APPENDIX A: PROOF OF THEOREM 1

Assumption 1. There exist positive constants o, o, g such that for any x,y € R"”,
lhy(2) = by ()] < ar[lz —yll, |ho(2) = ha(y)] < a2 [lz —yll,
|hs(@) = hs(y)| < as [lz =yl

dX (1) = F(X(£)dt + u(t). (1)

Under Assumption m for any initial value X (0) = ¢ € R2, if o5 # 0 and 8 > 1, then there a.s.
exists a unique global solution X (¢) to system (1) on ¢ € [0, c0).

Proof. Under Assumption|[l} then, we can calculate that

XT()F(X(2))

=0l (d(t)e)e + @(t)ha(S(1)(O(1) + ¢))0(t) +
S(t)ha($()(O(1) + ¢))et
0(t)hs ((1)(O(1) + )) (t)

1 1
[(1—|—2a1)c + 2¢ + ]\X|2 (a§+§a§)|X|4.

For any bounded initial value X (0) € R", there ex1sts a unique maximal local strong solution X ()
of system (1) on ¢ € [0, 7.), where 7, is the explosion time. To show that the solution is actually
global, we only need to prove that 7. = oo a.s. Let kg be a sufficiently large positive number such
that | X (0)| < ko. For each integer k > ko, define the stopping time

T = inf{t € [0,7.) : | X ()] > k}
with the traditional setting inf () = oo, where () denotes the empty set. Clearly, 7 is increasing as
k — oo and 1, — T < T a.s. If we can show that 7., = oo, then 7, = co a.s., which implies the

desired result. This is also equivalent to prove that, for any ¢ > 0, P(7, < t) — 0as k — oo. To
prove this statement, for any p € (0, 1), define a C?-function

Vi(z) =X
One can obtain that X (t) # 0 for all 0 < ¢t < 7, a.s. Thus, one can apply the Itd formula to show
that for any ¢ € [0, 7),

dV (X (t)) =LV(X(t))dt + po1| X (t)|PdB1 ()
+ po2| X (1) +Pd By (1),
where LV is defined as
)Ql |X|p

IV(X) =p|XP-2X p(x (1)) + L2k

— 1) 02
p(p )92 | X‘Zﬁﬁ-p
By Assumptionm we therefore have

—1)02 1 1
LV(X) gfwm?@” +((1+ 50@)8 +2c+ 5)

— 1)} 1
x| +p<(p2)"1 +(03+ 2a§>) XPP
Noting that p € (0,1) and 5 > 1 and o # 0, by the boundedness of polynomial functions, there
exists a positive constant H such that LV (z) < H. We therefore have
tATE
EV(X(t Ay)) < EJ¢” + ]E/ LV(X(s))ds
0

< E[¢[P + H,
= Hta



where H; is independent of k. By the definition of 74, | X (71)| = k, so
P(r, < t)kP < P(1, < )V (X (71))]
S Ellr < V(X (tATk))]
<EV(X(tATE))
< H,
which implies that
lilrcrisotip P(r, <t) < leH;O % =0,

as required. O
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Let Assumption[T[hold. Assume that oo # 0 and 3 > 1. If

2
01
—= —p>0
B ® )
where
Q% 23 2 1 o0 o L 5 o 1
p=maxy — S+ (0 + jag)e” + [(1+ jar)e” +2e+ o] o, 2

then for any X (0) = ¢ with sufficiently small constant € € (0, 03/2 — ), the global solution X (¢)
of system (1) has the property that

log | X 2
1imsup0g|(t)|§—<gl—<p>+e, a.s.

t—o00 t 2

that is, the solution of system (I)) is a.s. exponentially stable.

Proof. Applying It6 formula to log | X (¢)| yields

log | X (#)| =log [ X (0)] + /O X (72X T (s)F(X(5))

02 02 t
— —2|X(s)|25 — =Zllds +/ 01dB;(t)
2 2 )

o / X ()% dBa(s).

Letting M (t) = o2 fg | X (5)|?dBa(s), clearly M (t) is a continuous local martingale with the
quadratic variation

< M(t), M(t) >= gg/o X ()20 ds.

For any € € (0,1), choose 6 > 0 such that fc > 1. Then for each integer m > 0, the exponential
martingale inequality gives

5@% ¢ 28 1
P¢ sup |M(t) — - | X (s)[ds| > felogm » < —-.
0 me

1<t<m

Sin_ce Zf;:l m % < oo, by the _well-known Borel-Cantelli lemma, there exists an g C  with
P(Qp) = 1 such that for any w € ), there exists an integer m(w), when m > m(w), and m — 1 <
t<m,

2t
M(t) < 6%/ | X (5)[*/ds + felog(t + 1).
0



This, together with Assumption|[T} yields

. Q%(l — 5) ‘X(S)‘Z’B

t
tog X (1) <logle + [ | - 25
0

1 1
+ (14 (éaf)cz + 2c+ §)|X(s)|°‘

1 2
+ (a3 + §a§) - Ql] ds

t
+ / 01dBy(t) + Oclog(t + 1).
0

Letting € be sufficiently small, by the definition of ¢ in (??), for sufficiently small € € (0, 0?/2 —¢),
we have

t
t+ / 01d B (t)

2 0

+ felog(t + 1).

2
log | X (¢)] <log|¢| — l(gl —p)—e

Applying the strong law of large number, we therefore have

2
lim sup 710g X )] < —(&

t—o0 o 2

—¢)+e a.s.



