Co3D-10-Category Noise Ablation 2D Inpainting

| PSNRT/LPIPS|  FID| | PSNRT/LPIPS| FID] | PSNRT/LPIPS| FID|
pixelNeRF 17.96 / 0.479 158.50  With noise | 17.24/0.40 92.23  Determ. | 21.35/0.11 9.18
SparseFusion 11.76 /0.770 257.63  Ours 18.19/0.34 56.64 Ours 20.18/0.09 4.25
Ours 17.62/0.368 66.81

Table 1: (left) Evaluation for 10 categories of Co3D. (middle) Ablation with and without noise added to camera
poses. (right) 2D inpainting results.
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Figure 1: Ablation experiment. Using noisy camera poses at training time leads to lower-quality renderings.
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Figure 2: Results for a general model trained on 10 Co3D categories.

Figure 3: Results on the Objaverse dataset.
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Figure 4: Inpainting experiment. Our training dataset has images like the input, with random patches missing.
At test time, we can learn to complete the partial observations. Deterministic baseline learns a blurry completion.
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Figure 5: Extracted point clouds demonstrate 3D consistent reconstructions, also see point cloud in Fig. 6
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Figure 6: Updated Pipeline figure that depicts our inverse graphics pipeline.



