin-Transformer, we implemented our Hard GFiSH models with the Swin-T version. We add our
global heads to the last 8 of the total 12 layers of the model, on each layer we set the number of
global heads to half the number of heads, which are 6 and 12 global heads for layers with 12 and 24
heads, respectively. Our experiments were conducted on a server with 1 NVIDIA RTX 3090. We set
the batch size to 128 and the learning rate to 1.25e-4, all models are trained with single precision.

A.4 UEA Time Series Classification
Datasets and metrics There are 30 datasets in the benchmark [5]. Following [81], to evaluate
our models on temporal sequences, we choose 10 datasets, which vary in input sequence lengths,
the number of classes, and dimensionality. We report the test accuracy as an evaluation for the
benchmark.
Models and baseline The experiment setups and configurations for the softmax and our models
are the same as in [81] 1 (for the PEMS-SF, SelfRegulationSCP2, UWaveGestureLibrary datasets)
and [83] 2 (for the other tasks). In all models, the number of heads is 8, whereas the model dimension
and number of transformer layers are varied. Our GFiSHformer uses 4 global heads to produce 8
local heads.

A.5 Reinforcement learning on the D4RL benchmark
Datasets and metrics The D4RL benchmark [29] contains the continuous control tasks for offline
reinforcement learning. We adapt the selection from [81], including HalfCheetah, Hopper, and Walker
as experiment environments and Medium-Expert, Medium, and Medium-Replay as behavior policies.
Models and baseline The softmax baseline trained on this benchmark adopts the configuration
from [81], with 3 transformer layers and 4 heads per layer. The 2-global-head GFiSHformer also
shares the same configuration and training set-ups.

1Implementation available at https://github.com/thuml/Flowformer.
2Implementation available at https://github.com/gzerveas/mvts_transformer.

17

https://github.com/microsoft/Swin-Transformer
https://github.com/microsoft/Swin-Transformer
https://github.com/thuml/Flowformer
https://github.com/gzerveas/mvts_transformer

A.6 Applying (G)FiSH on linear transformers
Here we provide the detailed implementation of (G)LFiSHformer, i.e. (G)FiSH + linear transformer,
discussed in Section 3.7 and Table 3 in the main text. The linear transformer reduces the quadratic
computational cost of self-attention to linear complexity, in terms of the sequence length, by lineariz-
ing the softmax kernel [37]. We combine (G)FiSHformer with linear transformer by generating the
global KT

V and then sampling the local KT
V from the global ones, resulting in the Transformer

with a Linear Finite Admixture of Shared Heads (LFiSHformer). Similar to (G)FiSHformer, we
derive four different LFiSH-based transformers: LFiSHformer, Hard LFiSHformer, Generalized
LFiSHformer (GLFiSHformer), and Hard Generalized LFiSHformer (Hard GLFiSHformer). Our
LFiSH-variants improve the performance of the linear baseline, as demonstrated in Table 3

B Additional Experimental Results
B.1 A Comparison on the Model Efficiency for the IWSLT14 De-En Machine Translation

Task
Fig. 4 summarizes the advantage in efficiency of 2-global-head GFiSHformer over the 4-head baseline
on the IWSLT’ 14 De-En task.

Traning Testing Training Testing

Model Dimension

R
ea

l T
im

e
R

at
io

M
em

or
y

R
at

io

P
ar

am
et

er
 R

at
io

A B EDC

Figure 4: (Left) Training (A) and Inference (B) real time ratios between a 2-global-head GFiSHformers with
4-head MHA baselines across different model dimensions D trained on the IWSLT14 De-En machine translation
task. (Right) GPU memory usage at train time (C) and test time (D) and number of parameters (E) ratios between
2-global-head GFiSHformers with 4-head MHA baselines across different model dimensions D. 2-global-head
GFiSHformers are significantly more efficient than the baseline as D increase, indicating the benefits of our
method for long-range and large-scale tasks. Note that the ratios do not change much when N increase for this
task.

B.2 Train and validation PPL of models trained for the WikiText-103 language modeling task
Figure 5 shows the train and valid PPL of 4-global-head FiSH-based models vs . 8-head MHA
Transformer trained for the WikiText-103 language modeling task.
B.3 More Results to Show that FiSHformer Helps Reducing Head Redundancy
Table 12 presents the layer-average mean and variance of distances between heads in Hard FiSHform-
ers and Hard GFiSHformers compared with those in the MHA softmax baselines. Models are trained
for the WikiText-103 language modeling task.

Figure 5: Train and validation PPL of 4-global-head FiSH-based models vs . 8-head MHA Transformer trained
for the WikiText-103 language modeling task.

18

Table 12: Laver-Average mean and variance of L2 distances between heads of models trained for the WikiText-
103 language modeling task.

Method Mean Variance

Softmax 8 heads 1.62 0.66

Hard FiSHformer 4 global heads 1.75 1.38
Hard GFiSHformer 2 global heads 2.99 2.79
Hard GFiSHformer 4 global heads 3.58 3.01
Hard GFiSHformer 6 global heads 2.90 1.71

Table 13: Layer-average number of principle components for 95% variance explained of models trained for the
WikiText-103 language modeling task.

Method Mean

Softmax 8 heads 296

Hard FiSHformer 4 global heads 302
Hard GFiSHformer 2 global heads 1161
Hard GFiSHformer 4 global heads 1317
Hard GFiSHformer 6 global heads 1102

B.4 More Results on Eigen Analysis
Table 13 presents the layer-average number of principle components for 95% variance explained of
the covariance of attention matrices in Hard FiSHformers and Hard GFiSHformers trained for the
WikiText-103 language modeling task compared with those in the MHA softmax baselines. Models
are trained for the WikiText-103 language modeling task.

C Efficiency Analysis
In this section, we present the efficiency improvement of (G)FiSHformers over the MHA baseline
on the WikiText-103 language modeling task. We show that the advantage in the efficiency of
(G)FiSHformers increases significantly as the model dimension D and sequence length N grows,
making (G)FiSHformers more suitable and superior for large-scale applications. In our analysis, we
report the number of FLOPs, the number of model parameters, and memory usage (bytes) as the
measures of model efficiency.

Analysis setting We investigate the benefits of our model computation and memory reduction through
different D 2 {256, 512, 1024, 2048, 4096} and N 2 {128, 256, 512, 1024, 2048, 4096, 8192}. For
the FLOP calculation, we use fvcore. Another notice is that, for model complexity, we distinguish
between input-embedding parameters and non-embedding parameters. Input-embedding parameters
are used to represent the inputs before sending them to the model. Non-embedding parameters are
the parameters of the main model. Since our method aims at reducing the size of the transformer
model, it is important to compare the reduction in non-embedding parameters. Hence, we report
both model’s total parameters and non-embedding parameters in this analysis. All measurements are
calculated when running the model through data of batch size 1.

FiSH-based models significantly improves computational cost

GFiSHformer benefits computation in large-scale tasks. By showing the FLOP ratios between 2-
global-head GFiSHformers with the 8-head MHA baseline across different model dimensions and
sequence lengths, Figure 3 indicates that our model requires significantly less computation than the
baseline. Especially for both training and inference, this substantially grows with the increases of D
and N (up to more than 30 % reduction), which makes our method more preferable for long-range
and large-scale tasks.

FiSH-based variants share comparable advantages in computation saving. For further analysis, we
compare the FLOP of FiSHformers, Hard FiSHformers, GFiSHformers, and Hard GFiSHformer.
Figure 6 shows that given a D, when N is increased, FiSH-based models have comparable training
and inference computation (FLOP). Since we have shown that GFiSHformer benefits computation,
the FLOP comparison among FiSH-based models further confirms that our methods have a substantial
advantage in computational saving.

19

https://github.com/facebookresearch/fvcore

FL
O

P
S

Training Testing

Method FiSH GFiSH Hard FiSH Hard GFiSH

Sequence Length

Test M
em

ory (G
B

)P
ar

am
et

er
s

(M
)

Total parameters

Non-embedding parameters

Model Dimension

A B C D

Sequence Length Sequence Length Model Dimension Model Dimension

Total parameters Non-embedding parameters

Figure 6: Training (Left) and Inference (Right) FLOPS (B) of 2-global-head FiSHformers, Hard FiSHformers,
GFiSHformers, and Hard GFiSHformer. FiSH-based models have comparable computational costs trained on
the WikiText-103 language modeling task. Here the model size is 1024.

Sequence Length

Training Testing

FL
O

P
S

 R
at

io

Number of Global Heads 2 4 6

Sequence Length

Figure 7: Training (Left) and Inference (Right) FLOP ratio between the GFiSHformers and the 8-head MHA
baseline trained on the WikiText-103 language modeling task, as the number of heads vary in {2, 4, 6}. A
decrease in the number of heads leads to a significant reduction in computational cost at each sequence length.
Here, the model dimension is 1024.

GFiSHformer computation efficiency rapidly increases as the number of global heads decreases We
compare the computational-cost reduction of GFiSHformer as the global heads vary. Figure 7 shows
the FLOP ratio of GFiSHformer with 2/4/6-global-head versus the 8-head baseline for a given D

and various sequence lengths. As the number of heads decreases, GFiSHformers achieve significant
computation reduction (in both training and inference) (Figure 7).

(G)FiSHformers improves memory usage and model complexity In addition to the computational
saving, our method achieves significant benefits in memory cost (at test time) and model complexity
(total/non-embedding parameters) over the baseline. Following the computation analysis, we first
present the advantage of the GFISHformers compared to the 8-head MHA Transformer. Figure 8
shows the number-of-parameter-ratio (Left) and the memory-ratio (Right) of the GFiSHformers with
2/4/6 global heads and the 8-head baseline. At a fixed sequence length N = 1024, as we scale up
the model dimensions, our method becomes significantly more beneficial than MHA Transformer,
indicating the advantage of GFiSHformer in large-scale applications.

Secondly, we show that FiSH-based models are comparable in model size and memory saving, which
further indicates that all variants of FiSHformers benefit space complexity. Figure 6 shows that
2-head FiSHformers, Hard FiSHformers, GFiSHformers, and Hard GFiSHformer have a comparative
number of total/non-embedding parameters and memory usage at different model dimensions, for a
given sequence length.

Finally, we examine the model space complexity of a Fishformer variant as the number of global
heads vary. Figure 8 shows a significant increase in total (Left) /non-embedding parameters (Middle)
and memory usage (Right) reduction of 2/6/8-global heads GFiSHformers, as we increase D. While
only having the fewest heads, 2-head GFiSHformer is the most efficient model (lowest metric ratio

20

Model Dimension

P
ar

am
et

er
 R

at
io

Te
st

 M
em

or
y

R
at

io

N
on

-e
m

be
dd

in
g

P
ar

am
et

er
 R

at
io

2 4 6Number of Global Heads

Model DimensionModel Dimension

Figure 8: Number-of-parameter ratio (Left) and the memory ratio (at test time) (Right) between the GFiSH-
formers and the 8-head MHA Transformer trained on the WikiText-103 language modeling task. Our method
achieve significant reduction in memory cost and model complexity over the baseline as we scale up the model
dimension, D 2 {256, 512, 1024, 2048 to 4096}. Here, the sequence length is 1024, and the number of global
heads is chosen to be 2, 4 and 6.

with the 8-head MHA baseline) and achieves comparable performance with the baseline, for model
dimension, and sequence length are 128 and 256 respectively, as indicated in Table 3.1

D An Analysis on the Computational Complexity and the Number of
Parameters in FiSH and the Softmax Attention

In this section, we compare the computational complexity and the number of parameters in the FiSH
with M global attention heads and H local attention heads to the H-head baseline MHA softmax
transformer. Following the same notation in Section 1.1 in the main text, we let Dx, N , and D be the
input dimension, the input length, and the model/feature dimension, respectively. To simplify the
computation, we also do not take the softmax operator into account.
D.1 Computational Complexity
(i) Softmax H-head attention: The number of computations needed to compute attention matrices
in a softmax H-head attention is N2

H(2D � 1) + 2NHD(2Dx � 1).

Explanation: To calculate the query matrix Q and the key matrix K in Step 1 in Section 1.1 at
each head, we need 2NDDx multiplications and 2ND(Dx � 1) additions. In total, these need
2ND(2Dx � 1) computations. Next, to compute the product QK

> in Eqn. (1), we need N
2
D

multiplications and N
2(D � 1) additions. In total, computing an attention matrix in Eqn. (1) at

each head requires 2ND(2Dx � 1) + N
2
D + N

2(D � 1) = N
2(2D � 1) + 2ND(2Dx � 1)

computations. The total computation needed to compute attention matrices at H heads is then
N

2
H(2D � 1) + 2NHD(2Dx � 1).

(ii) FiSH with M global attention heads and H local attention heads: The number of computations
needed to compute attention matrices in a FiSH with M global attention heads and H local attention
heads is [2(D +H)M �H]N2 + 2NMD(2Dx � 1).

Explanation: Similar to the above derivation, M global attention matrices need N
2
M(2D � 1) +

2NMD(2Dx � 1) computations. The H local attention matrices need H(MN
2 + (M � 1)N2) =

H(2M � 1)N2. There are also MN
2 computations needed to add noise to M global attention

matrices. Thus, the number of computations needed to compute attention matrices in a FiSH with
M global attention heads and H local attention heads is N

2
M(2D � 1) + 2NMD(2Dx � 1) +

H(2M � 1)N2 +MN
2 = [2(D +H)M �H]N2 + 2NMD(2Dx � 1).

Soft-max H-head attention versus FiSH with M global attention heads and H local attention
heads: Given the results in (i) and (ii), when compared to the baseline softmax H-head attention, our
FiSH with M global attention heads and H local attention heads saves

[2(H �M)D � 2MH)]N2 + 2(H �M)D(2Dx � 1)N
computations in a forward pass. When N is large, this difference is significant.
D.2 The Number of Parameters
(iii) Softmax H-head attention: The number of parameters needed to compute the attention matrices
in a softmax H-head attention is 2HDDx.

21

Explanation: 2HDDx parameters is from the linear projects to calculate the query matrix Q and the
key matrix K in Step 1 in Section 1.1.

(iv) FiSH with M global attention heads and H local attention heads: The number of parameters
in a FiSH with M global attention heads and H local attention heads is 2MDDx +HM +M .

Explanation: 2MDDx parameters is from the linear projects to calculate M query matrices Q

and M key matrices K, which are used to compute M global attention matrices. The extra HM

parameters is from the linear mapping for computing H local attention matrices from M global
attention matrices, and the extra M parameters are the M {�k}

M
k=1 for M global heads.

Softmax H-head attention versus FiSH with M global attention heads and H local attention
heads: Given the results in (iii) and (iv), when compared to the baseline softmax H-head attention, our
FiSH with M global attention heads and H local attention heads saves 2(H �M)DDx �HM �M

parameters. When D is large, this saving is significant.

E Proofs
In this appendix, we provide proof for Lemma 1.

E.1 Proof of Lemma 1
We denote

pG(x) :=

Z
f(x� ✓)dG(✓) =

Z
�(x|✓,�2

I)dG(✓),

for all x 2 Rd where f(x) = 1
(
p
2⇡�)d

exp
⇣
�

kxk2

2�2

⌘
for given � > 0. From the work of [4], the

space of Gaussian mixtures is dense in the space of continuous probability measures. Therefore, we
can find probability distribution G1 such that

sup
x2Rd

|p(x)� pG1(x)| 
✏

2
. (11)

To obtain the conclusion of the lemma, it is sufficient to prove that we can find a probability measure
G2 with at most K supports where K  (C log(1/✏))d for some universal constant C such that

sup
x2Rd

|pG1(x)� pG2(x)| 
✏

2
. (12)

Our technique for proving the above approximation bound relies on Lemma A.1 in [30]. In particular,
that lemma entails that for any k � 1 there exists a probability distribution G2 with at most (2k� 2)d

supports such that Z
✓
↵
d(G1 �G2)(✓) = 0, (13)

for any ↵ = (↵1,↵2, . . . ,↵d) 2 Nd such that 0  |↵| =
Pd

j=1 ↵j  2k � 2, Here, ✓↵ =
Qd

j=1 ✓
↵j

j .

Now, for any M � 2a
p
d, we have kx� ✓k � kxk�k✓k > M � a

p
d > M/2 as long as kxk > M

and ✓ 2 [�a, a]d. It indicates that

sup
kxk>M

|pG1(x)� pG2(x)| = sup
kxk>M

����
Z

f(x� ✓)d(G1 �G2)(✓)

����

 sup
kxk>M

Z
1

(
p
2⇡�)d

exp

✓
�
kx� ✓k

2

2�2

◆
d(G1 +G2)(✓)


2

(
p
2⇡�)d

exp

✓
�
M

2

8�2

◆
. (14)

On the other hand, for any k � 1 we also have that

sup
kxkM

|pG1(x)� pG2(x)| = sup
kxkM

����
Z

f(x� ✓)d(G1 �G2)(✓)

����

 sup
kxkM

������

Z 0

@f(x� ✓)�
k�1X

j=0

(�1)jkx� ✓k
2j

(
p
2⇡)d�d+2jj!

1

A d(G1 �G2)(✓)

������
,

(15)

22

where the final inequality stems from
Z k�1X

j=0

(�1)jkx� ✓k
2j

(
p
2⇡)d�d+2jj!

d(G1 �G2)(✓) = 0,

which is due to Eqn. (13).

To further bound the right-hand-side (RHS) of Eqn. (15), we use the following inequality:������
exp(y)�

k�1X

j=0

(y)j/j!

������
 |y|

k
/k!

for any y 2 R. Since k! � (k/e)k for any k � 1, the above bound can be rewritten as������
exp(y)�

k�1X

j=0

(y)j/j!

������


|ye|
k

kk
. (16)

Further simplification of Eqn. (15) leads to

sup
kxkM

|pG1(x)� pG2(x)|  sup
kxkM

Z
������
f(x� ✓)�

k�1X

j=0

(�1)jkx� ✓k
2j

(
p
2⇡)d�d+2jj!

������
d(G1 +G2)(✓)

 2 sup
kxkM,✓2[�a,a]d

������
f(x� ✓)�

k�1X

j=0

(�1)jkx� ✓k
2j

(
p
2⇡)d�d+2jj!

������

 sup
kxkM,✓2[�a,a]d

e
k
kx� ✓k

2k

�2k(2k)k
,

where the final inequality is based on an application of inequality (16) with y = �kx� ✓k
2
/(2�2).

For kxk  M and ✓ 2 [�a, a]d, we have kx� ✓k  kxk+ k✓k  M + a
p
d. Therefore, we further

have

sup
kxkM

|pG1(x)� pG2(x)|  sup
kxkM,✓2[�a,a]d

e
k
kx� ✓k

2k

�2k(2k)k


e
k(M + a

p
d)2k

�2k(2k)k
.

When M � 2a
p
d, we have M + a

p
d 

3M
2 and the above bound leads to

sup
kxkM

|pG1(x)� pG2(x)| 
(9e)kM2k

(8�2k)k
. (17)

By choosing M
2 = 8�2 log(1/✏0) for some ✏

0
> 0, the bounds in Eqns. (14) and (17) become

sup
kxkM

|pG1(x)� pG2(x)| 
2

(
p
2⇡�)d

✏
0
,

sup
kxk>M

|pG1(x)� pG2(x)| 
(9e)k(log(1/✏0))k

kk
. (18)

As long as we choose k = 9e2 log(1/✏0) and ✏
0
 1, we have

sup
kxk>M

|pG1(x)� pG2(x)|  e
�k = e

�9e2 log(1/✏0) = (✏0)9e
2

 ✏
0
. (19)

By choosing ✏
0 = ✏

2max{ 2
(
p

2⇡�)d
,1} , the results from Eqns. (18) and (19) indicate that

sup
kxkM

|pG1(x)� pG2(x)| 
✏

2
, and sup

kxk>M
|pG1(x)� pG2(x)| 

✏

2
.

Therefore, if we choose M = 8�2 log

✓
2max{ 2

(
p

2⇡�)d
,1}

✏

◆
and k = 9e2 log

✓
2max{ 2

(
p

2⇡�)d
,1}

✏

◆
, we

have
sup
x2Rd

|pG1(x)� pG2(x)| 
✏

2
.

It indicates that we obtain the conclusion of claim (12) by choosing K = (2k � 2)d ✓
18e2 log

✓
2max{ 2

(
p

2⇡�)d
,1}

✏

◆◆d

. As a consequence, we obtain the conclusion of the lemma.

23

	Introduction
	Background: Self-Attention
	Eigenvalue Analysis of the Attention Matrices
	Contribution

	Transformer with a Finite Admixture of Shared Heads
	A Probabilistic Viewpoint of Attention Matrices
	Background

	Multi-head as a Finite Admixture Model of Shared Heads (FiSH)
	Transformer with a Finite Admixture of Shared Heads
	Transformer with a Generalized Finite Admixture of Shared Heads
	Reduction in Model Complexity and Computational Cost from FiSH

	Experimental Results
	WikiText-103 Language Modeling
	Machine Translation
	Image Classification on ImageNet
	UEA Time Series Classification
	Reinforcement Learning on the D4RL Benchmark
	FiSHformer is more effective than other methods for head-redundancy reduction
	Beyond Multi-Head Softmax Transformers

	Empirical Analysis
	Related Work
	Concluding Remarks
	Experiment Details
	Language Modeling
	Machine Translation
	Image Classification
	UEA Time Series Classification
	Reinforcement learning on the D4RL benchmark
	Applying (G)FiSH on linear transformers

	Additional Experimental Results
	A Comparison on the Model Efficiency for the IWSLT14 De-En Machine Translation Task
	Train and validation PPL of models trained for the WikiText-103 language modeling task
	More Results to Show that FiSHformer Helps Reducing Head Redundancy
	More Results on Eigen Analysis

	Efficiency Analysis
	An Analysis on the Computational Complexity and the Number of Parameters in FiSH and the Softmax Attention
	Computational Complexity
	The Number of Parameters

	Proofs
	Proof of Lemma 1

