
APPENDIX A: PROOF OF THEOREM 1

Assumption 1. There exist positive constants α1, α2, α3 such that for any x, y ∈ Rn,

|h
′

1(x)− h
′

1(y)| ≤ α1 ‖x− y‖ , |h
′

2(x)− h
′

2(y)| ≤ α2 ‖x− y‖ ,
|h

′

3(x)− h
′

3(y)| ≤ α3 ‖x− y‖ .

dX(t) = f(X(t))dt+ u(t). (1)

Under Assumption 1, for any initial value X(0) = ξ ∈ R2, if %2 6= 0 and β > 1, then there a.s.
exists a unique global solution X(t) to system (1) on t ∈ [0,∞).

Proof. Under Assumption 1, then, we can calculate that

XT(t)f(X(t))

=φ(t)h
′

1(φ(t)c)c+ φ(t)h
′

2(φ(t)(θ̃(t) + c))θ̃(t)+

φ(t)h
′

2(φ(t)(θ̃(t) + c))c+

θ̃(t)h
′

3(φ(t)(θ̃(t) + c))φ(t)

≤[(1 +
1

2
α2
1)c2 + 2c+

1

2
]|X|2 + (α2

2 +
1

2
α2
3)|X|4.

For any bounded initial value X(0) ∈ Rn, there exists a unique maximal local strong solution X(t)
of system (1) on t ∈ [0, τe), where τe is the explosion time. To show that the solution is actually
global, we only need to prove that τe = ∞ a.s. Let k0 be a sufficiently large positive number such
that |X(0)| < k0. For each integer k ≥ k0, define the stopping time

τk = inf{t ∈ [0, τe) : |X(t)| ≥ k}
with the traditional setting inf ∅ = ∞, where ∅ denotes the empty set. Clearly, τk is increasing as
k →∞ and τk → τ∞ ≤ τe a.s. If we can show that τ∞ =∞, then τe =∞ a.s., which implies the
desired result. This is also equivalent to prove that, for any t > 0, P(τk ≤ t) → 0 as k → ∞. To
prove this statement, for any p ∈ (0, 1), define a C2-function

V (x) = |X(t)|p.
One can obtain that X(t) 6= 0 for all 0 ≤ t ≤ τe a.s. Thus, one can apply the Itô formula to show
that for any t ∈ [0, τe),

dV (X(t)) =LV (X(t))dt+ p%1|X(t)|pdB1(t)

+ p%2|X(t)|β+pdB2(t),

where LV is defined as

LV (X) =p|X|p−2XTf(X(t)) +
p(p− 1)%21

2
|X|p

+
p(p− 1)%22

2
|X|2β+p

By Assumption 1, we therefore have

LV (X) ≤p(p− 1)%22
2

|X|2β+p + ((1 +
1

2
α2
1)c2 + 2c+

1

2
)

p|X|α+p + p

(
(p− 1)%21

2
+ (α2

2 +
1

2
α2
3)

)
|X|p.

Noting that p ∈ (0, 1) and β > 1 and %2 6= 0, by the boundedness of polynomial functions, there
exists a positive constant H̄ such that LV (x) ≤ H̄ . We therefore have

EV (X(t ∧ τk)) ≤ E|ξ|p + E
∫ t∧τk

0

LV (X(s))ds

≤ E|ξ|p + H̄t

=: H̄t,
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where H̄t is independent of k. By the definition of τk, |X(τk)| = k, so

P(τk ≤ t)kp ≤ P(τk ≤ t)V (X(τk))]

≤ E[l{τk≤t}V (X(t ∧ τk))]

≤ EV (X(t ∧ τk))

≤ H̄t,

which implies that

lim sup
k→∞

P(τk ≤ t) ≤ lim
k→∞

H̄t

kp
= 0,

as required.

APPENDIX B: PROOF OF THEOREM 2

Let Assumption 1 hold. Assume that %2 6= 0 and β > 1. If

%21
2
− ϕ > 0,

where

ϕ = max
x≥0

{
− %22

2
x2β + (α2

2 +
1

2
α2
3)x2 + [(1 +

1

2
α2
1)c2 + 2c+

1

2
]

}
, (2)

then for any X(0) = ξ with sufficiently small constant ε ∈ (0, %21/2− ϕ), the global solution X(t)
of system (1) has the property that

lim sup
t→∞

log |X(t)|
t

≤ −
(
%21
2
− ϕ

)
+ ε, a.s.

that is, the solution of system (1) is a.s. exponentially stable.

Proof. Applying Itô formula to log |X(t)| yields

log |X(t)| = log |X(0)|+
∫ t

0

[
|X(t)|−2XT(s)f(X(s))

− %22
2
|X(s)|2β − %21

2

]
ds+

∫ t

0

%1dB1(t)

+ %2

∫ t

0

|X(s)|βdB2(s).

Letting M(t) = %2
∫ t
0
|X(s)|βdB2(s), clearly M(t) is a continuous local martingale with the

quadratic variation

< M(t),M(t) >= %22

∫ t

0

|X(s)|2βds.

For any ε ∈ (0, 1), choose θ > 0 such that θε > 1. Then for each integer m > 0, the exponential
martingale inequality gives

P

{
sup

1≤t≤m

[
M(t)− ε%22

2

∫ t

0

|X(s)|2βds

]
≥ θε logm

}
≤ 1

mθε
.

Since
∑∞
m=1m

−θε < ∞, by the well-known Borel-Cantelli lemma, there exists an Ω̄0 ⊆ Ω with
P(Ω̄0) = 1 such that for any ω ∈ Ω̄0, there exists an integer m̄(ω), when m > m̄(ω), and m− 1 ≤
t ≤ m,

M(t) ≤ ε%22
2

∫ t

0

|X(s)|2βds+ θε log(t+ 1).
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This, together with Assumption 1, yields

log |X(t)| ≤ log |ξ|+
∫ t

0

[
− %22(1− ε)

2
|X(s)|2β

+ (1 + (
1

2
α2
1)c2 + 2c+

1

2
)|X(s)|α

+ (α2
2 +

1

2
α2
3)− %21

2

]
ds

+

∫ t

0

%1dB1(t) + θε log(t+ 1).

Letting ε be sufficiently small, by the definition of ϕ in (??), for sufficiently small ε ∈ (0, %21/2−ϕ),
we have

log |X(t)| ≤ log |ξ| −

[
(
%21
2
− ϕ)− ε

]
t+

∫ t

0

%1dB1(t)

+ θε log(t+ 1).

Applying the strong law of large number, we therefore have

lim sup
t→∞

log |X(t)|
t

≤ −(
%21
2
− ϕ) + ε a.s.
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