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1 Illustration of Model’s Variation

In this section, we illustrate why we need to define the variation of a model f as

V sup(h, Eavail) , sup
β∈Sd−1

V(β>h, Eavail),

where (β>h)(x) = β>h(x) and Sd−1 = {β ∈ Rd : ‖β‖2 = 1} is the unit (d− 1)-sphere.

Figure 1: The Failure Case.
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One seemingly plausible definition of the variation of a classifier f can be the supremum over all
V(φi, Eavail), i ∈ [d]. However, there exist cases where V(φi, Eall) = 0,∀i ∈ [d] but the distribution
of h varies a lot in Eavail. We give a concrete failure case here.

Consider a binary classification task with Y = {−1, 1} and let d = 2. Assume we learn a feature
extractor h = (φ1, φ2)> such that for a given label y, the distributions of h under two domains are

Domain 1: y ∼ unif{+1,−1}, h|y ∼ N
(
y(4, 4)>, I2

)
Domain 2: y ∼ unif{+1,−1}, h|y ∼ N

(
y(4,−4)>, I2

)
.

It is easy to see that the marginal distributions of both features alone are identical across the two
domains. However, the distributions of h are different (nearly separate at all). The empirical
distributions of the two domains are present in Figure 1. This example shows that merely control
the supremum of V(φi, Eavail), i ∈ [d] is not enough to control the Total Variation of two domains’
density, and so it is not enough to upper bound the err(f). To do so, we need a stronger quantity like
V sup(h, Eavail).

2 Proofs

In this section, we provide complete proofs of our three bounds.

2.1 Proof of Theorem 4.1

Theorem Let the loss function `(·, ·) be bounded by [0, C]. We denote

V sup(h, Eavail) , sup
β∈Sd−1

V(β>h, Eavail),

I inf(h, Eavail) , inf
β∈Sd−1

I(β>h, Eavail),

where (β>h)(x) = β>h(x) is a feature and Sd−1 = {β ∈ Rd : ‖β‖2 = 1} is the unit (d − 1)-
sphere. Suppose we have learned a classifier f(x) = g(h(x)) such that for any e ∈ Eall and y ∈ Y ,
phe|Y e(h|y) ∈ L2(Rd). Denote the characteristic function of random variable he|Y e as

p̂he|Y e(t|y) = E[exp{i〈t, he〉}|Y e = y].

Assume the hypothetical space F satisfies the following regularity conditions that ∃α,M1,M2 >
0,∀f ∈ F ,∀e ∈ Eall, y ∈ Y ,∫

h∈Rd
phe|Y e(h|y)|h|αdh ≤M1 and

∫
t∈Rd

p̂he|Y e(t|y)|t|αdt ≤M2. (1)

If (Eavail, Eall) is
(
s(·), I inf(h, Eavail)

)
-learnable under Φ with Total Variation ρ1, then we have

err(f) ≤ O
(
s
(
V sup
ρ (h, Eavail)

) α2

(α+d)2

)
.

Here O(·) depends on d,C, α,M1,M2.

Proof. For any e ∈ Eavail and e′ ∈ Eall,
PY (y) = PY e(y) = PY e′ (y).

We can decompose the loss gap between e and e′ as

E
[
`(f(Xe′), Y e

′
)
]
− E

[
`(f(Xe), Y e)

]
= E

[
`(g(h(Xe′)), Y e

′
)
]
− E

[
`(g(h(Xe)), Y e)

]
=

K∑
y=1

PY (y)
(
E
[
`(g(h(Xe′)), Y e

′
)
∣∣Y e′ = y

]
− E

[
`(g(h(Xe)), Y e)

∣∣Y e = y
])
.

1For two distribution P,Q with probability density function p, q, ρ(P,Q) = 1
2

∫
x
|p(x)− q(x)|dx.

2



Therefore, to bound err(f), it is sufficient to bound∣∣∣E[`(f(Xe′), Y e
′
)
∣∣Y e′ = y

]
− E

[
`(f(Xe), Y e)

∣∣Y e = y
]∣∣∣

for any y ∈ Y, (e, e′) ∈ (Eavail, Eall). Given y, e, e′, we have∣∣∣E[`(f(Xe′), Y e
′
)
∣∣Y e′ = y

]
− E

[
`(f(Xe), Y e)

∣∣Y e = y
]∣∣∣

≤ C

∫
Rd

∣∣phe′ |Y e′ (h|y)− phe|Y e(h|y)
∣∣dh = C ∗ I

where he represents the d-dimensional random vector h(Xe) and

I =

∫
Rd

∣∣phe′ |Y e′ (h|y)− phe|Y e(h|y)
∣∣dh.

In the following, we shall show that the term I is upper bounded by O
(
s
(
V sup(h, Eavail)

))
.

First, we decomposed the term I into I1 + I2 where

I1 =

∫
|h|≤r1

∣∣phe′ |Y e′ (h|y)− phe|Y e(h|y)
∣∣dh

I2 =

∫
|h|>r1

∣∣phe′ |Y e′ (h|y)− phe|Y e(h|y)
∣∣dh.

Here r1 is a scalar to be decided, and |h| is the Euclidean norm of h. According to (1), the term I2 is
bounded above:

I2 ≤
∫
|h|>r1

∣∣phe′ |Y e′ (h|y)− phe|Y e(h|y)
∣∣|h|αr−α1 dh

≤ r−α1

(∫
h∈Rd

∣∣phe′ |Y e′ (h|y)
∣∣|h|αdh+

∫
h∈Rd

∣∣phe|Y e(h|y)
∣∣|h|αdh

)
≤ 2M1r

−α
1 .

Next we deal with I1. Since phe′ |Y e′ ∈ L1(Rd) and p̂he|Y e ∈ L1(Rd),

phe|Y e(h|y) =

∫
t∈Rd

e−i〈t,h〉p̂he|Y e(t|y)dt.

Then we have

∣∣phe′ |Y e′ (h|y)− phe|Y e(h|y)
∣∣

≤
∣∣∣ ∫
t∈Rd

exp(−i〈t, h〉)
(
p̂he′ |Y e′ (t|y)− p̂he|Y e(t|y)

)
dt
∣∣∣

≤
∫
t∈Rd

∣∣p̂he′ |Y e′ (t|y)− p̂he|Y e(t|y)
∣∣dt

≤
∫
|t|≤r2

∣∣p̂he′ |Y e′ (t|y)− p̂he|Y e(t|y)
∣∣dt

+r−α2

∫
|t|>r2

∣∣p̂he′ |Y e′ (t|y)− p̂he|Y e(t|y)
∣∣|t|αdt

≤
∫
|t|≤r2

∣∣p̂he′ |Y e′ (t|y)− p̂he|Y e(t|y)
∣∣dt+ 2M2r

−α
2 .

Plugging the above upper bound into I1,

I1 ≤
∫
|h|≤r1

∫
|t|≤r2

∣∣p̂he′ |Y e′ (t|y)− p̂he|Y e(t|y)
∣∣dtdh+

∫
|h|≤r1

2M2r
−α
2 dh

≤ πd/2

Γ(d/2 + 1)
rd1 × I3 +

2M2π
d/2

Γ(d/2 + 1)
rd1r
−α
2
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where

I3 =

∫
|t|≤r2

∣∣p̂he′ |Y e′ (t|y)− p̂he|Y e(t|y)
∣∣dt.

Note that phe|Y e(t|y) ∈ L1(Rd) ∩ L2(Rd). By the Projection theorem [6, 3],

R̂e(β, u) = p̂he|Y e(uβ|y), u ∈ R, β ∈ Sd−1, (2)

whereRe(β, u) is the Radon transform of phe|Y e(t|y):

Re(β, u) =

∫
h:〈h,β〉=u

phe|Y e(h|y)dh

and R̂e(β,w) is the Fourier transform ofRe(β, u) with respect to u:

R̂e(β,w) =

∫
u∈R

exp(iuw)Re(β, u)du.

Thus we can rewrite the term I3 as

I3 =

∫
β∈Sd−1

∫
|w|∈[0,r2]

|w|d−1
∣∣R̂e′(β,w)− R̂e(β,w)

∣∣dwdβ

≤ rd−12

∫
β∈Sd−1

∫
|w|∈[0,r2]

∣∣R̂e′(β,w)− R̂e(β,w)
∣∣dwdsβ

≤ rd−12

∫
β∈Sd−1

∫
|w|∈[0,r2]

∫
u∈R

∣∣Re′(β, u)−Re(β, u)
∣∣dudwdβ.

Since the problem is (s(·), I inf(h, Eavail))-learnable, and ∀β ∈ Sd−1, the informativeness of feature
β>h is lower bounded by

I(β>h, Eavail) ≥ I inf(h, Eavail),
we know that for any β ∈ Sd−1,

V(β>h, Eall) ≤ s
(
V(β>h, Eavail)

)
.

Therefore, we have

V sup(h, Eall) = sup
β∈Sd−1

V(β>h, Eall) ≤ sup
β∈Sd−1

s
(
V(β>h, Eavail)

)
= s
(
V sup(h, Eavail)

)
.

Note that, for any given β,Re(β, u) is the probability density of the projected feature β>h. So for
any e′, e ∈ Eall, ∫

u∈R

∣∣Re′(β, u)−Re(β, u)
∣∣du ≤ s(V sup(h, Eavail)).

Therefore,

I3 ≤ 2rd2 ×
πd/2

Γ(d/2 + 1)
× s(ε).

Combining the result of I1, I2 and I3, we have

I ≤ 2πd

Γ2(d/2 + 1)
rd1r

d
2s(V sup(h, Eavail)) +

2M2π
d/2

Γ(d/2 + 1)
rd1r
−α
2 + 2M1r

−α
1 .

We take

r1 = M
1

α+d

1 M
− d

(α+d)2

2 s(V sup(h, Eavail))
− α

(α+d)2 and r2 = M
1

α+d

2 s(V sup(h, Eavail))−
1

α+d .

Hence

I ≤
( 2πd

Γ2(d/2 + 1)
+

2πd/2

Γ(d/2 + 1)
+ 2
)
M

d
α+d

1 M
αd

(α+d)2

2 s(V sup(h, Eavail))
α2

(α+d)2 .

The proof is finished.
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2.2 Proof of Theorem 4.2

Theorem Consider any loss satisfying `(ŷ, y) =
∑K
k=1 `0(ŷk, yk). Let the loss function `0(·, ·) be

bounded by [0, C].

For any classifier with linear top model g, i.e.,

f(x) = Ah(x) + b with A ∈ RK×d, b ∈ RK ,

if (Eavail, Eall) is
(
s(·), I inf(h, Eavail)

)
-learnable under Φ with Total Variation ρ, then we have

err(f) ≤ O
(
s
(
V sup(h, Eavail)

))
. (3)

Here O(·) depends only on d and C.

Proof. For any e ∈ Eavail and e′ ∈ Eall, we know that PY (y) = PY e(y) = PY e′ (y). Furthermore
the generalization gap between e and e′ is

E
[
`(f(Xe′), Y e

′
)
]
− E

[
`(f(Xe), Y e)

]
=

K∑
y=1

PY (y)
(
E
[
`(f(Xe′), Y e

′
)
∣∣Y e′ = y

]
− E

[
`(f(Xe), Y e)

∣∣Y e = y
])

=

K∑
y=1

PY (y)
(
E
[ K∑
j=1

`0(f(Xe′)j , yj)
∣∣Y e′ = y

]
− E

[ K∑
j=1

`0(f(Xe)j , yj)
∣∣Y e = y

])

=

K∑
y=1

K∑
j=1

PY (y)
(
E
[
`0(f(Xe′)j , yj)

∣∣Y e′ = y
]
− E

[
`0(f(Xe)j , yj)

∣∣Y e = y
])
,

where f(Xe′)j = Ajh(x) + bj . Here Aj is the j-th row of the matrix A and bj stands for the j-th
element of the vector b. Then it suffices to uniformly bound∣∣∣E[`0(f(Xe′)j , yj)

∣∣Y e′ = y
]
− E

[
`0(f(Xe)j , yj)

∣∣Y e = y
]∣∣∣

=
∣∣∣ ∫

Rd
`0(Ajh+ bj , y)

(
phe′ |Y e′ (h|y)− phe|Y e(h|y)

)
dh
∣∣∣,

where he is the d-dimensional random vector h(Xe). Let t = Ajh+ bj . Then,∣∣∣ ∫
Rd
`0(Ajh+ bj , y)

(
phe′ |Y e′ (h|y)− phe|Y e(h|y)

)
dh
∣∣∣

=
∣∣∣ ∫
t∈R

∫
Aj
‖Aj‖2

h+
bj
‖Aj‖2

= t
‖Aj‖2

`0(t, y)
(
phe′ |Y e′ (h|y)− phe|Y e(h|y)

)
dhdt

∣∣∣
≤ C ×

∣∣∣ ∫
t∈R
Re′(

Aj
‖Aj‖2

,
t− bj
‖Aj‖2

)−Re(
Aj
‖Aj‖2

,
t− bj
‖Aj‖2

)dt
∣∣∣

≤ O
(
s(V sup(h, Eavail))

)
.

Hence

E
[
`(f(Xe′), Y e

′
)
]
− E

[
`(f(Xe), Y e)

]
≤ O

(
s(V sup(h, Eavail))

)
.

2.3 Proof of Theorem 4.3

Theorem Consider 0-1 loss: `(ŷ, y) = I(ŷ 6= y). For any δ > 0 and any expansion function
satisfying 1) s′+(0) , limx→0+

s(x)−s(0)
x ∈ (1,+∞); 2) exists k > 1, t > 0, s.t. kx ≤ s(x) <

+∞, x ∈ [0, t], there exists a constant C0 and an OOD generalization problem (Eavail, Eall) that is
(s(·), δ)-learnable under linear feature space Φ w.r.t symmetric KL-divergence ρ, s.t. ∀ε ∈ [0, t2 ],
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the optimal classifier f satisfying V sup(h, Eavail) = ε will have the OOD generalization error lower
bounded by

err(f) ≥ C0 · s(V sup(h, Eavail)) (4)

Proof. The expansion function s(x) satisfies kx ≤ s(x) < +∞, x ∈ [0, t]. Construct an another
function as:

s̃(x) =

{
kx x ≤ t
s(x) x > t

.

Clearly, s̃(·) is also an expansion function. According to Lemma 2.1, for (s̃(x), δ), there exists a
constant C1 > 0 and (Eavail, Eall) that is (s̃(·), δ), s.t. for any V sup(h, Eavail) ≤ t

2 , the optimal
classifier f satisfies

err(f) ≥ C1s̃(V sup(h, Eavail)) = C1k1V sup(h, Eavail).
Then it suffices to find a constant C ′0 such that

V sup(h, Eavail) ≥ C ′0s(V sup(h, Eavail)).
Notice that s′+(0) = M ′ ∈ (1,+∞). Thus there exists δ such that ∀x ∈ [0, δ], s(x)x ≤ 2M ′. In
addition, s(x) ≤ M , x ∈ [0, t/2]. Then, for any x ≥ δ, x

s(x) ≥
δ
M . Let C ′0 = max{ δM , 1

2M ′ }. So,
for any x ∈ [0, t/2], x ≥ C ′0s(x). The proof is finished.

Lemma 2.1 (lower bound for linear expansion function). Consider 0-1 loss `(ŷ, y) = I(ŷ 6= y). For
any linear expansion function s(x) = kx, x ∈ [0, t], k ∈ (1,+∞) and any δ > 0, there exists a
constantC1 and an OOD generalization problem (Eavail, Eall) that is (s(·), δ)-learnable under linear
feature space Φ with symmetric KL-divergence ρ, s.t. ∀ε ≤ t

2 , the optimal classifier f satisfying
V sup(h, Eavail) = ε have err(f) bounded by

err(f) ≥ C1 · s(V sup(h, Eavail)). (5)

Proof. We construct (Eavail, Eall) as a binary classification task, where there are two domains in
Eavail, denoted as {1, 2}, and other two domains in Eall \Eavail, denoted as {3, 4}. The dataset (x, y)
for domain e ∈ Eall is constructed as

y ∼ unif{−1, 1}, z ∼ N (ry, 1), ηe ∼ N (aey, 1), xe =

(
z
ηe

)
.

Here we set

a1 = −
√
t

2
, a2 =

√
t

2
, a3 = −

√
kt

2
, a4 =

√
kt

2
, r =

√
t.

For any w = (w1, w2)>, the distribution of φe = w>xe given y is
φe|y ∼ N

(
y(w1r + w2ae), ‖w‖2

)
.

Now we calculate the variation of the feature. Notice that the symmetric KL divergence ρ of two
Gaussian distributions P1 ∼ N(µ1, σ

2) and P2 ∼ N(µ2, σ
2) is

ρ(P1,P2) =
1

2
DKL(P1‖P2) +

1

2
DKL(P2‖P1)

=
1

2

1

σ2
(µ1 − µ2)2.

Therefore, we have

V(φe, Eavail) = sup
y∈{−1,1}

w2
2|a1 − a2|2

2‖w‖22
=

tw2
2

‖w‖22
≤ t,

and

V(φe, Eall) = sup
y∈{−1,1}

sup
e,e′

w2
2|ae − ae′ |2

2‖w‖22
= k

tw2
2

‖w‖22
.

Thus, for any φ ∈ Φ,

s(V(φ, Eavail)) = k
tw2

2

‖w‖22
≥ V(φ, Eall).

Therefore the OOD generalization problem (Eavail, Eall) that is (s(·), δ)-learnable under linear
feature space Φ with symmetric KL-divergence ρ.
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Optimal Classifier Now we consider h(x) = (φ1(x), . . . , φd(x))> such that V sup(h, Eavail) =
ε ≤ t

2 , and see what the optimal classifier is like. Let wi = (wi1, wi2)> be the coefficients of φi.

If for any i ∈ [d], wi2 = 0. Then s(V sup(φ, Eavail)) = 0 and for any f , err(f) = 0. So inequality 5
holds.

Now suppose there exists i0 ∈ [d] such that wi02 6= 0. Without loss of generality, we assume i0 = 1
and ‖wi‖ 6= 0 for any i ∈ [d]. We then claim that ∀i ∈ [d],∃ci ∈ R,wi = ciw1. Otherwise, there
exists a normalized vector β ∈ Rd such that β>h(x) = c′(0, 1)>x, and we have V(β>h, Eavail) = t,
which is contradictory to V sup(h, Eavail) ≤ t

2 .

Since φi = ciφ1, it is obvious that under any loss function, the loss of optimal classifier on h is the
same as the optimal classifier on φ1. In the following, we shall focus on the optimal loss on φ1.

Without loss of generality, we further denote φ1 as φ(x) = (w1, w2)x and w1 > 0. Since
V sup(h, Eavail) = ε ≤ t/2, |w2| ≤ w1. In addition, we have r > |ae|, e ∈ {1, 2}. Therefore,
w1r +w2ae > 0, sign(y(w1r +w2ae)) = sign(y), and we can easily realize that for any e ∈ Eavail,
the optimal classifier is f(x) = sign(φ(x)).

The loss of f in Eavail is

L(Eavail, f) = max e ∈ {1, 2}1

2

[
P[f(xe) < 0|Y = 1] + P[f(x) > 0|Y = −1]

]
= max e ∈ {1, 2}P[f(xe) < 0|Y = 1]

= max
e∈{1,2}

∫ 0

−∞

1√
2π‖w‖

exp
(
− 1

2

(
φ− (w1r + w2ae)

)
‖w‖2

)
dφ

= max
e∈{1,2}

∫ +∞

w1r+w2ae

1√
2π‖w‖

exp
(
− 1

2

φ2

‖w‖2
)
dφ

=

∫ +∞

w1r−|w2|
√

t
2

1√
2π‖w‖

exp
(
− 1

2

φ2

‖w‖2
)
dφ

=

∫ +∞

ŵ1r−|ŵ2|
√

t
2

1√
2π

exp
(
− 1

2
φ2
)
dφ,

where ŵ1 = w1/‖w‖ and ŵ2 = w2/‖w‖. Similarly, we have

L(Eall, f) =

∫ +∞

ŵ1r−|ŵ2|
√

kt
2

1√
2π

exp
(
− 1

2
φ2
)
dφ.

Combined together, the OOD generalization error of the optimal classifier with V sup(h, Eavail) = ε is

err(f) =

∫ +∞

ŵ1r−|ŵ2|
√

kt
2

1√
2π

exp
(
− 1

2
φ2
)
dφ−

∫ +∞

ŵ1r−|ŵ2|
√

t
2

1√
2π

exp
(
− 1

2
φ2
)
dφ

=

∫ ŵ1r−|ŵ2|
√

t
2

ŵ1r−|ŵ2|
√

kt
2

1√
2π

exp
(
− 1

2
φ2
)
dφ

≥ C(
√
k − 1)

√
t

2
|ŵ2|

≥ C(
√
k − 1)

√
t

2
|ŵ2|2

=
C(
√
k − 1)

√
t
2

kt
s(V sup(h, Eavail)).

We finish our proof by choosing C1 =
C(
√
k−1)
√

t
2

kt .
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3 Experiment on Colored MNIST

In this section, we conduct experiment on ColoredMNIST, a hand designed OOD dataset, to illustrate
why validation accuracy fail to select a good model in OOD dataset.

3.1 Colored MNIST

The Colored MNIST [1] is a common-used synthetic dataset in OOD generalization problem. In
the dataset, picture is labeled with 0 or 1, and it contains two color channels, one of which being
28 × 28 pixels gray scale image from MNIST [4] while the other being a zero matrix. Let the
grayscale image and the colored image be X and X̃ respectively, i.e., X̃ = [X, 0]> and X̃ = [0, X]>

correspond to red and green image. Given a domain e ∈ [0, 1], for an original image X with the label
Ŷ = I{digit <= 4}, the data point in Colored MNIST is constructed with

Y =

{
Ŷ w.p. 0.75

1− Ŷ w.p. 0.25
, X̃e =

{
[X, 0]> w.p. e+ (1− 2e)Y

[0, X]> w.p. e+ (1− 2e)(1− Y )
(6)

According to (6), the digit shape is invariant over domains, and the color is varying but might be
more informative than the digit shape in some domains. The difficulty of OOD generalization is that
we need to avoid learning color, since in e ∈ Eall the relationship between e and y might be entirely
reversed.

3.2 Learnability of Colored MNIST

As a warm-up, We first prove that for any δ, Colored MNIST is a (s(·), δ)-learnable OOD problem
under any feature space Φ with the total variation distance ρ, where

s(ε) =
maxe,e′∈Eall |e− e′|

maxe,e′∈Eavail |e− e′|
ε. (7)

Here we assume the original dataset MNIST is generated from a distribution.

Proof. Denote φ(X̃e) as φe and the density of φ(X̃e)|Y e = y as pe,y(x). In addition, denote the
density of φ([X, 0]>)|Y e = y as p1e,y(x) and the density of φ([0, X]>)|Y e = y as p2e,y(x). Therefore,
we have ∀e, y,

pe,y(x) = [e+ (1− 2e)y]p1e,y(x) + [e+ (1− 2e)(1− y)]p2e,y(x)

Since the distance ρ(·, ·) is total variation, we know that for any two domains e, e′,

ρ
(
P(φe|Y e = y),P(φe

′
|Y e

′
= y)

)
=

1

2

∫ ∣∣pe,y(x)− pe′,y(x)
∣∣dx

=
1

2

∫ ∣∣∣[e+ (1− 2e)y]p1e,y(x) + [e+ (1− 2e)(1− y)]p2e,y(x)

−[e′ + (1− 2e′)y]p1e′,y(x)− [e′ + (1− 2e′)(1− y)]p2e′,y(x)
∣∣∣dx

Notice that X is invariant across domains. Thus for all x, y,
p1e,y(x) = p1e′,y(x), p2e,y(x) = p2e′,y(x).

We can omit the subscript e and

ρ
(
P(φe|Y e = y),P(φe

′
|Y e

′
= y)

)
=

1

2

∫ ∣∣∣(e− e′)(1− 2y)p1y(x)− (e− e′)(2y − 1)p2y(x)
∣∣∣dx

= |e− e′|
∫ ∣∣∣p1y(x)− p2y(x)

∣∣∣dx
= C|e− e′|,

where C is a constant independent to e, δ. By choosing e, e′ separately in Eavail and Eall, we can
derive the expansion function of Colored MNIST.
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Table 1: Algorithm specific hyperparmeter choice

Algorithms ERM CORAL GroupDRO Mixup IRM
Penalty - λ=1,0.1,0.01 η=0.1,0.01 α=0.1,0.2 iter=1000,λ=1,10

lr 1e-4,5e-5
steps 2500,5000

3.3 Validation Accuracy VS Out-of-distribution Accuracy in Colored MNIST

(a) Validation accuracy and OOD accuracy. They are
negative correlated, i.e., high validation accuracy leads
to low OOD accuracy.

(b) Variation and OOD accuracy. They are negative cor-
related, i.e., low variation leads to high OOD accuracy.

Figure 2: Experiment Result on Colored MNIST.

We conduct experiments on the Colored MNIST dataset. As figure 2(a) shows, validation accuracy on
Colored MNIST has a negative relation with OOD accuracy. Therefore, using validation accuracy as
a metric to select will result in a poor OOD accuracy. By contrast, the correlation between variation
OOD accuracy is also negative, meaning that the smaller the variation is, the higher the OOD accuracy
will be.

4 Experiment Details

In this section we list our experiment details. We finish all of our experiment on 8 RTX3090 GPUs
and 12 RTX2080 GPUs. It costs over 14,400 GPU hours.

Architecture & Dataset We use ResNet50 as our model architecture. The network except last
linear and softmax layer is regarded as feature extractor h(x) where the feature dimension d = 2048.
We train our model on three real world OOD datasets (PACS [5], VLCS [9], OfficeHome [11]) by
different algorithms and hyperparameters, and collect those models for selection procedure. Both
datasets have 4 different environments. For each environment, we split it into 20% and 80% splits.
The large part is used for training and OOD test. The small part is used for validation. We compare
our criterion with validation criterion on each environment. We use Adam as our optimizer and
weight decay is set to zero.

Data Augmentation Data augmentation is an important method for domain generalization problem.
In our experiment, we follow same data augmentation setting in [2]. We first crops of random size
and aspect ratio, resizing to 224 × 224 pixels, then we do random horizontal flips and color jitter.
We also grayscale the image with 10% probability, and normalize image with the ImageNet channel
means and standard deviations.

Hyparameters & Algorithm We search ERM [10] and four common OOD algorithms (Inter-
domain Mixup [12], Group DRO [7], CORAL [8] and IRM [1]). Specific hyper-parameters are listed
in Table 1. We train each setting for 5 times.

Baseline The performance of “Val” method is similar to another accuracy-based selection as is
shown in [2]. We compare this method with ours.
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