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Abstract

We develop and analyze algorithms for distributionally robust optimization (DRO)
of convex losses. In particular, we consider group-structured and bounded f -
divergence uncertainty sets. Our approach relies on an accelerated method that
queries a ball optimization oracle, i.e., a subroutine that minimizes the objec-
tive within a small ball around the query point. Our main contribution is ef-
ficient implementations of this oracle for DRO objectives. For DRO with N
non-smooth loss functions, the resulting algorithms find an ε-accurate solution with
Õ
(
Nε−2/3 + ε−2

)
first-order oracle queries to individual loss functions. Com-

pared to existing algorithms for this problem, we improve complexity by a factor
of up to ε−4/3.

1 Introduction

The increasing use of machine learning models in high-stakes applications highlights the importance
of reliable performance across changing domains and populations [11, 46, 35]. An emerging body
of research addresses this challenge by replacing Empirical Risk Minimization (ERM) with Dis-
tributionally Robust Optimization (DRO) [6, 50, 49, 22, 40], with applications in natural language
processing [47, 61, 35], reinforcement learning [17, 54] and algorithmic fairness [27, 56]. While
ERM minimizes the average training loss, DRO minimizes the worst-case expected loss over all
probability distributions in an uncertainty set U , that is, it minimizes

LDRO(x) := sup
Q∈U

ES∼Q[`S(x)], (1)

where `S(x) is the loss a model x ∈ X incurs on a sample S and X is a closed convex set with
bounded Euclidean diameter. This work develops new algorithms for DRO, focusing on formulations
where U contains distributions supported on N training points, where N is potentially large. We
consider two well-studied DRO variants: (1) Group DRO [57, 31, 49], and (2) f -divergence DRO
[19, 6, 22].

Group DRO Machine learning models may rely on spurious correlations (that hold for most training
examples but are wrongly linked to the target) and therefore suffer high loss on minority groups where
these correlations do not hold [30, 27, 11]. To obtain high performance across all groups, Group
DRO minimizes the worst-case loss over groups. Given a set U = {w1, . . . , wM} of M distributions
over [N ], the Group DRO objective is1

Lg-DRO(x) := max
i∈[M ]

Ej∼wi`j(x) = max
i∈[M ]

N∑
j=1

wij`j(x). (2)

1Typically, each wi is uniform over a subset (“group”) of the N training points. However, most approaches
(and ours included) extend to the setting of arbitrary wi’s, which was previously considered in [57].
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Smoothness Method Group DRO (2) f -divergence DRO (3)

None (L =∞) Subgradient method [45] Nε−2 Nε−2

Stoch. primal-dual [43] ∗ Mε−2 Nε−2

MLMC stoch. gradient [39] - ρε−3 or α−1ε−2 †

Ours Nε−2/3 + ε−2 Nε−2/3 + ε−2

Weak (L ≈ 1/ε) AGD on softmax [44] Nε−1 Nε−1

Ours Nε−2/3 +N3/4ε−1 Nε−2/3 +
√
Nε−1

Table 1. Number of∇`i and `i evaluations to obtain E[LDRO(x)]−minx?∈X LDRO(x?) ≤ ε, where
N is the number of training points and (for Group DRO) M is the number of groups. The stated
rates omit constant and polylogarithmic factors. ∗ Requires an additional uniform bound on losses
(see Appendix A.1). † These rates hold only for specific f -divergences: CVaR at level α or χ2-
divergence with size ρ, respectively.

If we define the loss of group i as Li(x) :=
∑N
j=1 wij`j(x) then objective (2) is equivalent to

maxq∈∆M

∑
i∈[M ] qiLi(x) with ∆M := {q ∈ RM≥0 | ~1T q = 1}. Note that, unlike ERM, Group

DRO requires additional supervision in the form of subgroup identities encoded by {wi}.
DRO with f -divergence Another approach to DRO, which requires only as much supervision as
ERM, takes U to be an f -divergence ball around the empirical (training) distribution. For every
convex function f : R+ → R ∪ {+∞} such that f(1) = 0, f(0/0) = 0 and the f -divergence
between distributions q and p over [N ] is Df (q, p) :=

∑
i∈[N ] pif(qi/pi). The f -divergence DRO

problem corresponds to the uncertainty set U = {q ∈ ∆N : Df (q, 1
N 1)) ≤ 1}, i.e.,

Lf -div(x) := max
q∈∆N : 1

N

∑
i∈[N] f(Nqi)≤1

∑
i∈[N ]

qi`i(x). (3)

Several well-studied instances of DRO are a special case of this formulation, with the two most
notable examples being conditional value at risk (CVaR) and χ2 uncertainty sets. CVaR at level
α corresponds to f(x) = 1{x< 1

α} such that U =
{
q ∈ ∆N s.t ‖q‖∞ ≤ 1/(αN)

}
, and has many

applications in finance such as portfolio optimization and credit risk evaluation [48, 37] as well as
in machine learning [47, 39, 20, 60, 17, 54]. The χ2 uncertainty set with size ρ > 0 corresponds to
f(x) := 1

2ρ (x− 1)2 and the resulting DRO problem is closely linked to variance regularization [21]
and has been extensively studied in statistics and machine learning [42, 27, 21, 39, 61].

Complexity notion In this paper, we design improved-complexity methods for solving the convex
problems (2) and (3) under the assumption that the loss `i is convex and Lipschitz for all i. We
measure complexity by the (expected) required number of `i(x) and ∇`i(x) evaluations to obtain
ε-suboptimal solution, i.e., return x such that LDRO(x) − minx?∈X LDRO(x?) ≤ ε with constant
probability. Table 1 summarizes our complexity bounds and compares them to prior art. Throughout
the introduction we assume (for simplicity) a unit domain size (‖x− y‖ ≤ 1 for all x, y ∈ X ) and
that each loss is 1-Lipschitz.

Prior art Let us review existing methods that solve Group DRO and f -divergence DRO problems
(see Section 1.1 for extended discussion). For a dataset with N training points, the subgradient
method [45] finds an ε approximate solution in ε−2 iterations. Computing a single subgradient costs
N functions evaluations (since we need to find the maximizing q). Therefore, the complexity of this
method is O

(
Nε−2

)
.

DRO can also be viewed as a game between a minimizing x-player and a maximizing q-player, which
makes it amenable to primal-dual methods [43, 42, 49]. If we further assume that the losses are
bounded then, for q ∈ ∆m, stochastic mirror descent with local norms obtains a regret bound of
O
(√

m log(m)/T
)

(see Appendix A.1). As a consequence, for Group DRO (where m = M ) the
complexity is Õ

(
Mε−2

)
, and for f -divergence DRO (m = N ) the complexity is Õ

(
Nε−2

)
.

Levy et al. [39] studied χ2-divergence and CVaR DRO problems, and proposed using standard
gradient methods with a gradient estimator based on multilevel Monte Carlo (MLMC) [9]. For
χ2-divergence with ball of size ρ they proved a complexity bound of Õ

(
ρε−3

)
, and for CVaR at
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level α they established complexity Õ
(
α−1ε−2

)
. However, for large uncertainty sets (when ρ or α−1

approach N ) their method does not improve over the subgradient method.

Stronger complexity bounds are available under the weak smoothness assumption that each `i
has O

(
ε−1
)
-Lipschitz gradient. Note that this is a weak assumption since if a function ` is not

continuously differentiable, it is possible to approximate ` with additive error at most ε/2, by
its Moreau envelope ˜̀(x) = miny∈X

{
`(y) + G2

2ε ‖x− y‖
2
}

(see [15, Appendix A.1] for more
details). In particular, we can apply Nesterov’s accelerated gradient descent method [44] on an
entropy-regularized version of our objective to solve the problem with complexity Õ

(
Nε−1

)
; see

Appendix A.2 for more details.

Our contribution We propose algorithms that solve the problems (2) and (3) with complexity
Õ
(
Nε−2/3 + ε−2

)
. Compared to previous works, we obtain better convergence rates for DRO with

general f -divergence when N � 1 and for Group DRO when M � Nε4/3. When the losses have
O(ε−1)-Lipschitz gradient, we solve f -divergence DRO with complexity Õ

(
Nε−2/3 +

√
Nε−1

)
,

and, under an even weaker mean-square smoothness assumption (Ej∼wi‖∇`j(x) − ∇`j(y)‖2 ≤
O(ε−2)‖x− y‖2 for all x, y and i), we solve Group DRO with complexity Õ

(
Nε−2/3 +N3/4ε−1

)
.

Our complexity bounds are independent of the structure of f and {wi}, allowing us to consider
arbitrarily f -divergence balls and support a large number of (potentially overlapping) groups. Our
rates are optimal up to logarithmic factors for the special case of minimizing maxi∈[N ] `i(x), which
corresponds to Group DRO with N distinct groups and f -divergence DRO with f = 0 [58, 62, 15].

Our approach Our algorithms are based on a technique for acceleration with a ball optimization
oracle, introduced by Carmon et al. [13] and further developed in [15, 3]. Given a function F and
a query point x, the ball optimization oracle returns an approximate minimizer of F inside a ball
around x with radius r; the works [13, 15, 3] show how to minimize F using Õ(r−2/3) oracle calls.
Our development consists of efficiently implementing ball oracles with radius r = Õ(ε) for the DRO
problems (2) and (3), leveraging the small ball constraint to apply stochastic gradient estimators that
would have exponential variance and/or cost without it.

Carmon et al. [15] previously executed this strategy for minimizing the maximum loss, i.e.,
maxq∈∆N

∑
i qi`i(x), which is a special case of both Group DRO and f -divergence DRO. How-

ever, the ball-oracle implementations of [15] do not directly apply to the DRO problems that we
consider; our oracle implementations differ significantly and intimately rely on the Group DRO and
f -divergence problem structure. We now briefly review the main differences between our approach
and [15], highlighting our key technical innovations along the way.

Since the Group DRO objective is maxq∈∆M

∑
i qiLi(x) for Li(x) =

∑
j∈[N ] wij`j(x), one may

naively apply the technique of [15] with Li replacing `i. However, every step of such a method would
involve computing quantities of the form eLi(x)/ε′ (for some ε′ = Θ̃(ε)), which can be up to N times
more expensive than computing e`j(x)/ε′ for a single j. To avoid such expensive computation we
use MLMC [9] to obtain an unbiased estimate of eLi(x)/ε with complexity O(1) and appropriately
bounded variance. In the weakly-smooth case we also adapt our estimator to facilitate variance
reduction [33, 2].

For f -divergence we consider the well-known dual form [6, 50]

max
q∈∆N

∑
i∈[N ]

{qi`i(x)− ψ(qi)} = min
y∈R

{
Υ(x, y) :=

∑
i∈[N ]

ψ∗(`i(x)− y) + y

}
where ψ∗(v) = maxt≥0{vt− ψ(t)} is the Fenchel dual of ψ. Stochastic gradient methods applied
directly on the dual formulation are notoriously unstable (see e.g., [42]). This is due to the fact
that the Fenchel dual ψ∗ can be very badly behaved even for standard f -divergences. We solve this
problem by (a) considering a small ball, (b) entropy-regularizing ψ. Our techniques rely on two
technical observations: (i) log(ψ∗ε

′(·)) is 1/ε′-Lipschitz for all convex ψ, and (ii) for 1-Lipschitz
losses, y?(x) = argminy∈R Υ(x, y) satisfies |y?(x)− y?(x′)| ≤ ‖x− x′‖ for all x, x′. To the best
of our knowledge, these observations are new and potentially of independent interest.

Paper organization. Section 2 provides notation and a concise summary of the ball acceleration
framework (largely taken from prior work) on which we build our algorithms. Sections 3 and 4
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present our main contributions in the Group and f -divergence DRO settings, respectively. Finally,
Section 5 concludes with discussion on the limitations and possible extensions of our work.

1.1 Additional related work

MLMC estimators The multilevel Monte Carlo (MLMC) technique was introduced by Giles [26]
and Heinrich [29] in order to reduce the computational cost of Monte Carlo estimation of integrals.
Blanchet and Glynn [9] extended this technique to estimating functions of expectation and proposed
several applications, including stochastic optimization [10]. In this work we use their estimator for
two distinct purposes: (1) obtaining unbiased Moreau envelope gradient estimates for ball oracle
acceleration as proposed by Asi et al. [3], and (2) estimating the exponential of an expectation for
Group DRO. Levy et al. [39] also rely on MLMC for DRO, but quite differently than we do: they
directly estimate the DRO objective gradient via MLMC, while we estimate different quantities.

Other DRO methods Several additional works proposed algorithms with theoretical guarantees
for f -divergence DRO. Jin et al. [32] considered non-convex and smooth losses. Song et al. [53]
proposed an algorithm for linear models with complexity comparable to the “AGD on softmax”
approach (Appendix A.2). Namkoong and Duchi [42] proposed a primal-dual algorithm that is
suitable for small uncertainty χ2 sets (with size ρ� 1

N ) and Curi et al. [20] proposed a primal-dual
algorithm specialized for CVaR. Other works consider DRO with uncertainty sets defined using the
Wasserstein distance [24, 23, 51, 34]. Another relevant line of works proposes refinements for DRO
that address some of the challenges in applying it to learning problems [60, 59, 55].

2 Preliminaries

Notation We write ‖·‖ for the Euclidean norm. We denote by Br(x0) the Euclidean ball of radius
r around x0. We let ∆n := {q ∈ Rn≥0 | 1T q = 1} denote the probability simplex in Rn. For the
sequence zm, . . . , zn we use the shorthand znm. Using F as a generic placeholder (typically for a loss
function `i), we make frequent use of the following assumption.

Assumption 1. The function F : X → R is convex and G-Lipschitz, i.e., for all x, y ∈ X we
have |F (x)− F (y)| ≤ G‖x− y‖. In addition, the domain X is a closed and convex set, and it has
Euclidean diameter at most R.

Throughout, N denotes the number of losses and, in Section 3, M denotes the number of groups.
We use ε for our target accuracy and rε := ε′/G for the ball radius, where ε′ = ε/(2 logM) for
Group-DRO (Section 3) and ε′ = ε/(2 logN) for f -divergence DRO (Section 4).

Complexity model We measure an algorithm’s complexity by its expected number of `i and ∇`i
evaluations; bounds on expected evaluation number can be readily converted to more standard
probability 1 bounds [see 3, Appendix A.3]. Moreover if X ⊂ Rd, d = Ω(logN),2 and the time to
evaluate `i and∇`i is O(d), the expected runtime of all the algorithms we consider is at most d times
the evaluation complexity.

2.1 Ball oracle acceleration

We now briefly summarize the complexity bounds given by the framework of [13, 15, 3] for acceler-
ated minimization using queries to (inexact) ball optimization oracles, defined as follows.

Definition 1. An algorithm is a Ball Regularized Optimization Oracle of radius r (r-BROO) for
function F : X → R if for query point x̄ ∈ X , regularization parameter λ > 0 and desired accuracy
δ > 0 it returns Oλ,δ(x̄) ∈ X satisfying

E
[
F (Oλ,δ(x̄)) +

λ

2
‖Oλ,δ(x̄)− x̄‖2

]
≤ min
x∈Br(x̄)∩X

{
F (x) +

λ

2
‖x− x̄‖2

}
+
λ

2
δ2. (4)

Proposition 1. Let F satisfy Assumption 1, let CF be the complexity of evaluating F exactly,
and let Cλ(δ) bound the complexity of an r-BROO query with δ, λ. Assume that Cλ(δ) is non-
increasing in λ and at most polynomial in 1/δ. For any ε > 0, Algorithm 1 returns x such that

2The assumption d = Ω(logN) is only necessary for our results on f -divergence DRO (Section 4), where
the runtime of computing argminy∈R Υ(x, y) is O(Nd+N logN) due to the need to sort the losses.
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F (x) − minx?∈X F (x?) ≤ ε with probability at least 1
2 . For mε = O

(
log GR2

εr

)
and λm =

O
( m2

εε

r4/3R2/3

)
, the complexity of the algorithm is

O

(R
r

)2/3
mε∑

j=0

1

2j
Cλm

(
r

2j/2m2
ε

)mε + (Cλm
(r) + CF )m3

ε ,

. (5)

Informally, the proposition shows that Õ((R/r)2/3) BROO calls with λ = Ω̃(ε/(r3/4R2/3)) and
accuracy δ = Õ(r) suffice to find an ε-accurate solution. As we show in the sequel, for Cλ(δ) =

Õ
(
N + ( Gλδ )2

)
the resulting complexity bound is Õ

(
N(GRε )2/3 + (GRε )2

)
. The summation over

j in bound (5) stems from the use of MLMC to de-bias the BROO output (i.e., make it exact in
expectation): compared to the original proposal of Asi et al. [3], our version of the procedure in
Appendix B slightly alters this MLMC scheme by de-biasing one accurate BROO call instead of
averaging many inaccurate de-biased calls, improving our bounds by logarithmic factors.

3 Group DRO

In this section we develop our BROO implementations for the Group DRO objective (2). In Section 3.1
we describe an “exponentiated group-softmax” function that approximates Lg-DRO with additive
error at most ε/2. We then apply stochastic gradient methods on this function to obtain BROO
implementations that yield improved rates for Group DRO via Proposition 1: we first consider the
non-smooth case in Section 3.2 and then the weakly-smooth case in Section 3.3.

3.1 Exponentiated group-softmax

Given a cheap and unbiased stochastic gradient estimator of ∇Lg-DRO, we could use a variant of
SGD and minimize Lg-DRO to ε-suboptimal solution using O(ε−2) steps. However, obtaining an
unbiased estimator is challenging due to the maximum operator in Lg-DRO. As a first step we use
entropy smoothing [7, 8, 5, 4] to replace the maximum in Lg-DRO with the softmax operation. More
specifically, we use the trick from [15] and minimize the “exponentiated softmax” (that has the form
of a weighted finite sum) within a small ball. For target accuracy ε, regularization parameter λ ≥ 0,
center point x̄ ∈ X and ε′ = ε/(2 logM) > 0, the (regularized) group-softmax function is

Lsmax,ε,λ(x) := ε′ log

∑
i∈[M ]

e
Li(x)

ε′

+
λ

2
‖x− x̄‖2 where Li(x) =

∑
j∈[N ]

wij`j(x). (6)

We will implement a BROO for Lsmax,ε := Lsmax,ε,0, which is a uniform approximation of Lg-DRO:
|Lg-DRO(x)− Lsmax,ε(x)| ≤ ε/2 for all x ∈ X ; see Appendix C.1 for details.

The (regularized) exponentiated group-softmax is

Γε,λ(x) :=
∑
i∈[M ]

p̄iγi(x) where γi(x) = ε′e
Li(x)−Li(x̄)+λ

2
‖x−x̄‖2

ε′ and p̄i =
e
Li(x̄)

ε′∑
i∈[M ] e

Li(x̄)

ε′
. (7)

In the following lemma we (easily) extend Carmon et al. [15, Lemma 1] to exponentiated group-
softmax, showing that Γε,λ is well-behaved inside a ball of (appropriately small) radius r around x̄
and facilitates minimizing Lsmax,ε,λ in that ball; see Appendix C.1 for the proof.
Lemma 1. Let each `i satisfy Assumption 1, and consider the restriction of Lsmax,ε,λ (6) and
Γε,λ (7) to Br(x̄). Then the functions have the same minimizer x? ∈ Br(x̄) and, if λ ≤ O(G/r) and
r ≤ O(ε′/G), then (a) Γε,λ is Ω(λ)-strongly convex, (b) each γi is O(G)-Lipschitz and (c) for every
x ∈ Br(x̄) we have Lsmax,ε,λ(x)− Lsmax,ε,λ(x?) ≤ O(Γε,λ(x)− Γε,λ(x?)).

3.2 BROO implementation for Group DRO non-smooth losses

To motivate our BROO implementation, let us review how [15] use the exponentiated softmax in
the special case of size-1 groups, i.e., Li = `i, and explain the difficulty that their approach faces
when the group structure is introduced. The BROO implementation in [15] is based on SGD variant
with the stochastic gradient estimator ĝ(x) = e(Li(x)−Li(x̄))/ε′∇Li(x) where i ∼ p̄i. However, for
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Group DRO where Li =
∑
j∈[N ] wij`j , the estimator ĝ(x) can be up to N times more expensive to

compute. Approximating ĝ(x) by drawing j, j′ ∼ wi and taking e(`j(x)−`j(x̄))/ε′∇`j′(x) will result
in a biased estimator since Ej∼wie(`j(x)−`j(x̄))/ε′ 6= e(Li(x)−Li(x̄))/ε′ . To address this challenge we
propose a new gradient estimator based on the multilevel Monte Carlo (MLMC) method [9].

The MLMC unbiased estimator for γi(x) = ε′e(Li(x)−Li(x̄))/ε′ , which we denote by M̂[γi(x)], is
defined as follows:

Draw J ∼ Geom
(

1− 1√
8

)
, S1, . . . , Sn

iid∼ wi and let M̂[γi(x)] := γ̂(x;S1) +
D̂2J

pJ
,

where pj := P(J = j) =
(
1/
√

8
)j(

1− 1√
8

)
and, for n ∈ 2N, we define

D̂n := γ̂(x;Sn1 )−
γ̂
(
x;S

n/2
1

)
+ γ̂
(
x;Snn/2+1

)
2

and γ̂(x;Sn1 ) := ε′e
1
n

∑n
j=1

`Sj
(x)−`Sj (x̄)+λ

2
‖x−x̄‖2

ε′ .

With the MLMC estimator for γi in hand, we estimate the gradient of Γε,λ as follows:

Draw i ∼ p(x̄) , j ∼ wi and set ĝ(x) =
1

ε′
M̂[γi(x)](∇`j(x) + λ(x− x̄)). (8)

In the following lemma we summarize the important properties of the MLMC and gradient estimators;
see Appendix C.2 for the proof.

Lemma 2. Let each `i satisfy Assumption 1, and let r ≤ ε′

G , λ ≤ G
r and x ∈ Br(x̄). Then M̂[γi(x)]

and ĝ(x) are unbiased for γi(x) and ∇Γε,λ(x), respectively, and have bounded second moments:

E
[
M̂[γi(x)]

]2 ≤ O
(
G4‖x−x̄‖4

ε′2 + ε′2
)

and E‖ĝ(x)‖2 ≤ O
(
G2
)
. In addition, the complexity of

computing M̂[γi(x)] and ĝ(x) is O(1).

Due to Lemma 2 and since Γε,λ is Ω(λ)-strongly convex, we can use the Epoch-SGD algorithm
of Hazan and Kale [28] with our gradient estimator (8). This algorithm has rate of convergence
O
(
G2/(λT )

)
and our gradient estimator requires additionalN function evaluations for precomputing

the sampling probabilities {p̄i}. We thus arrive at the following complexity bound.

Theorem 1. Let each `j satisfy Assumption 1, let ε, δ, λ > 0 and let rε = ε/(2G logM). For
any query point x̄ ∈ Rd, regularization strength λ ≤ O(G/rε) and accuracy δ, EpochSGD [28,
Algorithm 1]) with the gradient estimator (8) outputs a valid rε-BROO response and has complexity
Cλ(δ) = O

(
N + G2

λ2δ2

)
. Consequently, the complexity of finding an ε-suboptimal minimizer of Lg-DRO

(2) with probability at least 1
2 is

O

(
N

(
GR

ε

)2/3

log11/3H +

(
GR

ε

)2

log2H

)
where H := M

GR

ε
.

We provide the proof for Theorem 1 in Appendix C.3; the final complexity bound follows from
straightforward calculations which we now briefly outline. According to Proposition 1, finding an
ε
2 -suboptimal solution for Lsmax,ε (and consequently an ε-suboptimal solution for Lg-DRO) involves
Õ
(
(R/rε)

2/3) BROO calls with accuracy δ = Ω̃
(
rε2
−J/2) and regularization strength λ ≥ λm,

where J = min{Geom( 1
2 ),m}. We may therefore bound the complexity of each such call by

m∑
j=0

2−jCλm

(
rε2
−j/2

)
=

m∑
j=0

2−jÕ

(
N +

2jG2

λ2
mr

2
ε

)
(?)
= Õ

(
N +

(
GR

ε

)2(rε
R

)2/3
)
,

where (?) follows from substituting λm = Ω̃
(
εr
−4/3
ε R−2/3

)
and m = Õ(1). Multiplying this bound

by Õ
(
(R/rε)

2/3) yields (up to polylogarithmic factors) the conclusion of Theorem 1.
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3.3 Accelerated variance reduction for mean-square smooth losses
In this section we provide an algorithm with an improved rate of convergence under the following
mean-square smoothness assumption.
Assumption 2. For all x, x′ ∈ Br(x̄) and i ∈ [M ], Ej∼wi‖∇`j(x)−∇`j(x′)‖2 ≤ L2‖x− x′‖2.

Note that assuming L-Lipschitz gradient for each `i implies Assumption 2, but not the other way
around. To take advantage of Assumption 2, we first rewrite the function Γε,λ(x) in a way that is
more amenable to variance reduction:

Γε,λ(x) :=
∑
i∈[M ]

cx′,x̄pi(x
′)γi(x, x

′), where γi(x, x
′) := ε′e

Li(x)−Li(x
′)+λ

2
‖x−x̄‖2

ε′ ,

cx′,x̄ =

(∑
j∈[M ] e

Lj(x′)
ε′∑

j∈[M ] e
Lj(x̄)

ε′

)
and pi(x

′) :=
e
Li(x

′)
ε′∑

j∈[M ] e
Lj(x′)
ε′

.

(Note that γi(x, x̄) = γi(x)). Given a reference point x′, to compute a reduced-variance estimator of
∇Γε,λ(x), we draw i ∼ pi(x′) and j ∼ wi, and set:

ĝx′(x) := ∇Γε,λ(x′) +
cx′,x̄
ε′

[
M̂[γi(x, x

′)]∇`λj (x)− γi(x′, x′)∇`λj (x′)
]

(9)

where∇`λj (x) := ∇`j(x) + λ(x− x̄) and M̂[γi(x, x
′)] is an MLMC estimator for γi(x, x′) defined

analogously to M̂[γi(x)] (see details in Appendix C.4). The estimator (9) is not precisely standard
SVRG [33] since we use M̂[γi(x, x

′)] as an estimator for γi(x, x′). Simple calculations show that
Eĝx′(x) = ∇Γε,λ(x) and the following lemma shows that ĝ satisfies a type of variance bound
conducive to variance-reduction schemes; see Appendix C.4 for the proof.
Lemma 3. Let each `j satisfy Assumptions 1 and 2. For any λ ≤ G

r , r = ε′

G and x, x′ ∈ Br(x̄), the

variance of ĝx′(x) is bounded by Var(ĝx′(x)) ≤ O
((
L+ λ+ G2

ε′

)2‖x− x′‖2).

Accelerated variance reduction methods for convex functions typically require a stronger variance
bound of the form Var(ĝx′(x)) ≤ 2L(F (x′)− F (x)− 〈∇F (x), x′ − x〉) for every x [cf. 1, Lemma
2.4]. The guarantee of Lemma 3 is weaker, but still allows for certain accelerated rates via, e.g., the
Katyusha X algorithm [2]. With it, we obtain the following guarantee.
Theorem 2. Let each `j satisfy Assumptions 1 and 2. Let ε > 0, ε′ = ε/(2 logM) and rε = ε′/G.
For any query point x̄ ∈ Rd, regularization strength λ ≤ O(G/rε) and accuracy δ, KatyushaXs
[2, Algorithm 2] with the gradient estimator (9) outputs a valid rε-BROO response and has com-

plexity Cλ(δ) = O
((
N +

N3/4(G+
√
ε′L)√

λε′

)
log
(
Grε
λδ2

))
. Consequently, the complexity of finding an

ε-suboptimal minimizer of Lg-DRO (2) with probability at least 1
2 is

O

(
N

(
GR

ε

)2/3

log14/3H +N3/4

(
GR

ε
+

√
LR2

ε

)
log7/2H

)
where H := M

GR

ε
.

We provide the proof of Theorem 2 in Appendix C.5. For the special case of Group DRO with a single
group satisfying Assumption 2 with L = Θ

(
G2/ε

)
, i.e. minimizing the average loss, we have the

lower bound Ω̃
(
N+N3/4GR

ε

)
[62] and for the case ofN distinct groups, i.e. minimizing the maximal

loss, we have the lower bound Ω̃
(
Nε−2/3

)
[15]. This implies that in the weakly mean-square smooth

setting the term scaling as N3/4ε−1 and the term scaling as Nε−2/3 are unimprovable.

4 DRO with f -divergence

In this section we develop our BROO implementation for the f -divergence objective (3). In Section 4.1
we reduce the original DRO problem to a regularized form using Lagrange multipliers. Next, in
Section 4.2 we show that adding negative entropy regularization to the objective produces the
stability properties necessary for efficient ball optimization. In Section 4.3 we describe a BROO
implementation for the non-smooth case using a variant of Epoch-SGD [28], and in Section 4.4 we
implement the BROO under a weak-smoothness assumption by carefully restarting an accelerated
variance reduction method [1].
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4.1 The dual problem

We first note that (due to Slater’s condition), by Lagrange duality, the objective (3) is equivalent to

Lf -div(x) := max
q∈∆N :

∑
i∈[N]

f(Nqi)

N ≤1

∑
i∈[N ]

qi`i(x) = min
ν≥0

{
ν + max

q∈∆N

∑
i∈[N ]

(
qi`i(x)− ν

N
f(Nqi)

)}
.

Writing ψ(s) := ν
N f(Ns) for ψ : R+ → R, we therefore consider objectives of the form

Lψ(x) := max
q∈∆N

∑
i∈[N ]

(qi`i(x)− ψ(qi)) = min
y∈R

{
Υ(x, y) :=

∑
i∈[N ]

ψ∗(`i(x)−Gy) +Gy

}
(10)

where G is the Lipschitz constant of each loss `i and for the last equality we use Lagrange duality,
with ψ∗(v) := maxt∈dom(ψ){vt− ψ(t)} the Fenchel dual of ψ (for more details see Appendix D.1).
We show that under weak assumptions (introducing logarithmic dependence on bounds on f and
the losses) we can solve the constrained problem (3) to accuracy ε by computing a polylogarithmic
number of O(ε)-accurate minimizers of (10); see Appendix D.2 for details. Since the complexity of
solving (10) holds for any ν > 0, and we have a lower bound for the required ν, for the remainder of
this section we focus on minimizing Lψ for arbitrary convex ψ.

4.2 Stabilizing the gradient estimator

While minimizing (10) can be viewed as ERM (over x and y), straightforward application of SGD
does not solve it efficiently. To see this, consider the standard gradient estimator formed by sampling
i ∼ Unif([N ]) and taking ĝx = Nψ∗′(`i(x)−Gy)∇`i(x) and ĝy = G

(
1 − Nψ∗′(`i(x)−Gy)

)
.

For general ψ, this estimator will have unbounded second moments, and therefore SGD using them
would lack a convergence guarantee. As an extreme example, consider ψ = 0 (corresponding to
minimizing the maximum loss) whose conjugate function ψ∗(v) is 0 for v ≤ 0 and∞ for v > 0,
leading to meaningless stochastic gradients.

We obtain bounded gradient estimates in two steps. First, we find a better distribution for i using
a reference point x̄ ∈ X with corresponding ȳ = argminy∈R Υ(x̄, y). Namely, we note that the
optimality condition for ȳ implies that ψ∗′(`i(x̄) − Gȳ) is a pmf over [N ]. Therefore, we may
sample i ∼ ψ∗′(`i(x̄) − Gȳ) and estimate the gradient of Υ at (x, y) using ĝx = ρi(x, y)∇`i(x)

and ĝy = G
(
1− ρi(x, y)

)
, where ρi(x, y) = ψ∗′(`i(x)−Gy)

ψ∗′(`i(x̄)−Gȳ) . However, for general ψ (and ψ = 0 in
particular), the ratio ρi(x, y) can be unbounded even when x, y are arbitrarily close to x̄, ȳ.

Our second step ensures that ρi(x, y) is bounded around x̄, ȳ by adding a small negative entropy term
to ψ, defining

ψε(q) := ψ(q) + ε′q log q where ε′ :=
ε

2 logN
, (11)

and
Lψ,ε(x) = min

y∈R
Υε(x, y) with Υε(x, y) :=

∑
i∈[N ]

ψ∗ε (`i(x)−Gy) +Gy. (12)

Due to our choice of ε′, we have |Lψ(x) − Lψ,ε(x)| ≤ ε/2 for all x ∈ Rd, and conse-
quently an ε/2-accurate minimizer of Lψ,ε is also an ε-accurate for Lψ (see Lemma 18 in
Appendix D.3). When ψ = 0 we have ψ∗ε (v) = e(v−1)/ε′ and therefore the corresponding
ρi(x, y) = e(`i(x)−`i(x̄)−G(y−ȳ))/ε′ .The following lemma, which might be of independent inter-
est, shows that the same conclusion holds for any convex ψ.

Lemma 4. For any convex ψ : R+ → R and ψε defined in (10), log
(
ψ∗ε
′(·)
)

is 1
ε′ -Lipschitz.

See proof in Appendix D.4. Thus, ψ∗ε
′(v)/ψ∗ε

′(v̄) = elogψ∗ε
′(v)−logψ∗ε

′(v̄) ≤ e(v−v̄)/ε′ and ρi(x, y) ≤
e(`i(x)−`i(x̄)−G(y−ȳ))/ε′ continues to hold. Therefore, if |y − ȳ| ≤ ε′/G = rε and x ∈ Brε(x̄) (so
that |`i(x)− `i(x̄)| ≤ ε′ if `i satisfies Assumption 1), we have the bound ρi(x, y) ≤ e2.

It remains to show that we may indeed restrict y to be within distance rε from ȳ. To this end, we make
the following observation which plays a key part in our analysis and might also be of independent
interest (see proof in Appendix D.4).
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Lemma 5. For G > 0, `(x) = (`1(x), . . . , `N (x)) and y?(x) = argminy∈R Υε(x, y), we have
|y?(x) − y?(x′)| ≤ 1

G‖`(x)− `(x′)‖∞ for all x, x′ ∈ X . Moreover, if each `i is G-Lipschitz, we
have |y?(x)− y?(x′)| ≤ ‖x− x′‖.

Lemma 5 implies that x?, y? = argminx∈Brε (x̄),y∈R Υε(x, y) satisfy |y? − ȳ| ≤ ‖x? − x̄‖ ≤ rε.
Therefore, when minimizing Υε (or any regularized version of it) inside the ball Brε(x̄), we may
restrict y to [ȳ− rε, ȳ+ rε] without loss of generality. We also note that Lemma 5 holds for all values
of ε and is therefore valid even without entropy regularization (as long as ψ∗ is strongly convex y? is
unique, and if y? is not unique then we can still choose y? such that the bound of this lemma holds).

4.3 BROO implementation for f -divergence DRO with non-smooth losses

By the discussion above, to implement a BROO for Lψ,ε(x) (with radius rε = ε′/G, regularization
λ, and query x̄ ∈ X ) it suffices to minimize Υε,λ(x, y) := Υε(x, y) + λ

2 ‖x− x̄‖
2 over x ∈ Brε(x̄)

and y ∈ [ȳ − rε, ȳ + rε], where ȳ = argminy∈R Υε(x̄, y). To that end we estimate the gradient
of Υε,λ(x, y) as follows. Letting p̄i = ψ∗ε

′(`i(x̄)−Gȳ) (making p̄ a pmf by optimality of ȳ), we
sample i ∼ p̄ and set

ĝx(x, y) =
ψ∗ε
′(`i(x)−Gy)

p̄i
∇`i(x, y) and ĝy(x, y) = G

(
1− ψ∗ε

′(`i(x)−Gy)

p̄i

)
. (13)

Lemma 4 implies the following bounds on our gradient estimator; see proof in Appendix D.5.

Lemma 6. Let each `i be G-Lipschitz, let x̄ ∈ X and ȳ = argminy∈R Υε,λ(x̄, y). Let rε = ε′

G , then
for all x ∈ Brε(x̄) and y ∈ [ȳ − rε, ȳ + rε], the gradient estimators ĝx and ĝy satisfy the following:

1. Ei∼p̄i [ĝx(x, y)] = ∇xΥε(x, y) and Ei∼p̄i [ĝy(x, y)] = ∇yΥε(x, y).

2. Ei∼p̄i‖ĝx(x, y)‖2 ≤ e4G2 and Ei∼p̄i |ĝy(x, y)|2 ≤ e4G2.

To implement the BROO using our gradient estimator we develop a variant of the Epoch-SGD
algorithm of Hazan and Kale [28] (Algorithm 3 in Appendix D.5). Similarly to Epoch-SGD, we
apply standard SGD on Υε,λ (with gradient estimator (13)) in “epochs” whose length doubles in
every repetition. Our algorithm differs slightly in how each epoch is initialized. Standard Epoch-SGD
initializes with the average of the previous epoch’s iterates, and strong convexity shows that the
suboptimality and distance to the optimum shrink by a constant factor after every epoch. However,
since Υε,λ is strongly convex only in x and not in y, we cannot directly use this scheme. Instead, we
set the initial y variable to be argminy Υε,λ(x′, y), where x′ is the initial x variable still defined as the
previous epoch’s average; this initialization has complexity N , but we only preform it a logarithmic
number of times. Using our initialization scheme and Lemma 5, we recover the original Epoch-SGD
contraction argument, yielding the following complexity bound (see proof in Appendix D.5).
Theorem 3. Let each `i satisfy Assumption 1. Let ε, λ, δ > 0, and rε = ε/(2G logN). For any query
point x̄ ∈ Rd, regularization strength λ ≤ O(G/rε) and accuracy δ < rε/2, Algorithm 3 outputs a
valid rε-BROO response for Lψ,ε and has complexity Cλ(δ) = O

(
G2

λ2δ2 +N log
(
rε
δ

))
. Consequently,

the complexity of finding an ε-suboptimal minimizer of Lψ (10) with probability at least 1
2 is

O

(
N

(
GR

ε

)2/3

log11/3H +

(
GR

ε

)2

log2H

)
where H := N

GR

ε
.

4.4 Accelerated variance reduction for smooth losses

In this section, we take advantage of the following smoothness assumption.
Assumption 3. For every i ∈ [N ] the loss `i is L-smooth, i.e., has L-Lipschitz gradient.

Let us rewrite Υε,λ in a form that is more amenable to variance reduction techniques:

Υε,λ(x, y) =
∑
i∈[N ]

p̄iυi(x, y) where υi(x, y) :=
ψ∗ε (`i(x)−Gy)

p̄i
+Gy +

λ

2
‖x− x̄‖2

and, as before p̄i = ψ∗ε (`i(x̄)−Gȳ) for some ball center x̄ ∈ X and ȳ = argminy∈R Υε(x̄, y). In the
following lemma, we bound the smoothness of the functions υi, deferring the proof to Appendix D.6.
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Lemma 7. For any i ∈ [N ], let `i be G-Lipschitz and L -smooth, let rε = ε′

G and λ = O
(
G
rε

)
. The

restriction of υi to x ∈ Brε(x̄) and y ∈ [ȳ − rε, ȳ + rε] is O(G)-Lipschitz and O
(
L+ G2

ε′

)
-smooth.

Since Υε,λ is a finite sum of smooth functions, we can obtain reduced-variance gradient estimates by
the standard SVRG technique [33]. For any reference point x′, y′, the estimator is

ĝx′,y′(x, y) = ∇Υε(x
′, y′) +∇υi(x, y)−∇υi(x′, y′), (14)

where ∇ is with respect to the vector [x, y]. Similar to non-smooth case, obtaining an efficient
BROO implementation is complicated by the fact that Υε,λ is strongly-convex in x but not in y.
Our solution is also similar: we propose a restart scheme and minimize over y exactly between
restarts (Algorithm 4 in Appendix D.6), that gives the following complexity bound (see proof in
Appendix D.6).
Theorem 4. Let each `i satisfy Assumptions 1 and 3, let ε, λ, δ > 0, and rε = ε

2G logN . For any
query point x̄ ∈ Rd, regularization strength λ ≤ O(Grε ) and accuracy δ, Algorithm 4 outputs a

valid rε-BROO response for Lψ,ε and has complexity Cλ(δ) = O
((
N +

√
N(G+

√
ε′L)√

λε′

)
log Grε

λδ2

)
.

Consequently, the complexity of finding an ε-suboptimal minimizer of Lψ (10) with probability at
least 1

2 is

O

(
N

(
GR

ε

)2/3

log14/3H +
√
N

(
GR

ε
+

√
LR2

ε

)
log5/2H

)
where H := N

GR

ε
.

5 Discussion

Limitations While our work indicates that the ball optimization approach offers significant com-
plexity gains for DRO, we note that turning the algorithms we propose into practical DRO methods
faces several challenges. A main challenge is the costly bisection procedure common to all Monteiro-
Svaiter-type acceleration schemes [41, 25, 13, 52]. Fortunately, very recently, two works [16, 36]
(the former partially motivated by our paper) have shown how to remove the bisection from Monteiro-
Svaiter schemes, significantly improving the practical potential of the methods we propose. However,
another practical limitation of our approach is the need to tune many parameters that are not known
in advance, such as those relating to the ball radius rε and smoothing level ε′, as well as step sizes
and number of iterations of oracle implementations; a more adaptive setting for these parameters is
likely important.

Extensions First, it would be interesting to extend our approach to DRO objectives
maxq∈U

∑
i∈[N ] qi`i(x) with uncertainty set U that is an arbitrary subset of the simplex. While

the subgradient method, the primal-dual method (Appendix A.1), and “AGD on softmax” (Ap-
pendix A.2) all apply to any U ⊆ ∆N , our methods strongly rely on the structure of U induced by
Group- f -divergence DRO, and extending them to unstructured U’s seems challenging.

Second, it would be interesting to generalize our results in the “opposite” direction of getting
better complexity bounds for problems with additional structure. For Group-DRO our bounds are
essentially optimal when the number of groups M = Ω(N), but are suboptimal when M = O(1).
We leave it as a question for further research if it is possible to obtain a stronger bound such as
Õ
(
N +Mε−2/3 + ε−2

)
, which recovers our result for M = N but improves on it for smaller values

of M . Taking CVaR at level α as a special case of f -divergence DRO, our bounds are optimal when
α is close to 1/N but suboptimal for larger value of α; it would be interesting to obtain bounds such
as Õ

(
N + α−1ε−2/3 + ε−2

)
.

A third possible extension of our research is DRO in the non-convex setting. For this purpose, it might
be possible to use the technique of Carmon et al. [12] for turning accelerated convex optimization
algorithms to improved-complexity methods for smooth non-convex optimization.
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A Alternative algorithms for solving DRO problems

A.1 Primal-dual stochastic mirror descent

In this section, we present a primal-dual method capable of solving all the DRO problems our
paper considers, under an additional assumption of bounded losses: for every j and x we assume
|`j(x)| ≤ B`. Consider the primal-dual problem

minimize
x∈X

max
q∈U

{
Lpd(x, q) :=

∑
i∈[m]

qiLi(x)

}
(15)

where X ⊆ BR(x0) is a closed convex set as before and U is now an arbitrary closed convex subset of
the simplex ∆m and Li(x) =

∑
j∈[N ] wij`j(x) are “group losses” with wi ∈ ∆N for every i ∈ [m].

This formulation subsumes both Group DRO (where m = M and U = ∆M ) and f -divergence DRO
(where m = N , Li(x) = `i(x), and U is an f -divergence ball).

As discussed in the introduction, several works have proposed primal-dual methods for DRO, but
we could not find in these works the precise rate we prove here (in Proposition 2 below) in its full
generality. Our proof is a straightforward specialization of the more general results of Carmon et al.
[14].

The particular algorithm we consider is primal-dual stochastic mirror descent, with distances generated
by the squared Euclidean norm on X and entropy on U and gradient clipping for the U iterates,
corresponding to the following recursion:

xt+1 = argmin
x∈X

{
〈ηĝx(xt, qt), x〉+

logm

R2
‖x− xt‖2

}
and

qt+1 = argmax
x∈X

〈Π[−1,1]m(ηĝq(xt, qt)), q
〉

+
∑
i∈[m]

[q]i log
[q]i
[qt]i

,
(16)

where η is a step-size parameter, Π[−1,1]m is the Euclidean projection to the unit box (i.e., entry-wise
clipping to [−1, 1]), and ĝx and ĝq are unbiased estimators for ∇xLpd and ∇qLpd, respectively,
given by

ĝx(z) := ∇`j(zx) with i ∼ zq and j ∼ wi (17)
ĝq(z) := m`j(z

x)ei with i ∼ Unif([m]) and j ∼ wi,
with ei ∈ Rm being the ith standard basis vector in Rm.

This method yields the following convergence guarantees.
Proposition 2. Assume that each `j convex and G-Lipschitz and satisfies |`j(x)| ≤ B` for every
x ∈ X . For T ∈ N let x̄T = 1

T

∑T
t=0 xt and q̄T = 1

T

∑T
t=0 qt, where {xt, qt} are the iterates

defined in (16), with η = O
(

ε logm
G2R2+mB2

`

)
. Then, for any ε > 0, if T ≥ O

(
G2R2+B2

`m logm
ε2

)
we

have that

ELDRO(x̄T )− min
x?∈X

LDRO(x?) ≤ Emax
q∈U
Lpd(x̄T , q)− Emin

x∈X
Lpd(x, q̄T ) ≤ ε,

where LDRO(x) = maxq∈U Lpd(x, q).

Proof. The proposition is a direct corollary of a more general result by Carmon et al. [14]. To
show this, we rewrite the iterations (16) using “local norm setup” notation of [14]. In particular, let
U = X × U and for every z = (zx, zq) ∈ U define the local norm of δ ∈ U∗ at z as

‖δ‖z :=

√√√√ R2

logm
‖δx‖22 +

∑
i∈[m]

[zq]i[δq]2i .

In addition, we define the generating distance function

r(z) = r(zx, zq) :=
logm

R2
‖zx‖22 +

∑
i∈[m]

[zq]i log[zq]i
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and write its associated Bregman divergence as Vz(z′) = r(z′)− r(z)− 〈∇r(z), z′ − z〉. Next, we
let Θ := maxz,z′∈Z{r(z)− r(z′)} and observe that since zx ∈ X ⊂ BR(x0) and zq ∈ U ⊂ ∆m,
then Θ = 2 logm. Last, we define the function clip: Z∗ → Z∗ as follows:

clip(δx, δq) :=
(
δx,Π[−1,1]m(δq)

)
,

where Π[−1,1]m denotes entry-wise clipping to [−1, 1]. By an argument directly analogous to [14,
Proposition 1], the quintuplet (Z, ‖·‖., r,Θ, clip) forms a valid local norm setup [14, Definition 1].

With this notation, the iterations (16) have the concise form

zt+1 = argmin
w∈Z

{〈clip(ηĝ(zt)), w〉+ Vzt(w)}, (18)

where ĝ(z) := (ĝx,−ĝq), with ĝx and ĝq as defined in (17) above. It is then straight-forward to
verify that Eĝ(z) = (∇xLpd(z),−∇qLpd(z)) for every z ∈ U , and that

E
[
‖ĝ(z)‖2w

]
= Ei∼zq,j∼wi

[
R2

logm
‖∇`j(zx)‖2

]
+ Ei∼Unif([m]),j∼wi

[
[zq]im

2`2j (z
x)
]
≤ G2R2

logm
+mB2

`

for every z, w ∈ U . Therefore, ĝ is anL-local estimator [14, Definition 3] withL2 = G2R2/(logm)+
mB2

` so that L2Θ = 2G2R2 + 2B2
`m logm. Proposition 2 now follows immediately from [14,

Proposition 2].

A.2 AGD on the softmax: complexity bound

In this appendix we briefly develop the complexity guarantees of the “AGD on softmax” approach
mentioned in the introduction. While the idea is well known, we could not find in the literature an
analysis of the method for the general DRO setting (i.e., maximization over q in arbitrary subsets of
the simplex), so we provide it here.

We wish to minimize, over x ∈ X ,

LDRO(x) := max
q∈U

∑
i∈[N ]

qi`i(x)

where each `i is convex, G-Lipschitz and L-smooth and U is an arbitrary closed convex subset of the
simplex ∆N ; note that this includes both Group DRO and f -divergence DRO as special cases. We
define the approximation

L̃DRO(x) := max
q∈U⊂∆N

∑
i∈[N ]

qi`i(x)− ε′qi log qi


with ε′ = ε

2 logN . In addition, since
∑
i∈[N ] qi log qi ∈ [− logN, 0], for q ∈ ∆N we have that

∣∣∣LDRO(x)− L̃DRO(x)
∣∣∣ =

∣∣∣∣∣∣ max
q∈U⊂∆N

∑
i∈[N ]

qi`i(x)

− max
q∈U⊂∆N

∑
i∈[N ]

qi`i(x)− ε′qi log qi


∣∣∣∣∣∣

≤

∣∣∣∣∣∣
∑
i∈[N ]

ε′qi log qi

∣∣∣∣∣∣ ≤ ε/2.
Thus for x satisfying L̃DRO(x) − minx∈X L̃DRO(x) ≤ ε/2 we have that LDRO(x) −
minx?∈X LDRO(x?) ≤ ε as well.

Next, we show that L̃DRO is Õ(1/ε)-smooth when each `i is O(1/ε)-smooth. For q ∈ U , the function
Ψ(q) =

∑
i∈[N ] ε

′qi log(qi) is ε′-strongly convex w.r.t to the ‖·‖1 norm, therefore the conjugate
function Ψ∗(·) is 1

ε′ -smooth w.r.t to the dual norm ‖·‖∞, such that

‖∇Ψ∗(v)−∇Ψ∗(v′)‖1 ≤
1

ε′
‖v − v′‖∞ (19)
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Algorithm 1: Stochastic accelerated proximal point method
Input: BROO Oλ,δ(·), Tmax, initialization x0 = v0 and A0 ≥ 0
Parameters: Approximation parameters {δk, βk, σk}, stopping parameters Amax and Kmax

1 for k = 0, 1, 2, · · · do
2 λk+1 = λ-BISECTION(xk, vk, Ak)

3 ak+1 = 1
2λk+1

√
1 + 4λk+1Ak and Ak+1 = Ak + ak+1

4 yk = Ak
Ak+1

xk + ak+1

Ak+1
vk

5 xk+1 = Oλk+1,δk+1
(yk)

6 gk+1 = MORGRADEST
(
Oλ,δ(·), yk, λk, βk+1

λk+1
,
σ2
k

λk+1

)
7 vk+1 = ProjX

(
vk − 1

2ak+1gk+1

)
8 if Ak+1 ≥ Amax or k + 1 = Kmax then
9 return xk+1

In addition, let q?(`(x)) = ∇Ψ∗(`(x)) = argmaxq∈U{`(x)−Ψ(q)} and note that L̃DRO(x) =
Ψ∗(`(x)). Using this for every x, y ∈ X we have

∥∥∥∇L̃DRO(x)−∇L̃DRO(y)
∥∥∥ =

∥∥∥∥∥∥
∑
i∈[N ]

∇`i(x)q?i (`(x))−∇`i(y)q?i (`(y))

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∑
i∈[N ]

∇`i(x)[q?i (`(x))− q?i (`(y))]

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑
i∈[N ]

q?i (`(y))[∇`i(x)−∇`i(y)]

∥∥∥∥∥∥
(i)

≤ G‖q?(`(x))− q?(`(y))‖1 + L‖x− y‖
(ii)

≤ G

ε′
‖`(x)− `(y)‖∞ + L‖x− y‖

(iii)

≤
(
G2

ε′
+ L

)
‖x− y‖

where (i) follows since every `i is G Lipschitz and L smooth, in addition for every `i(x) ∈ R we
have that q?(`(x)) ∈ U ⊂ ∆N , therefore

∑
i∈[N ] q

?
i (`(x)) = 1, (ii) follows from the inequality in

(19) and (iii) follows since each `i is G-Lipschitz.

Since L̃DRO is L̃ = L + G2

ε′ -smooth, Nesterov’s accelerated gradient descent [44] method is ef-
ficient for minimizing it. This method finds x such that L̃DRO(x) − minx L̃DRO(x) ≤ ε/2 with

O
(√

L̃R2/ε
)

= Õ
(
GR
ε

)
iterations when L = O(G2/ε). Note that in every iteration we need to

compute the full gradient of L̃DRO, which requires to evaluate each ∇`i and `i. Therefore, in the
weakly smooth setting the complexity of this method is Õ(NGRε ).

B Proof of Proposition 1

In this section we provide the proof for Proposition 1 that follows from the analysis of Algorithm 1;
this section closely follows Asi et al. [3], and we refer the readers to that paper for a more detailed
exposition.

We begin with a short description of Algorithm 1. This algorithm iteratively computes a λδ2

2 -
approximate minimizer of Fλ(x) = F (x) + λ

2 ‖x− y‖
2 within a small ball of radius r around y.

To keep the ball constraint inactive it uses a bisection procedure that outputs the regularization
strength value λ, such that for the minimizer x̂ = argminx∈X Fλ(x) with high probability we have
‖x̂− y‖ ≤ r. It then computes a (nearly) unbiased gradient estimator of the Moreau envelope
Mλ(y) = minx∈X Fλ(x) and uses a momentum-like scheme to compute the next ball center.
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Algorithm 2: MORGRADEST

Input: BROO Oλ,δ(·), query point y, regularization λ, bias β, and variance σ2.
1 Set Tmax = 2G2

λ2 min{β2, 12σ
2} , T0 = 14G2 log Tmax

σ2 , and δ0 = G
λ
√
T0

2 x0 = Oλ,δ0(yk)

3 Sample J ∼ Geom
(

1
2

)
4 if 2J ≤ Tmax then
5 δJ = G

λ
√

2JT0

6 xJ , xJ−1 = Oλ,δJ (y),Oλ,δJ−1
(y)

7 x̂ = x0 + 2J(xJ − xJ−1)

8 else
9 x̂ = x0

10 return λ(y − x̂)

Algorithm 1 is a variant of the accelerated proximal point method in [3, Algorithm 4], and we now
describe the differences between the two. The main difference is that the bias reduction scheme
of Asi et al. [3] averages Õ

(
G2

σ2 + 1
)

calls to an estimator with accuracy δ′J = O
(

G
λ2J/2

)
where

J ∼ Geom
(

1
2 , Tmax

)
and G is the Lipschitz constant of F . In contrast, we use a single call to an

estimator with higher accuracy δJ = Õ
(
δ′J/
√
G2/σ2

)
; cf. the implementations of MORGRADEST

subroutine in each algorithm. There are additional differences between the error tolerance settings of
our algorithms, as described below.

The guarantees of [3, Proposition 2] require the following choice of approximation parameters:

ϕk =
λkδ

2
k

2
=

ε

60λkak
, βk =

ε

120R
and σ2

k =
ε

60ak

which implies maxk≤Kmax

{
λkakϕk + akσ

2
k + 2Rβk

}
≤ ε

20 (where βk in our notation is δk in the
notation of [3]). These parameters were chosen so that together with [3, Lemma 6] they give the
following bound

E

AK(F (xK)− F (x?)) +
1

6

∑
i≤K

λiAi‖x̂i − yi−1‖2
 ≤ A0(F (x0)− F (x?)) +

ε

20
EAK +R2,

(20)
which is a key component in the proof of [3, Proposition 2]. However, for improved efficiency we set
different parameters:

ϕk =
λkδ

2
k

2
=

λkr
2

900 log3
(
GR2

εr

) and σ2
k =

λ2
kr

2

900 log3
(
GR2

εr

) .
To obtain the guarantees of [3, Proposition 2] for our implementation, in the following lemma we
reprove [3, Lemma 6] with our parameters and show the same bound as in (20) (with a slightly
different constant factor).
Lemma 8 (modification of [3, Lemma 6]). Let F satisfy Assumption 1 with a minimizer x?. Let

ϕk =
λkr

2

900 log3
(
GR2

rε

) , σ2
k =

λ2
kr

2

900 log3
(
GR2

rε

) , βk =
ε

120R
, A0 =

R

G
and Amax =

9R2

ε
.

Define x̂k := argminx∈X

{
F (x) + λ

2 ‖x− yk‖
2
}

and assume that for each k we have ‖x̂k−yk−1‖ ≤
r and that one of the following must occur

1. λk < 2λm = 2ε
r4/3R2/3 log2

(
GR2

rε

)
, or

2. ‖x̂k − yk−1‖ ≥ 3
4r.
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Then we have that

E

AK(F (xK)− F (x?)−
ε

20

)
+

1

12

∑
i≤K

λiAi‖x̂i − yi−1‖2
 ≤ A0(F (x0)− F (x?)) +R2.

Proof. Define the filtration

Fk = σ(x1, v1, A1, ζ1, . . . , xk, vk, Ak, ζk)

where ζi is the internal randomness of λ-BISECTION(xk, vk, Ak) and note that Ak+1, yk, x̂k+1 are
deterministic when conditioned on xk, vk, Ak, ζk. Following the proof of [3, Lemma 6], we define

Mk = Ak

(
F (xk)− F (x?)−

ε

20

)
+

1

12

∑
i≤k

λiAi‖x̂i − yi−1‖2 + ‖vk − x?‖2

and show it is a supermartingle adapted to filteration Fk. From [3, Lemma 5] we have

E[Mk+1|Fk] ≤ Ak(F (xk)− F (x?)) + ‖vk − x?‖2 −
1

6
λk+1Ak+1‖x̂k+1 − yk‖2

+ µk+1 −Ak+1
ε

c
+

1

12

∑
i≤k+1

λiAi‖x̂i − yi−1‖2 (21)

where
µk+1 := λk+1a

2
k+1ϕk+1 + a2

k+1σ
2
k+1 + 2Rak+1βk+1.

Substituting the values of ϕk+1, σ
2
k+1, βk+1 into the definition of µk+1 gives

µk+1 =
2λ2

k+1a
2
k+1r

2

900 log3
(
GR2

rε

) + ak+1
ε

60
.

Recall that Ak+1 = a2
k+1λk+1, therefore

µk+1 =
2λk+1Ak+1r

2

900 log3
(
GR2

rε

) + ak+1
ε

60
=

2ak+1λ
3/2
k+1

√
Ak+1r

2

900 log3
(
GR2

rε

) + ak+1
ε

60
.

If ‖x̂k − yk−1‖ ≥ 3
4r, we have that

µk+1 ≤
1

12
λk+1Ak+1‖x̂k+1 − yk‖2 + ak+1

ε

60
.

Else, if λk < 2λm = 2ε
r4/3R2/3 log2

(
GR2

rε

)
, we have

µk+1 <
2ak+12λ

3/2
m

√
Ak+1r

2

900 log3
(
GR2

rε

) + ak+1
ε

60
=

4ak+1ε
3/2
√
Ak+1

900R
+ ak+1

ε

60
.

Now, note that λm ≥ Õ
(
ε
R2

)
≥ 1

Amax
= ε

9R2 and therefore aK =
√

1
λ2
K

+ 4AK−1

λK
≤ 1.2Amax.

From the definition of Ak we have that AKmax−1 ≤ Amax, therefore for every k ≤ K

Ak ≤ AK = aK +AK−1 ≤ 2.2Amax.

Thus, when λk < 2λm the bound on µk+1 becomes

µk+1 <
4ak+1ε

3/2
√

2.2R
2

ε

900R
+ ak+1

ε

60
≤ ak+1

ε

20
≤ 1

12
λk+1Ak+1‖x̂k+1 − yk‖2 + ak+1

ε

20

where the last inequality follows since Ak ≥ 0 and λk ≥ 0. Therefore, for every k ≤ K we have that

µk+1 ≤
1

12
λk+1Ak+1‖x̂k+1 − yk‖2 + ak+1

ε

20
.
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Noting that E|Mk| <∞ and substituting the bound on µk+1 into (21) we get

E[Mk+1|Fk] ≤ Ak
(
F (xk)− F (x?)−

ε

20

)
+ ‖vk − x?‖2 +

1

12

∑
i≤k

λiAi‖x̂i − yi−1‖2 = Mk.

Therefore Mk is a supermartingle adapted to filtration Fk. Since K is a stopping time adapted to
filtration Fk, by the optional stopping theorem for supermartingles we have

EMK ≤M0 = A0

(
F (x0)− F (x?)−

ε

20

)
+ ‖v0 − x?‖2 ≤ A0(F (x0)− F (x?)) +R2.

For line 2 of Algorithm 1, we use the same λ-BISECTION implementation of [15]. This implementa-
tion requires calling to a high-probability Ball Regularized Optimization Oracle (high-probability
BROO) and we give the definition of it bellow.
Definition 2. An algorithm is a probability 1− p Ball Regularized Optimization Oracle of radius r
(r-BROO) for function F : X → R if for query point x̄ ∈ X ,probability p, regularization parameter
λ > 0 and desired accuracy δ > 0 it returnsOλ,δ(x̄) ∈ X that with probability at least 1−p satisfies

F (Oλ,δ(x̄)) +
λ

2
‖Oλ,δ(x̄)− x̄‖2 ≤ min

x∈Br(x̄)∩X

{
F (x) +

λ

2
‖x− x̄‖2

}
+
λ

2
δ2. (22)

In the following lemma we give the complexity guarantee for a high probability r-BROO.
Lemma 9. Let CF be the complexity of evaluating F exactly, and Cλ(δ) be an r-BROO implementa-
tion complexity. Then the complexity of implementing a probability 1− p r-BROO of Definition 2
is

log

(
1

p

)[
Cλ
(
δ√
2

)
+ CF

]
.

Proof. To obtain a high-probability r-BROO we run log2

(
1
p

)
copies of r-BROO with query point

x̄, regularization strength λ and accuracy δ/
√

2 and take the best output, i.e., the output with the
minimal value of F . Applying Markov’s inequality to a single run of r-BROO with output x, gives

P
(
F (x) +

λ

2
‖x− x̄‖2 − min

x∈Br(x̄)∩X

{
F (x) +

λ

2
‖x− x̄‖2

}
≥ λ

2
δ2

)
≤ 1

2

therefore with probability at least 1−
(

1
2

)log2( 1
p )

= 1− p, the best output x′ satisfies

F (x′) +
λ

2
‖x′ − x̄‖2 − min

x∈Br(x̄)∩X

{
F (x) +

λ

2
‖x− x̄‖2

}
≤ λ

2
δ2.

Procedure require log(1/p) BROO calls and the same number of exact function evaluation (to choose
the best BROO output), resulting in the claimed complexity bound log

(
1
p

)[
Cλ
(
δ√
2

)
+ CF

]
.

To compute the gradient estimator in line 6 of Algorithm 1, we use Algorithm 2. Our implementation
is slightly different than [3] and in the following lemma we show it produces an estimator with the
same bias and variance guarantees of [3].
Lemma 10. Let F : X → R satisfy Assumption 1 and for query point y ∈ X and regularization
strength λ > 0 define x′ = argminx∈X {F (x) + λ

2 ‖x− y‖
2} and g = λ(y − x′). Then, for any bias

and variance parameters β, σ > 0 Algorithm 2 outputs ĝ = λ(y − x̂) satisfying

‖Eĝ − g‖ ≤ β and E‖ĝ − Eĝ‖2 ≤ σ2.

Proof. First note that if x = Oλ,δ(x̄) is the output of an r-BROO with accuracy δ and if x′ =

argminx∈Br(x̄) F (x), from Definition 1 and strong convexity (of F (x) + λ
2 ‖x− x̄‖

2) we have:

λ

2
E‖x− x′‖2 ≤ E

[
F (x) +

λ

2
‖x− x̄‖2

]
−
[
F (x′) +

λ

2
‖x′ − x̄‖2

]
≤ λδ2

2
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giving

E‖x− x′‖2 ≤ δ2. (23)

Let jmax = blog2 Tmaxc, then from the definition of x̂ in Algorithm 2 we have that

Ex̂ = Ex0 +

jmax∑
j=1

P(J = j)2j(Exj − Exj−1) = Exjmax .

Therefore

‖Eĝ − g‖ = λ‖Exjmax − x′‖
(i)

≤ λ

√
E‖xjmax − x′‖

2
(ii)

≤ λδjmax = λ
G
√

min
{
β2, 1

2σ
2
}

λ
√

2G2T0

≤ min

{
β,

1

2
σ

}
with (i) following from Jensen inequality and (ii) following from the guarantee in (23). To bound
the variance of ĝ note that

E‖ĝ − Eĝ‖2 = λ2E‖x̂− Ex̂‖2 ≤ λ2E‖x̂− x′‖2 ≤ λ2
(

2E‖x̂− x0‖2 + 2E‖x0 − x′‖
2
)

where the last inequality follows from ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2. The definition of x̂ gives

E‖x̂− x0‖2 =

jmax∑
j=1

2jE‖xj − xj−1‖2

and from the guarantee in (23) we get

E‖xj − xj−1‖2 ≤ 2E‖xj − x′‖
2

+ 2E‖xj−1 − x′‖
2 ≤ 6δ2

j =
6G2

λ2T02j

thus

E‖x̂− x0‖2 ≤ jmax
6G2

λ2T0
.

In addition we have E‖x0 − x′‖2 ≤ δ2
0 = G2

λ2T0
and substituting back we get

E‖ĝ − Eĝ‖2 = λ2E‖x̂− Ex̂‖2 ≤ λ2

(
12jmax

G2

λ2T0
+ 2

G2

λ2T0

)
≤ 14jmax

G2

T0
≤ σ2.

Combining the previous statements, we prove our main proposition.

Proposition 1. Let F satisfy Assumption 1, let CF be the complexity of evaluating F exactly,
and let Cλ(δ) bound the complexity of an r-BROO query with δ, λ. Assume that Cλ(δ) is non-
increasing in λ and at most polynomial in 1/δ. For any ε > 0, Algorithm 1 returns x such that
F (x) − minx?∈X F (x?) ≤ ε with probability at least 1

2 . For mε = O
(
log GR2

εr

)
and λm =

O
( m2

εε

r4/3R2/3

)
, the complexity of the algorithm is

O

(R
r

)2/3
mε∑

j=0

1

2j
Cλm

(
r

2j/2m2
ε

)mε + (Cλm
(r) + CF )m3

ε ,

. (5)

Proof. We divide the proof into a correctness argument and a complexity calculation.

22



Correctness. To prove the correctness of Proposition 1 we first need to show that the guarantees of
[3, Proposition 2] still hold for our implementation that includes different parameters ϕk and σ2

k:

ϕk =
λkr

2

900 log3
(
GR2

εr

) and σ2
k =

λ2
kr

2

900 log3
(
GR2

εr

)
and different implementation of lines 5 and 6.

Following Lemma 8, the guarantees of [3, Proposition 2] are still valid with our different choice of
ϕk and σ2

k. In addition, following Lemma 10, our implementation of line 6 is valid since it produces
the same guarantees that the implementation in [3] gives. Last, if the implementation of line 5 is valid
it needs to satisfy

E
[
F (xk+1) +

λk+1

2
‖xk+1 − yk‖2

]
−min
x∈X

{
F (x) +

λk+1

2
‖x− yk‖2

}
≤ ϕk+1.

Note that xk+1 in our implementation is the output of r-BROO with accuracy δk ≤
r√

14·900 log3/2
(
GR2

εr

) , therefore by Definition 1 it satisfies

E
[
F (xk+1) +

λk+1

2
‖xk+1 − yk‖2

]
− min
x∈Br(yk)

{
F (x) +

λk+1

2
‖x− yk‖2

}
≤
λk+1δ

2
k+1

2

≤ λk+1r
2

900 log3
(
GR2

εr

) = ϕk+1

and for valid output of λ-BISECTION we have

min
x∈Br(yk)

{
F (x) +

λk+1

2
‖x− yk‖2

}
= min
x∈X

{
F (x) +

λk+1

2
‖x− yk‖2

}
implying that line 5 is valid. Now let pBROO be the probability that all calls to r-BROO result in
a valid output. Following [3, Proposition 2], for Kmax = O

((
R
r

)2/3
mε

)
with probability at least

1−
(
1− 2

3

)
− (1− pBROO) = pBROO − 1

3 the algorithm outputs x that satisfies

F (x)− F (x̂) ≤ ε/2.

Let p be the probability that a single BROO implementation produce invalid output and let Kbisect-max
be the maximal number of calls to high-probability r-BROO within line 2. Then, pBROO ≥ 1 −
KmaxKbisect-maxp and for

p ≤ 1

6KmaxKbisect-max

with probability at least 1
2 Algorithm 1 outputs ε

2 -suboptimal minimizer of F .

Complexity. To bound the complexity of Algorithm 1 we first bound the complexity of line 2 and
the complexity of line 6 in the k-th iteration of Algorithm 1. Note that, for xk+1 in line 5 we can use
x0 from Algorithm 2, and therefore the complexity of line 6 already includes the complexity of line 5.

Following [15, Proposition 2], λ-BISECTION in line 2 requires mε = O
(

log
(
GR2

εr

))
calls to a

high-probability r-BROO with accuracy δ = r
30 . From Lemma 9 the complexity of a single call

to a probability 1 − p r-BROO is O
(

log
(

1
p

)
[Cλ(r) + CF ]

)
. We set p = 1

6KmaxKbisect-max
, and since

Kmax = O
((

R
r

)2/3
mε

)
and Kbisect-max = mε we get log

(
1
p

)
= O

(
log
(
R
rm

2
ε

))
≤ mε . Therefore,

the total complexity of λ-BISECTION is O
(
m2
ε [Cλ(r) + CF ]

)
.

For the complexity of Line 6 note that Algorithm 2 calls to an r-BROO with accuracy δJ ≥
r

30
√

142J/2m2
ε

where J ∼ Geom
(

1
2 , jmax

)
and jmax ≤ mε. Therefore, we can bound the complexity of

Algorithm 2 by

O

mε∑
j=0

1

2j
Cλm

(
r

2j/2m2
ε

).
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The complexity of the entire algorithm is at most Kmax times the complexity of a single iteration.
Using Kmax = O

((
R
r

)2/3
mε

)
, the total complexity becomes

O

(R
r

)2/3
mε

mε∑
j=0

1

2j
Cλm

(
r

2j/2m2
ε

)
+m3

ε [Cλ(r) + CF ]

.

C Group DRO

In this section we provide the proofs for the results of Section 3. In Appendix C.1 we first prove
that the group-softmax is a uniform approximation of Lg-DRO, then, through extension of [15], we
show that we can approximate Lg-DRO using the group-exponentiated softmax instead. Next, in
Appendix C.2 we prove Lemma 2 and bound the moments of the MLMC and gradient estimators. We
then prove the complexity guarantees of Theorem 1 in Appendix C.3. Last, in Appendix C.4 under
the mean-square smoothness assumption, we provide the properties of the gradient estimator in (9)
and in Appendix C.5 we prove the complexity guarantees of Theorem 2.

C.1 Exponentiated group-softmax

Recall the definition of the (regularized) group-softmax

Lsmax,ε,λ(x) := ε′ log

∑
i∈[M ]

e
Li(x)

ε′

+
λ

2
‖x− x̄‖2 where Li(x) =

∑
j∈[N ]

wij`j(x)

with Lsmax,ε,0(x) = Lsmax,ε(x). In addition, recall the definition of the (regularized) group-
exponentiated softmax

Γε,λ(x) :=
∑
i∈[M ]

p̄iγi(x) where γi(x) = ε′e
Li(x)−Li(x̄)+λ

2
‖x−x̄‖2

ε′ and p̄i =
e
Li(x̄)

ε′∑
i∈[M ] e

Li(x̄)

ε′
.

Lemma 11. Let Lsmax,ε be the group-softmax defined in eq. (6) and Lg-DRO be the Group DRO
objective defined in (2). Let ε > 0 and ε′ = ε/(2 logM) > 0. Then for all x ∈ X we have that

|Lg-DRO(x)− Lsmax,ε(x)| ≤ ε/2

Proof. First note that

Lg-DRO(x) := max
i∈[M ]

N∑
j=1

wij`j(x) = max
q∈∆M

∑
i∈[M ]

qiLi(x)

and

Lsmax,ε(x) = ε′ log

∑
i∈[M ]

e
Li(x)

ε′

 = max
q∈∆M

∑
i∈[M ]

qiLi(x)− ε′qi log qi

.
In addition, for q ∈ ∆M we have that

∑
i∈[M ] qi log qi ∈ [− logM, 0]. Combining these facts gives

|Lsmax,ε(x)− Lg-DRO(x)| =

∣∣∣∣∣∣max
q∈∆M

∑
i∈[M ]

qiLi(x)− ε′qi log qi

− max
q∈∆M

∑
i∈[M ]

qiLi(x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ε′
∑
i∈[M ]

qi log qi

∣∣∣∣∣∣ ≤ ε′ logM = ε/2
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Lemma 1. Let each `i satisfy Assumption 1, and consider the restriction of Lsmax,ε,λ (6) and
Γε,λ (7) to Br(x̄). Then the functions have the same minimizer x? ∈ Br(x̄) and, if λ ≤ O(G/r) and
r ≤ O(ε′/G), then (a) Γε,λ is Ω(λ)-strongly convex, (b) each γi is O(G)-Lipschitz and (c) for every
x ∈ Br(x̄) we have Lsmax,ε,λ(x)− Lsmax,ε,λ(x?) ≤ O(Γε,λ(x)− Γε,λ(x?)).

Proof. This lemma is a simple extension of [15, Lemma 1], that considers the exponentiated-softmax:∑
i∈M

ε′
eli(x̄)/ε′∑

j∈M efj(x̄)/ε′
e
li(x)−li(x̄)+λ‖x−x̄‖

ε′ ,

for some l1, . . . , lN . The only assumption that [15] have on li (for the guarantees we state in Lemma 1)
is that each li is G-Lipschitz. Note that each Li is G-Lipschitz since it is a weighted average of
G-Lipschitz functions. Therefore, we can replace li in [15, Lemma 1] with the group average Li and
obtain Lemma 1.

C.2 MLMC estimator moment bounds

To make the MLMC estimator suitable for both Epoch-SGD and variance reduction methods, we
rewrite its definition using more general notation. Specifically, for every x, x′ ∈ X and Sn1 ∈ [N ]n,
let

γ̂(x, x′;Sn1 ) := ε′e
1
n

∑n
j=1

`Sj
(x)−`Sj (x′)+λ

2
‖x−x̄‖2

ε′ (24)
so that γ̂(x, x̄;Sn1 ) = γ̂(x;Sn1 ). The MLMC estimator is

Draw J ∼ Geom
(

1− 1√
8

)
, S1, . . . , Sn

iid∼ wi and let M̂[γi(x)] := γ̂(x, x̄;S1) +
D̂2J

pJ
,

where pj := P(J = j) =
(
1/
√

8
)j(

1− 1√
8

)
and, for n ∈ 2N we define

D̂n := γ̂(x, x′;Sn1 )−
γ̂
(
x, x′;S

n
2

1

)
+ γ̂
(
x, x′;Snn

2 +1

)
2

. (25)

Lemma 12. Let each `i satisfy Assumption 1, and let r ≤ ε′

G , λ ≤ G
r , ‖x−x′‖ ≤ 2r and ‖x−x̄‖ ≤ r.

For D̂n defined in (25) we have E
∣∣∣D̂n∣∣∣2 ≤ O(G4‖x−x′‖4

n2ε′2

)
.

Proof. For abbreviation let M = 1
n

∑
j∈[n]

ˆ̀
Sj

(x)+λ
2 ‖x−x̄‖

2

ε′ and δ =

1
n

∑
j∈[n/2]

(
ˆ̀
Sj

(x)−ˆ̀
Sj+n/2

(x)

ε′

)
where ˆ̀

Sj (x) = `Sj (x) − `Sj (x
′). We have the following

bound on |M |:

|M |
(i)

≤ 1

n

∑
j∈[n]

G‖x− x′‖+ G
2r‖x− x̄‖

2

ε′

(ii)

≤ 2Gr +Gr/2

ε′

(iii)

≤ 2.5 (26)

with (i) following since each `j is G-Lipschitz and λ ≤ G/r, (ii) follows since ‖x− x′‖ ≤ 2r and
‖x− x̄‖ ≤ r, and (iii) since r ≤ ε′/G. For |δ| we have the bound,

|δ| ≤

∣∣∣∣∣∣ 1n
∑

j∈[n/2]

ˆ̀
Sj (x)

ε′

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1n
∑

j∈[n/2]

ˆ̀
Sj+n/2(x)

ε′

∣∣∣∣∣∣ ≤ G‖x− x′‖
ε′

≤ 2, (27)

with the second inequality following since each `j is G-Lipschitz and the last inequality since

‖x− x′‖ ≤ 2r and r ≤ ε′/G. We bound
∣∣∣D̂n∣∣∣ using the previous guarantees on |M | and |δ|:∣∣∣D̂n∣∣∣ = ε′

∣∣∣∣eM − eM+δ + eM−δ

2

∣∣∣∣ ≤ ε′eM(eδ + e−δ

2
− 1

)
(i)

≤ ε′e2.5

(
eδ + e−δ

2
− 1

)
(ii)

≤ 2e2.5ε′δ2
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where (i) follows from (26) and (ii) from (27) and the inequality ex ≤ 1 + x + 2x2 for all x ≤ 3
with x = δ. Therefore, we have that

E
∣∣∣D̂n∣∣∣2 ≤ 4e5ε′2E

[
δ4
]
.

Let Yi =
ˆ̀
Si

(x)−ˆ̀
Si+n/2

(x)

nε′ and note that the Lipschitz property of each `j gives |Yi| ≤ 2
G‖x−x′‖

nε′ ,

in addition, since the samples S1, . . . , Sn are i.i.d we have E
ˆ̀
Si

(x)

nε′ = E
ˆ̀
Si+n/2

(x)

nε′ and therefore

EYi = 0. Thus, we can use Lemma 16 below, with Yi =
ˆ̀
Si

(x)−ˆ̀
Si+n/2

(x)

nε′ and c = 2
G‖x−x′‖

nε′ , to

obtain the bound E[δ]
4 ≤ O

(
G4‖x−x′‖4

n2ε′4

)
. Therefore,

E
∣∣∣D̂n∣∣∣2 ≤ O(G4‖x− x′‖4

n2ε′2

)
.

Lemma 2. Let each `i satisfy Assumption 1, and let r ≤ ε′

G , λ ≤ G
r and x ∈ Br(x̄). Then M̂[γi(x)]

and ĝ(x) are unbiased for γi(x) and ∇Γε,λ(x), respectively, and have bounded second moments:

E
[
M̂[γi(x)]

]2 ≤ O
(
G4‖x−x̄‖4

ε′2 + ε′2
)

and E‖ĝ(x)‖2 ≤ O
(
G2
)
. In addition, the complexity of

computing M̂[γi(x)] and ĝ(x) is O(1).

Proof. We first prove the bias and moment bounds, and then address complexity.

Properties of the MLMC estimator. We first show that the MLMC estimator is unbiased. For every
n ∈ 2N we have that Eγ̂(x;S

n/2
1 ) = Eγ̂(x;Snn/2+1), therefore ED̂n = Eγ̂(x;Sn1 ) − Eγ̂(x;S

n/2
1 )

and we get

E
[
M̂[γi(x)]

]
= Eγ̂(x;S1) +

∞∑
j=1

(
Eγ̂(x;S2j

1 )− Eγ̂(x;S2j−1

1 )
)

= Eγ̂(x;S∞1 ) = γi(x). (28)

To bound the second moment of the estimator we use the inequality (a+ b)2 ≤ 2a2 + 2b2, yielding

E
∣∣∣M̂[γi(x)]

∣∣∣2 ≤ 2E|γ̂(x;S1)|2 + 2

∞∑
j=1

1

pj
E
∣∣∣D̂2j

∣∣∣2. (29)

Lemma 12 with x′ = x̄ gives E
∣∣∣D̂n∣∣∣2 ≤ O(G4‖x−x̄‖4

n2ε′2

)
and substituting this bound into (29) while

noting that E|γ̂(x;S1)|2 ≤ ε′2e3 gives

E
∣∣∣M̂[γi(x)]

∣∣∣2 ≤ O
ε′2 +

G4‖x− x̄‖4

ε′2

∞∑
j=1

(
1− 1√

8

)
21.5j

22j

 = O

(
G4‖x− x̄‖4

ε′2
+ ε′2

)
.

(30)

Properties of the gradient estimator. We use the fact that M̂[γi(x)] is unbiased for γi(x) (shown
in eq. (28) above) to argue that gradient estimator is also unbiased:

E[ĝ(x)] = E
[

1

ε′
M̂[γi(x)](∇`j(x) + λ(x− x̄))

]
=

1

ε′

∑
i∈[M ]

∑
j∈[N ]

p̄iwijEM̂[γi(x)](∇`j(x) + λ(x− x̄))

=
1

ε′

∑
i∈[M ]

p̄iγi(x)(∇Li(x) + λ(x− x̄)) =
∑
i∈[M ]

p̄i∇γi(x) = ∇Γε,λ(x).
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Next we bound the second moment of the gradient estimator

E‖ĝ(x)‖2 =
1

ε′2

∑
i∈[M ]

p̄iE
(
M̂[γi(x)]

)2 ∑
j∈[N ]

wij‖∇`j(x) + λ(x− x̄)‖2

(i)

≤ O

(G4‖x− x̄‖4

ε′4
+ 1

) ∑
i∈[M ]

p̄i
∑
j∈[N ]

wij‖∇`j(x) + λ(x− x̄)‖2


(ii)

≤ O

((
G4‖x− x̄‖4

ε′4
+ 1

)
G2

)
(iii)

≤ O
(
G2
)

where (i) follows from (30), (ii) follows since each `j is G-Lipschitz, λ ≤ G
r and ‖x− x̄‖ ≤ r and

(iii) since G4‖x−x̄‖4
ε′4 ≤ G4r4

ε′4 ≤ 1 .

Complexity of the MLMC and gradient estimators. J ∼ Geom(1− 1√
8
), therefore

E
[
2J
]

=

∞∑
j=1

1

1− 1√
8

(
1√
8

)j
2j = O(1).

Note that the estimator M̂[γi(x)] = γ̂(x, S1) + 1
PJ
D̂2J requires a single function evaluation for

γ̂(x, S1) and 2J function evaluations for the term D̂2J . As a consequence the computation of
M̂[γi(x)] requires only O(1) function evaluations in expectation. To compute ĝ(x) we need to
compute M̂[γi(x)] and a single sub-gradient, hence, the complexity of computing ĝ(x) is also O(1)
in expectation.

C.3 Epoch-SGD BROO implementation

We state below the convergence rate of the Epoch-SGD algorithm.
Lemma 13 (Theorem 5, [28]). Let F : X → R be λ-strongly convex with an unbiased stochastic
gradient estimator ĝ satisfying E‖ĝ(x)‖2 ≤ O

(
G2
)

for all x ∈ X , and let x? = argminx∈X F (x).
Epoch-SGD finds an approximate minimizer x that satisfies

EF (x)− F (x?) ≤ O
(
G2

λT

)
using T stochastic gradient queries.

Applying this lemma with F = Γε,λ, x ∈ Brε(x̄) and T = O
(
G2

λ2δ2

)
immediately gives the following

guarantee on the BROO implementation complexity.
Theorem 1. Let each `j satisfy Assumption 1, let ε, δ, λ > 0 and let rε = ε/(2G logM). For
any query point x̄ ∈ Rd, regularization strength λ ≤ O(G/rε) and accuracy δ, EpochSGD [28,
Algorithm 1]) with the gradient estimator (8) outputs a valid rε-BROO response and has complexity
Cλ(δ) = O

(
N + G2

λ2δ2

)
. Consequently, the complexity of finding an ε-suboptimal minimizer of Lg-DRO

(2) with probability at least 1
2 is

O

(
N

(
GR

ε

)2/3

log11/3H +

(
GR

ε

)2

log2H

)
where H := M

GR

ε
.

Proof. We divide the proof into correctness and complexity arguments, addressing the BROO
implementation and then the overall algorithm.

BROO implementation: correctness. Following Lemma 1 we have that Γε,λ is Ω(λ)-strongly
convex and Lemma 2 gives E‖ĝ(x)‖2 ≤ O

(
G2
)
. Thus, we can directly apply Lemma 13 with

F = Γε,λ, X = Brε(x̄), the gradient estimator ĝ(x) defined in (8) and T = 2c2G2

λ2δ2 for a constant
c > 0 for which Epoch-SGD outputs x that satisfies

EΓε,λ(x)− Γε,λ(x?) ≤
cG2

λT
≤ λδ2

2c
. (31)
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Following Lemma 1 there is a value of c such that ELλsmax,ε(x) − Lλsmax,ε(x?) ≤
c(EΓε,λ(x)− Γε,λ(x?)) and from (31) we obtain

ELλsmax,ε(x)− Lλsmax,ε(x?) ≤ c(EΓε,λ(x)− Γε,λ(x?)) ≤
λδ2

2
.

Therefore, Epoch-SGD outputs a valid rε-BROO response for Lsmax,ε.

BROO implementation: complexity. For the BROO implementation we run Epoch-SGD with the
gradient estimator ĝ(x) defined in (8) and computation budget T = O

(
G2

λ2δ2

)
. Therefore, we need to

evaluate O
(
G2

λ2δ2

)
stochastic gradient estimators with complexity O(1), and our gradient estimator

requires additional N functions evaluations for precomputing the sampling probabilities {p̄i}. Thus,
the total complexity of the BROO implementation is

O

(
G2

λ2δ2
+N

)
. (32)

Minimizing Lg-DRO: correctness. For any q ∈ ∆M note that Lq(x) :=∑
i∈[M ] qiLi(x)− ε′qi log qi is G-Lipschitz, since Li is G-Lipschitz for all i ∈ [M ] and

therefore for all x ∈ X we have ‖∇Lq(x)‖ =
∥∥∥∑i∈[M ] qi∇Li(x)

∥∥∥ ≤ G. Maximum operations
preserve the Lipschitz continuity and therefore Lsmax,ε(x) = maxq∈∆M Lq(x) is also G-Lipschitz.
Thus, we can use Proposition 1 with F = Lsmax,ε and obtain that the output x̄ of Algorithm 1
with probability at least 1

2 will satisfy Lsmax,ε(x̄) − minx?∈X Lsmax,ε(x?) ≤ ε/2. In addition,
from Lemma 11 for every x ∈ X we have that |Lg-DRO(x)− Lsmax,ε(x)| ≤ ε/2. Therefore, with
probability at least 1

2

Lg-DRO(x̄)− min
x?∈X

Lg-DRO(x?) ≤ Lsmax,ε(x̄)− min
x?∈X

Lsmax,ε(x?) + ε/2 ≤ ε.

Minimizing Lg-DRO: complexity. The complexity of finding an ε/2-suboptimal solution for Lsmax,ε

(and therefore an ε-suboptimal solution for Lg-DRO) is bounded by Proposition 1 as:

O

(R
rε

)2/3
mε∑

j=0

1

2j
Cλm

(
rε

2j/2m2
ε

)mε + (Cλm
(rε) +N)m3

ε


where mε = O

(
log
(
GR2

εrε

))
= O

(
log
(
GR
ε logM

))
. To obtain the total complexity we evaluate the

complexity of running rε-BROO with accuracy δj = r
2j/2m2

ε
(for the MLMC implementation), and

accuracy δBisection = rε
30 (for the bisection procedure). Using (32) and noting that λm = ε

r
4/3
ε R2/3

m2
ε

we get the following BROO complexities:

1. Cλm

(
rε

m2
ε2
j/2

)
= O

(
G22jm4

ε

λ2
mr

2
ε

+N
)

= O

(
(GRε )

4/3

(logM)2/3 2j +N

)
2. Cλm

(
rε
30

)
= O

(
G2

λ2
mr

2
ε

+N
)

= O

(
(GRε )

4/3

m4
ε(logM)2/3 +N

)
.

Therefore

O

mε

mε∑
j=0

1

2j
Cλm

(
rε

2j/2m2
ε

) = O

mε

mε∑
j=0

1

2j

( (
GR
ε

)4/3
(logM)

2/3
2j +N

) ≤ O(m2
ε

((
GR

ε

)4/3

+N

))

and

O
(
m3
ε(Cλk(rε/30) +N)

)
≤ O

((
GR

ε

)4/3

+Nm3
ε

)
.
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Substituting the bounds into Proposition 1 with mε = log
(
GR
ε M

)
and rε = ε

2G logM , the total
complexity is

O

((
R

rε

)2/3
[
Nm3

ε +m2
ε

(
GR

ε

)4/3
])
≤ O

((
GR

ε

)2/3

N log11/3

(
GR

ε
M

)
+

(
GR

ε

)2

log2

(
GR

ε
M

))
.

C.4 SVRG-like estimator properties

We first give a definition of Γε,λ that is more conducive to formulating variance reduction methods:

Γε,λ(x) :=
∑
i∈[M ]

cx′,x̄pi(x
′)γi(x, x

′),

where γi(x, x
′) := ε′e

Li(x)−Li(x
′)+λ

2
‖x−x̄‖2

ε′ , cx′,x̄ :=

(∑
j∈[M] e

Lj(x′)
ε′∑

j∈[M] e
Lj(x̄)

ε′

)
and pi(x

′) :=

e
Li(x

′)
ε′∑

j∈[M] e
Lj(x′)
ε′

. Therefore, the MLMC estimator of γi(x, x′) is

Draw J ∼ Geom
(

1− 1√
8

)
, S1, . . . , Sn

iid∼ wi and let M̂[γi(x, x
′)] := γ̂(x, x′;S1) +

D̂2J

pJ

with D̂n defined in (25) and γ̂(x, x′;Sn1 ) defined in (24).
Lemma 14. The SVRG-like estimator (9) is unbiased

E[ĝx′(x)] = ∇Γε,λ(x)

Proof.

E[ĝx̄(x)] = ∇Γε,λ(x′) +
∑
i∈[M ]

∑
j∈[N ]

pi(x
′)wij

1

ε′

[
E
(
M̂[γi(x, x

′)]
)
∇`λj (x)− γi(x′, x′)∇`λj (x′)

]
(i)
= ∇Γε,λ(x′) +

∑
i∈[M ]

∑
j∈[N ]

pi(x
′)wij

1

ε′
[
γi(x, x

′)∇`λj (x)− γi(x′, x′)∇`λj (x′)
]

= ∇Γε,λ(x′) +
∑
i∈[M ]

pi(x
′)[∇γi(x, x′)−∇γi(x′, x′)]

= ∇Γε,λ(x)

with (i) following from the unbiased property of the MLMC estimator stated in Lemma 2 (that still
holds for M̂[γi(x, x

′)]).

Lemma 3. Let each `j satisfy Assumptions 1 and 2. For any λ ≤ G
r , r = ε′

G and x, x′ ∈ Br(x̄), the

variance of ĝx′(x) is bounded by Var(ĝx′(x)) ≤ O
((
L+ λ+ G2

ε′

)2‖x− x′‖2).

Proof.

Var(ĝx′(x)) = E‖ĝx′(x)− Eĝx′(x)‖2

= E
∥∥∥∇Γε,λ(x′) +

cx′,x̄
ε′

[
M̂[γi(x, x

′)]∇`λj (x)− γi(x′, x′)∇`λj (x′)
]
−∇Γε,λ(x)

∥∥∥2

(i)

≤
c2x′,x̄
ε′2

E
∥∥∥M̂[γi(x, x

′)]∇`λj (x)− γi(x′, x′)∇`λj (x′)
∥∥∥2

=
c2x′,x̄
ε′2

E
∥∥∥(M̂[γi(x, x

′)]− γi(x′, x′)
)
∇`λj (x) + γi(x

′, x′)
(
∇`λj (x)−∇`λj (x′)

)∥∥∥2

(ii)

≤
c2x′,x̄
ε′2

[
2E
∥∥∥(M̂[γi(x, x

′)]− γi(x′, x′)
)
∇`λj (x)

∥∥∥2

+ 2E
∥∥γi(x′, x′)(∇`λj (x)−∇`λj (x′)

)∥∥2
]

(33)
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where(i) follows from the inequality E[X − EX]
2

= E[X2] − [EX]
2 ≤ E[X2] and (ii) from the

inequality (a+ b)2 ≤ 2a2 + 2b2. Next we bound separately each of the expectation terms. Note that
the ball constraint x ∈ Br(x̄) with r = ε′

G and λ ≤ G
r gives:

γi(x
′, x′) = ε′e

λ
2ε′ ‖x−x̄‖

2

≤ eGr2ε′ = O(ε′)

therefore

E‖γi(x′, x′)[∇`j(x)−∇`j(x′) + λ(x− x′)]‖2
(i)

≤ O
(
ε′2
)(

2E‖∇`j(x)−∇`j(x′)‖
2

+ 2‖λ(x− x′)‖2
)

(ii)

≤ O
(
ε′2
(
λ2 + L2

)
‖x− x′‖2

)
with (i) following from the inequality (a+ b)2 ≤ 2a2 + 2b2 and (ii) from Assumption 2. For the
second expectation term we use the fact that each `j is G-Lipschitz, λ ≤ G

r and ‖x− x̄‖ ≤ r and
thus ‖∇`j(x) + λ(x− x̄)‖ ≤ ‖∇`j(x)‖+ ‖λ(x− x̄)‖ ≤ 2G. Therefore,

E
∥∥∥(M̂[γi(x, x

′)]− γi(x′, x′)
)

(∇`j(x) + λ(x− x̄))
∥∥∥2

≤ O
(
G2

(
E
∣∣∣M̂[γi(x, x

′)]− γi(x′, x′)
∣∣∣2)).

From the definition of M̂[γi(x, x
′)] we get:

E
∣∣∣M̂[γi(x, x

′)]− γi(x′, x′)
∣∣∣2 ≤ 2E|γ̂(x, x′;S1)− γi(x′, x′)|

2
+ 2

∞∑
j=1

(
1− 1√

8

)
21.5jE

∣∣∣D̂2j

∣∣∣2
(i)

≤ 2E|γ̂(x, x′;S1)− γi(x′, x′)|
2

+O

(
G4‖x− x′‖4

ε′2

)

= O

(
ε′2e

λ‖x−x̄‖2
ε′ E

(
e
`S1

(x)−`S1
(x′)

ε′ − 1

)2

+

(
G4‖x− x′‖4

ε′2

))
(ii)

≤ O

(
ε′2e

λ‖x−x̄‖2

ε′ E
(
`S1

(x)− `S1
(x′)

ε′

)4

+

(
G4‖x− x′‖4

ε′2

))
(iii)

≤ O

(
G4‖x− x′‖4

ε′2

)
(iv)

≤ O
(
G2‖x− x′‖2

)
with (i) following from Lemma 12, (ii) follows from the inequality ex − 1 ≤ x + 2x2 = O(x2)

for x ≤ 3 with x =
`S1

(x)−`S1
(x′)

ε′ ≤ 2, (iii) follows since each `j is G-Lipschitz and since

e
λ‖x−x̄‖2

ε′ = O(1) and (iv) since
G2‖x−x′‖2

ε′2 ≤ G24r2

ε′2 = 4. Therefore,

E
∥∥∥(M̂[γi(x, x

′)]− γi(x′, x′)
)

(∇`j(x) + λ(x− x̄))
∥∥∥2

≤ O
(
G4‖x− x′‖2

)
.

Finally we bound cx′,x̄ using the ball constraint x′ ∈ Br(x̄) and the fact that each Li is G-Lipschitz,
therefore

cx′,x̄ =

∑
j∈[M ] e

Lj(x′)/ε′∑
j∈[M ] e

Lj(x̄)/ε′
=

∑
j∈[M ] e

Lj(x′)−Lj(x̄)

ε′ e
Lj(x̄)

ε′∑
j∈[M ] e

Lj(x̄)

ε′

≤ e.

Substituting back the bounds on each expectaion term and the bound on cx′,x̄ into (33) we get

Var(ĝx̄(x)) ≤ O
(
L2 + λ2 +

G4

ε′2

)
‖x− x′‖2 ≤ O

((
L+ λ+

G2

ε′

)2

‖x− x′‖2
)
.
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C.5 Complexity of the reduced-variance BROO implementation

We first state the complexity bounds of KatyushaXs [2]
Lemma 15 ([2, Theorems 1 and 4.3]). Let F be a λ-strongly convex function with minimizer x? and
let ĝx′(x) be a stochastic gradient estimator satisfying the properties

1. E[ĝx′(x)] = E∇F (x)

2. E[ĝx′(x)−∇F (x)]
2 ≤ L̃2‖x− x̄‖2

3. ĝx′(·) has evaluation complexity O(1) and preprocessing complexity O(N),

then KatyushaXs with the stochastic gradient estimator ĝx′ finds a point x satisfying
E[F (x)− F (x?)] ≤ ε with complexity

O

((
N +

N3/4
√
L̃√

λ

)
log

(
F (x0)− F (x?)

ε

))
.

Applying Lemma 15 with L̃ = O
(
L+ G2

ε

)
and accuracy λδ2

2 gives the following result.

Theorem 2. Let each `j satisfy Assumptions 1 and 2. Let ε > 0, ε′ = ε/(2 logM) and rε = ε′/G.
For any query point x̄ ∈ Rd, regularization strength λ ≤ O(G/rε) and accuracy δ, KatyushaXs
[2, Algorithm 2] with the gradient estimator (9) outputs a valid rε-BROO response and has com-

plexity Cλ(δ) = O
((
N +

N3/4(G+
√
ε′L)√

λε′

)
log
(
Grε
λδ2

))
. Consequently, the complexity of finding an

ε-suboptimal minimizer of Lg-DRO (2) with probability at least 1
2 is

O

(
N

(
GR

ε

)2/3

log14/3H +N3/4

(
GR

ε
+

√
LR2

ε

)
log7/2H

)
where H := M

GR

ε
.

Proof. The proof is structured similarly to the proof of Theorem 1.

BROO implementation: correctness. From Lemma 1 we have that Γε,λ is Ω(λ)-strongly convex,
in addition, Lemma 3 and Lemma 14 show that the stochastic gradient estimator defined in (9) is
unbiased with Var(ĝx′(x)) ≤ L̃2‖x− x′‖2. Thus, we can directly apply Lemma 15 with F = Γε,λ

and accuracy λδ2

2 and obtain a valid BROO response.

BROO implementation: complexity. We use KatyushaXs [2] for the BROO implementation.
Applying Lemma 15 with F = Γε,λ, x0 = x̄, L̃ = O

(
L+ λ+ G2

ε′

)
≤ O

(
L+ G2

ε′

)
and accuracy

λδ2

2 the complexity of our implementation is

O

((
N +N3/4

√
Lε′ +G√

ε′

)
log

(
Γε,λ(x̄)−minx?∈Brε (x̄) Γε,λ(x?)

λδ2

))
(34)

and note that Γε,λ(x̄)−minx?∈Brε (x̄) Γε,λ(x?) ≤ Grε, since (from Lemma 1) Γε,λ isO(G)-Lipschitz.

Minimizing Lg-DRO: correctness. Similarly to the proof of Theorem 1, combining the guarantees
of Proposition 1 and Lemma 11, with probability at least 1

2 the output x̄ of Algorithm 1 satisfies
Lg-DRO(x̄)−minx?∈X Lg-DRO(x?) ≤ ε.
Minimizing Lg-DRO: complexity. The complexity of finding ε/2-suboptimal solution for Lsmax,ε

and therefore an ε-suboptimal solution for Lg-DRO, is bounded by Proposition 1 as:

O

(R
rε

)2/3
mε∑

j=0

1

2j
Cλm

(
rε

2j/2m2
ε

)mε + (Cλm
(rε) +N)m3

ε

 (35)

where mε = O
(
log GR2

εrε

)
= log

(
GR
ε logM

)
and λm = O

( m2
εε

r4/3R2/3

)
. We first show the complexity

of the BROO implementation with δj = rε
2j/2m2

ε
(for the MLMC implementation) and with δ =

(
rε
30

)
for the bisection procedure. Using (34) we get:
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1. Cλm

(
rε

2j/2m2
ε

)
= O

((
N +N3/4

(
G
√

logM√
ε

+
√
L
)

1√
λm

)
log
(
ε′2jm4

ε

λmr2
ε

))
2. Cλm

(
rε
30

)
= O

((
N +N3/4

(
G
√

logM√
ε

+
√
L
)

1√
λk

)
log
(

ε′

λmr2
ε

))
From the definitions of λm and rε we have ε′

λmr2
ε

= O
((

GR
ε

)2/3 1
m2
ε

)
and 1√

λm
= O

(
R1/3r2/3

ε

mε
√
ε

)
,

therefore,

mε

mε∑
j=0

1

2j
Cλm

(
rε

2j/2m2
ε

)
= O

mε

mε∑
j=0

1

2j

N +N3/4

(
G
√

logM +
√
Lε√

ε

)√
R2/3r

4/3
ε

εm2
ε

 log

(
GRm2

ε2
j

ε

)
≤ O

(
m2
ε

[
N +N3/4

(
GR1/3

ε
+

√
LR2/3

ε

)
r2/3
ε

])
.

Similarly, we have that

O
(
(Cλm

(rε) +N)m3
ε

)
= O

m3
ε

N +N3/4

G√logM +
√
L√

ε

√
R2/3r

4/3
ε

εm2
ε

 log

((
GR

ε

)
1

m2
ε

)
≤ O

(
m4
εN +m3.5

ε N3/4

(
GR1/3

ε
+

√
LR2/3

ε

)
r2/3
ε

)
.

Substituting the bounds into Proposition 1 with mε = log
(
GR
ε logM

)
and rε = ε

2 logM the total
complexity is

O

(
N

(
GR

ε

)2/3

log14/3

(
GR

ε
logM

)
+N3/4

(
GR

ε
+

√
LR2

ε

)
log7/2

(
GR

ε
logM

))
.

C.6 Helper lemmas

Lemma 16. Let Y1, . . . , Yn be a sequence of random i.i.d variables such that for every i ∈ [n] and a
constant c > 0 we have that E[Yi] = 0 and |Yi| ≤ c with probability 1. Then

E

(
n∑
i=1

Yi

)4

≤ O
(
n2c4

)
.

Proof. For i 6= j we have that E[YiYj ] = E[Yi]E[Yj ] = 0, therefore

E

(
n∑
i=1

Yi

)4

=

n∑
i=1

E
[
Y 4
i

]
+ 3

n∑
i=1

∑
j 6=i

E
[
Y 2
i

]
E
[
Y 2
j

]
≤ nc4 + 3n

(
n− 1

2

)
c4 = O

(
n2c4

)

D DRO with f -divergence

In this section we provide the proofs for the results in Section 4. In Appendix D.1 we provide the
derivation of the dual formulation in (10). In Appendix D.2 we show how to reduce the constrained
problem (3) to a regularized problem of the form (10), then in Appendix D.3 we describe the properties
of Lψ,ε, the approximation of (10). In Appendix D.4 we provide the proofs for our main technical
contribution and give guarantees on the stability of the gradient estimators. Last, in Appendices D.5
and D.6 we give the complexity guarantees of our implementation in the non-smooth and slightly
smooth cases.
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D.1 Dual formulation of DRO with f -divergence

Here we give the derivation of the objective in (10), also considered in prior work [e.g., 42, 39, 32].
Recall the DRO with f -divergence objective:

Lf -div(x) := max
q∈∆N :

∑
i∈[N]

f(Nqi)

N ≤1

∑
i∈[N ]

qi`i(x).

We first show the relation between Lf -div and its regularized form (10). Using the Lagrange multiplier
ν for the constraint

∑
i∈[N ]

f(Nqi)
N ≤ 1 and strong duality we get

Lf -div(x) = min
ν≥0

{
ν + max

q∈∆N

∑
i∈[N ]

(
qi`i(x)− ν

N
f(Nqi)

)}
= min

ν≥0

{
ν + Lν·f (x)

}
,

where Lν·f (x) is the regularized form of Lf -div: writing ψ(x) = ν
N f(Nx), with slight abuse of

notation we have

Lν·f (x) = Lψ(x) = max
q∈∆N

{∑
i∈[N ]

(qi`i(x)− ψ(qi))

}
.

Adding a Lagrange multiplier y for the constraint that q ∈ ∆N and using strong duality again gives

Lψ(x) = max
q∈RN+

min
y∈R

{∑
i∈[N ]

(qi`i(x)− ψ(qi)−Gy · qi) +Gy

}

= min
y∈R

{∑
i∈[N ]

max
qi∈R+

(qi`i(x)− ψ(qi)−Gy · qi) +Gy

}
.

Finally, using ψ∗(v) := maxt∈dom(ψ){vt− ψt} (the Fenchel conjugate of ψ), we have

Lψ(x) = min
y∈R

{∑
i∈[N ]

ψ∗(`i(x)−Gy) +Gy

}
,

and note that ψ∗(`i(x)−Gy) is equivalent to νf∗
(
`i(x)−Gy

ν

)
.

D.2 Minimizing the constrained objective using the regularized objective

In this section, we show that under the following Assumptions 4 and 5 we can reduce the con-
strained problem of minimizing (3) to the regularized problem of minimizing (10) by computing a
polylogarithmic number of O(ε)-accurate minimizers of (10).
Assumption 4. Each loss function `i is bounded, i.e., `i : X → [0, B`] for every i ∈ [N ].
Assumption 5. For any uncertainty set of the form U = {q ∈ ∆N : Df (q, p) ≤ 1}, the divergence
function f is bounded, i.e., f : R+ → [0, Bf ] for some Bf ≥ 1.

We note that the above assumptions are weak since the complexity of our approach only depends
logarithmically on on BfB`

ε .

We first cite a result on noisy one dimensional bisection, as given by a guarantees on the OneDim-
Minimizer algorithm in Cohen et al. [18].
Lemma 17 (Lemma 33, Cohen et al. [18]). let f : R→ R be a B-Lipschitz convex function defined
on the interval [`, u], and let G : R → R be an oracle such that |G(y)− f(y)| ≤ ε̃ for all y. With

O
(

log
(
B(u−`)

ε̃

))
calls to G, the algorithm OneDimMinimizer [18, Algorithm 8] outputs y′ such

that

f(y′)−min
y
f(y) ≤ 4ε̃

We specialize Lemma 17 to our settings and provide the complexity guarantees of minimizing (3) to
an ε-accurate solution using a noisy oracle G.
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Proposition 3. Let each `i satisfy Assumption 4 and let f satisfy Assumption 5. Define the function
h(ν) := minx∈X Lν·f (x)+ν with Lν·f defined in (10) and let G be an oracle such that G(ν) ≥ h(ν)
with probability 1 and G(ν)−h(ν) ≤ ε

5 with probability at least 1
2 . Then applying OneDimMinimizer

[18, Algorithm 8] on the interval [0, B`] outputs ν′ that with probability at leat 99
100 satisfies

G(ν′)−min
ν≥0

h(ν) = G(ν′)−min
x∈X
Lf−div(x) ≤ ε

using O(log(H) log(logH)) calls to G, where H =
BfB`
ε .

Proof. Let ĥq,x(ν) :=
∑
i∈[N ] qi`i(x) − ν

(
1
N

∑
i∈[N ] f(Nqi)− 1

)
and note that for any q and

x the function ĥq,x is Bf -Lipschitz, since it is linear in ν and
∣∣∣ 1
N

∑
i∈[N ] f(Nqi)− 1

∣∣∣ ≤ Bf .
Minimization and maximization operations preserve the Lipschitz continuity and therefore the
function h(ν) = minx Lν·f (x) = minx maxq ĥq,x(ν) is also Bf -Lipschitz continuous. In addition
for the q? ∈ ∆N that maximizes Lν·f (x) we have that∑

i∈[N ]

[
q?i `i(x)− ν 1

N
f(Nq?i )

]
≥
∑
i∈[N ]

1

N
`i(x)

and rearranging gives

1

N

∑
i∈[N ]

f(Nq?i ) ≤
∑
i∈[N ][q

?
i `i(x)− 1

N `i(x)]

ν
≤ B`

ν
.

Therefore, for all ν > B` we have h′(ν) = 1 − 1
N

∑
i∈[N ] f(Nq?i ) > 0 and therefore it

suffices to restrict h(ν) to [0, B`]. Next, to turn G into a high-probability oracle, we call it
log2

(
100 log

(
BfB`
ε

))
times and choose the smallest output. Therefore, with probability at least

1 −
(

1
2

)log
(

100 log
(
BfB`
ε

))
= 1 − 1/

(
100 log

(
BfB`
ε

))
the result is within ε

5 of h(ν). Since h
is Bf -Lipschitz and defined on [0, B`] we can use Lemma 17 with ` = 0, u = Bf , ε̃ = ε/5,

B = Bf and the high-probability version of G. Therefore, using O
(

log
(
BfB`
ε

))
calls to the high

probability version of G and applying the union bound, we obtain that with probability at least 99
100

OneDimMinimizer outputs ν′ that satisfies

h(ν′)−min
ν
h(v) ≤ 4ε/5

and therefore
G(ν′)−min

ν
h(v) = G(ν′)− h(ν′) + h(ν′)−min

ν
h(v) ≤ ε.

Finally, in the following corollary we show that finding an ε-suboptimal solution for (3) requires
a polylogarithmic number of O(ε)-accurate minimizers of (10) and a polylogarithmic number of
evaluations of (10).

Corollary 5. Let each `i satisfy Assumption 4 and let f satisfy Assumption 5, then minimizing
(3) to accuracy ε with probability at least 99

100 requires O(log(H) log(logH)) evaluations of (10)
and O(log(H) log(logH)) calls to an algorithm that with probability at least 1

2 returns an O(ε)-
suboptimal point of (10), where H =

BfB`
ε .

Proof. Note that Lν·f is defined on (10). Let G̃(ν) := Lν·f (x̃) + ν where x̃ is the output of an
algorithm that with probability at least 1

2 returns an ε
5 -suboptimal point of Lν·f and let h(ν) :=

minx∈X Lν·f (x) + ν. We have that G̃(ν) − h(ν) ≤ ε
5 with probability at least 1

2 , therefore, we

can apply Proposition 3 with G = G̃, and obtain that with O
(

log
(
Bf ·B`
ε

)
log
(

log
Bf ·B`
ε

))
calls
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to G̃ (i.e., to an algorithm that outputs ε
5 -suboptimal minimizer of Lν·f with probability at least 1

2 ),
OneDimMinimizer outputs ν′ that satisfies with probability at least 99

100

G̃(ν′)−min
ν
h(ν) = G̃(ν′)−min

x
Lf -div(x) ≤ ε.

Noting that Lf -div(x) = minν≥0{Lν·f (x) + ν} we obtain

Lf -div(x̃)−min
x
Lf -div(x) ≤ Lν′·f (x̃) + ν′ −min

x
Lf -div(x) = G̃(ν′)−min

x
Lf -div(x) ≤ ε.

Corollary 5 means that the complexity bounds for approximately minimizing the objective Lψ
established by Theorems 3 and 4 also apply (with slightly larger logarithmic factors) to approximately
minimizing the constrained f -divergence objective Lf -div.

D.3 Properties of Lψ and Lψ,ε
Lemma 18. For Lψ defined in (10) and Lψ,ε defined in (12) we have that

|Lψ,ε(x)− Lψ(x)| ≤ ε

2
for all x ∈ Rd.

Proof. Recall that ε′ = ε
2 logN and for q ∈ ∆N we have that

∑
i∈N qi log qi ∈ [− logN, 0], there-

fore:

|Lψ,ε(x)− Lψ(x)| =

∣∣∣∣∣∣max
q∈∆N

∑
i∈[N ]

(qi`i(x)− ψ(qi)− ε′qi log qi)

− max
q∈∆N

∑
i∈[N ]

(qi`i(x)− ψ(qi))


∣∣∣∣∣∣

≤

∣∣∣∣∣∣ε′
∑
i∈[N ]

qi log qi

∣∣∣∣∣∣ ≤ ε′ logN = ε/2.

D.4 Gradient estimator stability proofs

Lemma 4. For any convex ψ : R+ → R and ψε defined in (10), log
(
ψ∗ε
′(·)
)

is 1
ε′ -Lipschitz.

Note that from the definition of ψ∗ε
′ we have that ψε′(0)→ −∞, in addition since q ∈ RN+ then ψ∗ε

′

is non-negative and log
(
ψ∗ε
′) is well-defined. We now give the proof of Lemma 4.

Proof. While we write the proof as though the function ψ is differentiable with derivative ψ′, one
may readily interpret ψ′ as an element in the subdifferential of ψ and the proof continues to hold.

Let φε = ε′q log q and recall that ψε(q) = ψ(q) + φε(q). Fix any two numbers v1, v2 ∈ R and
assume without loss of generality that v2 > v1. For i = 1, 2, let

qi := ψ∗ε
′(vi) and pi := φ∗ε

′(vi) = evi/ε
′−1. (36)

Note that by definition of the Fenchel dual (and strict convexity of ψε), qi is the unique solution to

vi = ψ′ε(qi) = ψ′(qi) + φ′ε(qi)

and moreover that q2 ≥ q1 since ψ∗ε is convex and therefore ψ∗ε
′ is non-deceasing. Similarly, pi is the

unique solution to
vi = φ′ε(pi)

and p2 > p1. Combining the two equalities yields

v2 − v1 = ψ′(q2) + φ′ε(q2)− ψ′(q1)− φ′ε(q1) = φ′ε(p2)− φ′ε(p1).

Rearranging, we find that

0 ≤ φ′ε(q2)− φ′ε(q1) = φ′ε(p2)− φ′ε(p1)− [ψ′(q2)− ψ′(q1)] ≤ φ′ε(p2)− φ′ε(p1).
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where ψ′(q2)−ψ′(q1) ≥ 0 holds by convexity of ψ and q2 ≥ q1. Recalling that φ′ε(q) = ε′+ ε′ log q,
we have

0 ≤ log q2 − log q1 ≤ log p2 − log p1 =
1

ε′
(v2 − v1),

where the last equality follows by substituting the definition of pi. The proof is complete upon
recalling that qi = ψ∗ε

′(vi).

Lemma 5. For G > 0, `(x) = (`1(x), . . . , `N (x)) and y?(x) = argminy∈R Υε(x, y), we have
|y?(x) − y?(x′)| ≤ 1

G‖`(x)− `(x′)‖∞ for all x, x′ ∈ X . Moreover, if each `i is G-Lipschitz, we
have |y?(x)− y?(x′)| ≤ ‖x− x′‖.

Proof. For x, x′ ∈ X w.l.o.g. assume that y?(x) ≤ y?(x′) and observe that for every u ∈ X∑
i∈[N ]

ψ∗ε
′(`i(u)−Gy?(u)) = 1. (37)

Let ˜̀
i(x) = `i(x) + δ with δ := ‖`(x′) − `(x)‖∞ and ỹ(x) :=

argminy∈R

{∑
i∈[N ] ψ

∗
ε

(˜̀
i(x)−Gy

)
+Gy

}
. Then, according to (37)∑

i∈[N ]

ψ∗ε
′
(˜̀
i(x)−Gỹ(x)

)
=
∑
i∈[N ]

ψ∗ε
′(`i(x) + δ −Gỹ(x))

(i)
=
∑
i∈[N ]

ψ∗ε
′(`i(x)−Gy?(x)) = 1

and due to the monotonicity of ψ∗ε
′ and (i) we get

Gỹ(x) = Gy?(x) + δ.

By convexity, ψ∗ε
′ is monotonically non decreasing, thus∑

i∈[N ]

ψ∗ε
′(`i(x

′)−Gỹ(x))
(i)

≤
∑
i∈[N ]

ψ∗ε
′
(˜̀
i(x)−Gỹ(x)

)
=
∑
i∈[N ]

ψ∗ε
′(`i(x

′)−Gy?(x′)) = 1

(38)
where (i) follows from noting that `i(x′) ≤ `i(x) + maxi∈[N ]|`i(x′)− `i(x)| = ˜̀

i(x). Therefore,
Gy?(x′) ≤ Gỹ(x) = Gy?(x) + δ giving

G|y?(x′)− y?(x)| ≤ ‖`(x′)− `(x)‖∞.

In addition, if each `i is G-Lipschitz we have

G|y?(x′)− y?(x)| ≤ ‖`(x′)− `(x)‖∞ ≤ G‖x′ − x‖.

D.5 Epoch-SGD BROO implementation

In this section we provide the analysis of our algorithm in the non-smooth case, which consists of
combining our general BROO acceleration scheme (Algorithm 1) with a variant of Epoch-SGD
[28] that we specialize in order to implement a BROO for Υε,λ (Algorithm 3). We organize this
section as follows. First, we prove Lemma 6 showing that our gradient estimators are unbiased with
bounded second moment, and therefore can be used in Algorithm 3. Then, in Proposition 4 we give
the convergence rate of Algorithm 3. Combining the previous statements with the guarantees of
Proposition 1 we prove Theorem 3.

For convenience, we restate the definitions of Υε and our stochastic estimators for∇xΥε(x, y) and
∇yΥε(x, y):

Υε(x, y) :=
∑
i∈[N ]

ψ∗ε (`i(x)−Gy) +Gy,

and

ĝx(x, y) =
ψ∗ε
′(`i(x)−Gy)

p̄i
∇`i(x, y) , ĝy(x, y) = G

(
1− ψ∗ε

′(`i(x)−Gy)

p̄i

)
where p̄i = ψ∗ε

′(`i(x̄)−Gȳ).
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Lemma 6. Let each `i be G-Lipschitz, let x̄ ∈ X and ȳ = argminy∈R Υε,λ(x̄, y). Let rε = ε′

G , then
for all x ∈ Brε(x̄) and y ∈ [ȳ − rε, ȳ + rε], the gradient estimators ĝx and ĝy satisfy the following:

1. Ei∼p̄i [ĝx(x, y)] = ∇xΥε(x, y) and Ei∼p̄i [ĝy(x, y)] = ∇yΥε(x, y).

2. Ei∼p̄i‖ĝx(x, y)‖2 ≤ e4G2 and Ei∼p̄i |ĝy(x, y)|2 ≤ e4G2.

Proof. We first show that the stochastic gradients ĝx, ĝy are unbiased

Ei∼p̄i [ĝx(x, y)] =
∑
i∈[N ]

p̄i ·
ψ∗ε
′(`i(x)−Gy)

p̄i
∇`i(x) = ∇xΥε(x, y),

and

Ei∼p̄i [ĝy(x, y)] =
∑
i∈[N ]

p̄i ·
(
G

(
1− ψ∗ε

′(`i(x)−Gy)

p̄i

))
= G−G

∑
i∈[N ]

ψ∗ε
′(`i(x)−Gy) = ∇yΥε(x, y).

Next, we bound the second moment of the stochastic gradients. For any i we have

‖ĝx(x, y)‖ =
ψ∗ε
′(`i(x)−Gy)

ψ∗ε
′(`i(x̄)−Gȳ)

‖∇`i(x)‖
(i)

≤ e
`i(x)−Gy−(`i(x̄)−Gȳ)

ε′ G
(ii)

≤ e2G

where (i) follows from Lemma 4 and the fact that `i is G-Lipschitz and (ii) uses G-Lipschitzness
again together with x ∈ Brε(x̄) and y ∈ [ȳ− rε, ȳ+ rε] to deduce that `i(x)−Gy− (`i(x̄)−Gȳ) ≤
2Grε ≤ 2ε′. Therefore, we have E‖ĝx(x, y)‖2 ≤ e4G2 as required. The second moment bound on
ĝy(x, y) follows similarly, since

|ĝy(x, y)| ≤ Gmax

{
1,
ψ∗ε
′(`i(x)−Gy)

ψ∗ε
′(`i(x̄)−Gȳ)

}
≤ e2G.

Proposition 4. Let ε, λ > 0, ε′ = ε
2 logN and rε = ε′

G . For any query point x̄ let ȳ =

argminy∈R Υε,λ(x̄, y) and let x?, y? = argminx∈Brε (x̄),y∈[ȳ−rε,ȳ+rε] Υε,λ(x, y). For γk = 1
8λ2k

,

T ≥ 1 and threshold Tthreshold = G4

λ2ε′2 the output (x, y) of Algorithm 3 satisfies

EΥε,λ(x, y)−Υε,λ(x?, y?) ≤ O
(
G2

λT

)
.

Proof. For convenience let xk = x
(0)
k and yk = y

(0)
k , and in addition let p̄i = ψ′ε

∗
(`i(x̄)−Gȳ) be

the sampling probability from Algorithm 3. We use induction to prove that

EΥε,λ(xk, yk)−Υε,λ(x?, y?) ≤
e4G2

λ2k

for all k. We start with the base case (k=1).

Υε,λ(x?, y?)−Υε,λ(x1, y1) = Υε(x?, y?)−Υε(x1, y1) +
λ

2
‖x? − x1‖2

(i)

≥ 〈∇xΥε(x1, y1), x? − x1〉+ 〈∇yΥε(x1, y1), y? − y1〉+
λ

2
‖x? − x1‖2

(ii)

≥ 〈∇xΥε(x1, y1), x? − x1〉+
λ

2
‖x? − x1‖2

where (i) follows from convexity of Υε and (ii) since due to optimality conditions we have that
〈∇yΥε(x1, y1), y? − y1〉 ≥ 0. Therefore,

Υε,λ(x1, y1)−Υε,λ(x?, y?) ≤ −〈∇xΥε(x1, y1), x? − x1〉 −
λ

2
‖x? − x1‖2

≤ max
x∈Brε (x̄)

{
−〈∇xΥε(x1, y1), x− x1〉 −

λ

2
‖x− x1‖2

}
=
‖∇xΥε(x1, y1)‖2

2λ
≤ e4G2

2λ
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Algorithm 3: Dual EpochSGD
Input: The function Υε defined in (12), ball center x̄, ball radius rε, regularization parameter λ,

smoothing parameter ε′ and iteration budget T .
Parameters: Initial step size γ1 = 1/(16λ), epoch length T1 = 128 and threshold

Tthreshold = G4

λ2ε′2 .
1 Initialize x(0)

1 = x̄

2 Initialize y(0)
1 = ȳ = argminy∈R Υε(x̄, y)

3 Precomupte sampling probabilities p̄i = ψ′ε
∗
(`i(x̄)−Gȳ)

4 for k = 1, . . . , dlog(T/128 + 1)e do
5 for t = 0, 2, · · ·Tk − 1 do
6 Sample i ∼ p̄i
7 Query stochastic gradients ĝx

(
x

(t)
k , y

(t)
k

)
and ĝy

(
x

(t)
k , y

(t)
k

)
defined in (13)

8 Update x(t+1)
k = argminx∈Brε (x̄)

{
γk
(
〈ĝx, x〉+ λ

2 ‖x̄− x‖
2
)

+ 1
2‖x

(t)
k − x‖2

}
9 Update y(t+1)

k = argminy∈[ȳ− ε′G ,ȳ+ ε′
G ]

{
γk(ĝy · y) + 1

2

(
y

(t)
k − y

)2
}

10 Set x(0)
k+1 = 1

Tk

∑
t∈[Tk] x

(t)
k

11 Set y(0)
k+1 = 1

Tk

∑
t∈[Tk] y

(t)
k

12 Update Tk+1 = 2Tk
13 Update γk+1 = γk/2
14 k ← k + 1
15 if Tk ≥ Tthreshold then
16 Recompute y(0)

k+1 = argminy∈R Υε(x
(0)
k+1, y)

17 return x = x
(0)
k

where the last inequality follows from Jensen’s inequality and Lemma 6. This gives the base case of
our induction. Let Vx(x′) = 1

2‖x− x
′‖2 and Vy(y′) = 1

2 |y − y
′|2 and suppose that there is a k such

that EΥε,λ(xk, yk)−Υε,λ(x?, y?) ≤ e4G2

λ2k
. Then, using the mirror descent regret bound [see, e.g., 3,

Lemma 3] for k + 1 we get

EΥε,λ(xk+1, yk+1)−Υε,λ(x?, y?) ≤
EVxk(x?)

γkTk
+

EVyk(y?)

γkTk

+
γk
2

1

Tk

Tk∑
t=1

E‖ĝx(xk, yk)‖2 +
γk
2

1

Tk

Tk∑
t=1

E‖ĝy(xk,k )‖2

(i)

≤ EVxk(x?)

γkTk
+

EVyk(y?)

γkTk
+ 2e4γkG

2

(ii)

≤ λEVxk(x?)

8
+
λEVyk(y?)

8
+

e4G2

2λ2k+1

with (i) following from Lemma 6 and (ii) from the choice of Tk = 64 · 2k and γk = 1
λ2k+3 . Next,

note that the strong convexity of Υε(x, y) in x implies λEVxk(x?) ≤ e4G2

λ2k
since λEVxk(x?) ≤

EλΥε,λ(xk, yk) − EΥε,λ(x?, yk) ≤ EλΥε,λ(xk, yk) − Υε,λ(x?, y?) ≤ e4G2

λ2k
by the induction hy-

pothesis. In addition from Lemma 5 we have

G|yk − y?| ≤ Grε = ε′

by the constraint on y. We now bound EVyk(y?) in each scenario Tk ≤ Tthreshold = G4

λ2ε′2 or
Tk > Tthreshold.

1. If Tk ≤ Tthreshold we have that |yk − y?| ≤ ε′

G ≤
G

λ2k/2+2 and thus Vyk(y?) ≤ G2

λ22k
.
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2. If Tk > Tthreshold Algorithm 3 will recompute the optimal yk and using Lemma 5 we have
|yk − y?| ≤ ‖xk − x?‖ and as a result Vyk(y?) ≤ Vxk(x?).

Therefore EVyk(y?) ≤ e4G2

λ22k
and substituting back the bounds on EVyk(y?) and EVxk(x?) we obtain

EΥε,λ(xk+1, yk+1)−Υε,λ(x?, y?) ≤
e4G2

λ2k+1

which completes the induction. Let K be the iteration where the algorithm outputs x = x
(0)
K and let

y = y
(0)
K . Noting that T = O(2K), we have

EΥε,λ(x, y)−Υε,λ(x?, y?) ≤ O
(
G2

λT

)
.

Theorem 3. Let each `i satisfy Assumption 1. Let ε, λ, δ > 0, and rε = ε/(2G logN). For any query
point x̄ ∈ Rd, regularization strength λ ≤ O(G/rε) and accuracy δ < rε/2, Algorithm 3 outputs a
valid rε-BROO response for Lψ,ε and has complexity Cλ(δ) = O

(
G2

λ2δ2 +N log
(
rε
δ

))
. Consequently,

the complexity of finding an ε-suboptimal minimizer of Lψ (10) with probability at least 1
2 is

O

(
N

(
GR

ε

)2/3

log11/3H +

(
GR

ε

)2

log2H

)
where H := N

GR

ε
.

Proof. We divide the proof into correctness arguments and complexity bounds.

BROO implementation: correctness. We use Algorithm 3 with T = O
(
G2

λ2δ2

)
for the BROO

implementation. Applying Proposition 4 the output (x, y) of Algorithm 3 satisfies

EΥε,λ(x, y)−Υε,λ(x?, y?) ≤ O
(
λδ2
)
.

Therefore, there is a constant c > 0 for which the output (x, y) of Algorithm 3 with T = cG2

λ2δ2

satisfies EΥε,λ(x, y)−Υε,λ(x?, y?) ≤ λδ2

2 , and since

ELψ,ε(x)−min
x
Lψ,ε(x) = Emin

y
Υε(x, y)−Υε(x?, y?) ≤ EΥε,λ(x, y)−Υε,λ(x?, y?),

Algorithm 3 returns a valid BROO response for Lψ,ε.
BROO implementation: complexity. The total number of epochs that Algorithm 3 performs is
K = O

(
log( G2

δ2λ2 )
)

. In O
(

log
(
G2

λ2δ2

)
− log

(
G2

λ2r2
ε

))
= O

(
log
(
rε
δ

))
epochs with T ≥ G4

λ2ε′2 =

G2

r2
ελ

2 the algorithm performs O(N) function evaluations to recompute the optimal y. In addition,

the algorithm performs O
(
G2

λ2δ2

)
stochastic gradient computations (each computation involves a

single loss function `i and a single sub-gradient ∇`i evaluation). Therefore the total complexity of
the BROO implementation is

O

(
G2

λ2δ2
+N log

(rε
δ

))
. (39)

Minimizing Lψ: correctness. For any q ∈ ∆N let Lq(x) :=
∑
i∈[N ] qi`i(x)− ψε(qi) and note that

Lq is G-Lipschitz, since for all x ∈ X we have ‖∇Lq(x)‖ =
∥∥∥∑i∈[N ] qi∇`i(x)

∥∥∥ ≤ G . Maximum
operations preserve the Lipschitz continuity and therefore Lψ,ε(x) = maxq∈∆N Lq(x) is also G-
Lipschitz. Since Lψ,ε is G-Lipschitz, we can use Proposition 1 with F = Lψ,ε and obtain that with
probability at least 1

2 Algorithm 1 outputs a point x such that Lψ,ε(x) −minx Lψ,ε(x) ≤ ε/2. In
addition, from Lemma 18 we have

Lψ(x)−min
x
Lψ(x) ≤ Lψ,ε(x)−min

x
Lψ,ε(x) +

ε

2
≤ ε.
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Minimizing Lψ: complexity. We apply Proposition 1 with F = Υε,λ and rε = ε/(2 logN · G),
thus the complexity of finding an ε/2-suboptimal minimizer of Lψ,ε (and therefore an ε-suboptimal
minimizer of Lψ) is bounded as:

O

(R
rε

)2/3
mε∑

j=0

1

2j
Cλm

(
rε

2j/2m2
ε

)mε + (Cλm
(rε) +N)m3

ε ,


where mε = O

(
log GR2

εrε

)
= O

(
log GR

ε logN
)

and λm = O
(

m2
εε

r
4/3
ε R2/3

)
. To obtain the total

complexity bound, we evaluate the complexity of running rε-BROO with accuracy δj = rε
2j/2m2

ε
and

δ = rε
30 . Using (39) we get

1. Cλm

(
rε

m2
ε2
j/2

)
= O

(
G22jm4

ε

λ2
mr

2
ε

+N log
(
m2
ε2
j/2
))

=

O

(
(GRε )

4/3

(logN)2/3 2j +N
(
mε + log

(
2j/2

)))

2. Cλm

(
rε
30

)
= O

(
G2

λ2
mr

2
ε

+N
)

= O

(
(GRε )

4/3

m4
ε(logN)2/3 +N

)
.

Thus

O

mε

mε∑
j=0

1

2j
Cλm

(
rε

2j/2m2
ε

) ≤ O(m2
ε

(
GR
ε

)4/3
(logN)

2/3
+m2

εN

)

and

O
(
(Cλm(rε) +N)m3

ε

)
≤ O

( (
GR
ε

)4/3
mε(logN)

2/3
+Nm3

ε

)
.

Substituting the bounds into Proposition 1, the total complexity is bounded as

O

((
R

rε

)2/3
[
Nm3

ε +
m2
ε

(
GR
ε

)4/3
(logN)

2/3

])
≤ O

(
N

(
GR

ε

)2/3

log11/3

(
GR

ε
logN

)
+

(
GR

ε

)2

log2

(
GR

ε
logN

))

D.6 Accelerated variance reduction BROO implementation

In this section we prove the complexity guarantees of our BROO implementation for (potentially
only slightly) smooth losses. We first prove Lemma 7, showing that Υε,λ (the approximation of our
objective (10)) is a finite sum of smooth functions, and thus for the BROO implementation we can
use a variance reduction method for a finite (weighted) sums. Then, we give Definition 3 of a “valid
accelerated variance reduction” (VR) method, and in Lemma 20 we prove the convergence rate of our
BROO implementation (Algorithm 4) which is simply a restart scheme utilizing any valid accelerated
VR method. We then combine the guarantees of Lemma 20 and Proposition 1 to prove Theorem 4,
our final complexity guarantee in the smooth.

To begin, let us restate here the definition of Υε,λ (that has the form of a weighted finite sum):

Υε,λ(x, y) =
∑
i∈[N ]

p̄iυi(x, y) where υi(x, y) :=
ψ∗ε (`i(x)−Gy)

p̄i
+Gy +

λ

2
‖x− x̄‖2 (40)

and p̄i = ψ∗ε
′(`i(x̄)−Gȳ).

Lemma 7. For any i ∈ [N ], let `i be G-Lipschitz and L -smooth, let rε = ε′

G and λ = O
(
G
rε

)
. The

restriction of υi to x ∈ Brε(x̄) and y ∈ [ȳ − rε, ȳ + rε] is O(G)-Lipschitz and O
(
L+ G2

ε′

)
-smooth.
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Proof. To show the Lipschitz property we compute the gradient of υi(x, y) with respect to x and y.

∇xυi(x, y) =
ψ∗ε
′(`i(x)−Gy)

p̄i
∇`i(x) + λ(x− x̄)

∇yυi(x, y) = G−Gψ
∗
ε
′(`i(x)−Gy)

p̄i

Similarly to the proof of Lemma 6, we have that ψ
∗
ε
′(`i(x)−Gy)

p̄i
≤ e2 and therefore ‖∇xυi(x, y)‖ ≤

e2G = O(G) and |∇yυi(x, y)| ≤ e2G = O(G), giving the first statement. To bound the smoothness
of υi, we compute the Hessian of υi(x, y).

∇2
xυi(x, y) =

ψ∗ε
′(`i(x)−Gy)

p̄i
∇2`i(x) +

ψ∗ε
′′(`i(x)−Gy)

p̄i
∇`i(x)∇`i(x)T + λI

∇2
yυi(x, y) = G2ψ

∗
ε
′′(`i(x)−Gy)

p̄i

∇xyυi(x, y)−Gψ
∗
ε
′′(`i(x)−Gy)

p̄i
∇`i(x).

Lemma 4 implies that, for all v, ψ
∗
ε
′′(v)

ψ∗ε
′(v) =

(
logψ∗ε

′(v)
)′ ≤ 1

ε′ and ψ∗ε
′(`i(x)−Gy)

p̄i
≤ e2. In addition

note that each `i is L-smooth and G-Lipschitz and λ = O
(
G
rε

)
= O

(
G2

ε′

)
, therefore

‖∇2
xυi(x, y)‖op =

∥∥∥∥∥ψ∗ε ′(`i(x)−Gy)

p̄i
∇2`i(x) +

ψ∗ε
′′(`i(x)−Gy)

ψ∗′ε (`i(x)−Gy)

ψ∗
′

ε (`i(x)−Gy)

p̄i
∇`i(x)∇`i(x)T + λI

∥∥∥∥∥
op

≤ O
(
e2

(
L+ 2

G2

ε′

))

‖∇xyυi(x, y)‖ =

∥∥∥∥∥Gψ∗ε ′′(`i(x)−Gy)

ψ∗′ε (`i(x)−Gy)

ψ∗
′

ε (`i(x)−Gy)

p̄i
∇`i(x)

∥∥∥∥∥ ≤ e2G
2

ε′

∇2
yυi(x, y) = G2ψ

∗
ε
′′(`i(x)−Gy)

ψ∗′ε (`i(x)−Gy)

ψ∗
′

ε (`i(x)−Gy)

p̄i
∇`i(x) ≤ e2G

2

ε′
.

Applying Lemma 21 with h = υi we get that∥∥∇2υi(x, y)
∥∥

op ≤ e
2

(
L+ 2

G2

ε′

)
,

proving that each υi(x, y) is O
(
L+ G2

ε′

)
-smooth.

Definition 3. For a given ball center x̄ ∈ X , let z? ∈ Brε(x̄) × R minimize the function
Υε,λ : Brε(x̄) × R → R, and let ȳ = argminy∈R Υε,λ(x̄, y). Let VARIANCEREDUCTION be a
procedure that takes in z ∈ X × R and complexity budget T , and outputs z′ ∈ X × R. We say that
VARIANCEREDUCTION is a valid accelerated VR method if it has complexity T and satisfies the
following: there a constant C such that for any α, input z, and

T ≥ C

NΥε,λ(z)−Υε,λ(z?)

α
+

√
L̃‖z − z?‖2

α

 for L̃ = L+
G2

ε′
,

the output z′ of VARIANCEREDUCTION(z;T ) satisfies

EΥε,λ(z′)−Υε,λ(z?) ≤ α.
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Algorithm 4: Restarting Accelerated Variance Reduction with Optimal Dual Values
Input: The function Υε,λ(x, y) =

∑
i∈[N ] p̄iυi(x, y) defined in (40), number of total restarts K,

and an algorithm VARIANCEREDUCTION that takes in x, y ∈ X × R and complexity
budget T , and outputs x′, y′ ∈ X × R.

1 x0, y0 = x̄, ȳ = x̄, argminy∈R Υε(x̄, y)
2 for k = 1, . . . ,K do
3 xk, y

′
k = VARIANCEREDUCTION(xk−1, yk−1;T )

4 yk = argminy∈R Υε(xk, y)

5 return xK

Lemma 19. Katyushasf [38] is a valid accelerated VR method for some C = O(1).

Proof. Immediate from [1, Theorem 4.1] and Lemma 7. (We note that the theorem is stated for a
finite sum with uniform weights, but the extension of the theorem and the method to non-uniform
sampling is standard).

The following lemma shows that Algorithm 4, when coupled with any valid accelerated VR method
yields a BROO implementation for

Lψ,ε = max
q∈∆N

∑
i∈[N ]

(qi`i(x)− ψε(qi)) = min
y∈R

Υε(x, y),

i.e., it outputs an approximate minimizer of

Lψ,ε,λ(x) := Lψ,ε(x) +
λ

2
‖x− x̄‖2 = min

y∈R
Υε,λ(x, y)

in Brε(x̄).

Lemma 20. Let Assumptions 1 and 3 hold, and suppose Algorithm 4 uses a valid accelerated VR

method with constant C (defined above). Then, for L̃ = L + G2/ε′ and T ≥ 2C(N +

√
NL̃/λ),

for any K ≥ 0 the output x of Algorithm 4 satisfies

ELψ,ε,λ(x)− min
x?∈Brε (x̄)

ELψ,ε,λ(x?) ≤ 2−K
(
Lψ,ε,λ(x̄)− min

x?∈Brε (x̄)
ELψ,ε,λ(x?)

)
.

Moreover, the complexity of Algorithm 4 is K(N + T ) = O

(
K(N +

√
NL̃/λ)

)

Proof. Let z? = (x?, y?) minimize Υε,λ in Brε(x̄)× R, so that x? = argminx∈Brε (x̄) Lψ,ε,λ(x) as
well. Note that for all of the outer loop iterations zk = (xk, yk) we have, by the optimality of yk and
Lemma 5,

‖zk − z?‖2 = ‖xk − x?‖2 + (yk − y?)2 ≤ 2‖xk − x?‖2.
Moreover, the λ-strong convexity of Lψ,ε,λ implies that

‖xk − x?‖2 ≤
2(Lψ,ε,λ(xk)− Lψ,ε,λ(x?))

λ
.

Furthermore, note that Υε,λ(zk) = miny∈R Υε,λ(xk, y) = Lψ,ε,λ(xk). Recalling that by Lemma 5
restricting the domain of y to [ȳ − rε, ȳ + rε] does not change the optimal y, we conclude that for
VARIANCEREDUCTION to guarantee Υε,λ(xk+1, y

′
k+1)−Υε,λ(z?) ≤ α it suffices to choose

T ≥ C

N Lψ,ε,λ(xk)− Lψ,ε,λ(x?)

α
+

√
4L̃(Lψ,ε,λ(xk)− Lψ,ε,λ(x?)

λα


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In particular, we see that T ≥ 2C

(
N +

√
NL̃/λ

)
suffices for α =

Lψ,ε,λ(xk)−Lψ,ε,λ(x?)
2 , from

which we conclude that

Lψ,ε,λ(xk+1)− Lψ,ε,λ(x?) = Υε,λ(xk+1, yk+1)−Υε,λ(z?)

≤ Υε,λ(xk+1, y
′
k+1)−Υε,λ(z?) ≤

Lψ,ε,λ(xk)− Lψ,ε,λ(x?)

2
,

giving the claimed optimality bound. Finally, the complexity of the method is clearly K(T + N)
since we make K calls to VARIANCEREDUCTION with complexity T and K exact minimizations
over y with complexity N .

To efficiently implement the BROO , we repeatedly apply an accelerated variance reduction scheme
that does not require strong convexity, such as Katyushans [2], each time with complexity budget
Õ(N +

√
NL′/λ), where L′ = L+G2/ε′. We start each repetition by the x variable output by the

previous Katyushans call, and with y = argminy∈R Υε,λ(y, x) for that x. Using Lemma 5 in lieu
of strong-convexity in y, we show that error halves after each restart, and therefore a logarithmic
number of restarts suffices. We arrive at the following complexity bound.

Theorem 4. Let each `i satisfy Assumptions 1 and 3, let ε, λ, δ > 0, and rε = ε
2G logN . For any

query point x̄ ∈ Rd, regularization strength λ ≤ O(Grε ) and accuracy δ, Algorithm 4 outputs a

valid rε-BROO response for Lψ,ε and has complexity Cλ(δ) = O
((
N +

√
N(G+

√
ε′L)√

λε′

)
log Grε

λδ2

)
.

Consequently, the complexity of finding an ε-suboptimal minimizer of Lψ (10) with probability at
least 1

2 is

O

(
N

(
GR

ε

)2/3

log14/3H +
√
N

(
GR

ε
+

√
LR2

ε

)
log5/2H

)
where H := N

GR

ε
.

Proof. We first show correctness and complexity of the BROO implementation and then argue the
same points for the overall method.

BROO implementation: correctness and complexity. Combining Lemmas 19 and 20 and set-

ting K = log2

Υε(x0,y0)−argminx∈Brε (x̄),y ∈R Υε(x,y)

λδ2 , we obain a valid BROO implementation with
complexity

O

N +

√
N
(√

Lε′ +G
)

√
ε′λ

 log

(
Υε(x0, y0)− argminx∈Brε (x̄),y∈R Υε(x, y)

λδ2

) (41)

Furthermore, we note that Υε is O(G)-Lipschitz and therefore Υε(x0, y0) −
argminx∈Brε (x),y∈R Υε(x, y) ≤ O(Grε).

Minimizing Lψ: correctness. Similarly to the proof of Theorem 3, we note that Lψ,ε isG-Lipschitz,
and therefore we can apply Proposition 1 with F = Lψ,ε and obtain that with probability at least 1

2
Algorithm 1 outputs x such that Lψ,ε(x)−minx Lψ,ε(x) ≤ ε/2 and Lemma 18 gives

Lψ(x)−min
x
Lψ(x) ≤ Lψ,ε(x)−min

x
Lψ,ε(x) +

ε

2
≤ ε.

Minimizing Lψ: complexity. Applying Proposition 1 with F = Υε and rε = ε
2G logN , the

complexity of finding an ε-suboptimal minimizer of Lψ is

O

(R
rε

)2/3
mε∑

j=0

1

2j
Cλm

(
rε

2j/2m2
ε

)mε + (Cλm(rε) +N)m3
ε

 (42)

where mε = O
(
log GR2

εrε

)
= log

(
GR
ε logN

)
and λm = O

( m2
εε

r4/3R2/3

)
. Using similar calculations to

the proof of Theorem 2 we obtain that
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1. Cλm

(
rε

2j/2m2
ε

)
= O

((
N +N1/2

(
G
√

logN√
ε

+
√
L
)

1√
λm

)
log
(
ε′2jm4

ε

λmr2
ε

))
2. Cλm

(
rε
30

)
= O

((
N +N1/2

(
G
√

logN√
ε

+
√
L
)

1√
λm

)
log
(

ε′

λmr2
ε

))
with ε′

λmr2
ε

= O
((

GR
ε

)2/3 1
m2
ε

)
and 1√

λm
= O

(
R1/3r2/3

ε

mε
√
ε

)
. Therefore,

mε

∞∑
j=0

1

2j
Cλm

(
rε

2j/2m2
ε

)
≤ O

(
m2
ε

[
N +N1/2

(
GR1/3

ε
+

√
LR2/3

ε

)
r2/3
ε

])
.

and

O
(
(Cλm

(rε) +N)m3
ε

)
≤ O

(
m4
εN +m3.5

ε N1/2

(
GR1/3

ε
+

√
LR2/3

ε

)
r2/3
ε

)
.

Substituting the bounds into Proposition 1 with mε = log
(
GR
ε logN

)
and rε = ε

2 logN the total
complexity is

O

(
N

(
GR

ε

)2/3

log14/3

(
GR

ε
logN

)
+N1/2

(
GR

ε
+

√
LR2

ε

)
log7/2

(
GR

ε
logN

))
.

D.7 Helper lemmas

Lemma 21. Let x ∈ Rd, y ∈ R, then for any h : Rd × R→ R we have∥∥∇2h(x, y)
∥∥

op ≤ max
{
∇2
yh(x, y) + ‖∇xyh(x, y)‖,

∥∥∇2
xh(x, y)

∥∥
op + ‖∇xyh(x, y)‖

}
Proof.∥∥∇2h(x, y)

∥∥
op = sup

‖v‖2+u2=1

vT∇2
xh(x, y)v + 2u(∇xyh(x, y))

T
v + u2∇2

yh(x, y)

(i)

≤ ‖v‖2
∥∥∇2

xh(x, y)
∥∥

op + 2u‖∇xyh(x, y)‖‖v‖+ u2∇2
yh(x, y)

(ii)

≤ ‖v‖2
∥∥∇2

xh(x, y)
∥∥

op +
(
u2 + ‖v‖2

)
‖∇xyh(x, y)‖+ u2∇2

yh(x, y)

= u2
(
∇2
yh(x, y) + ‖∇xyh(x, y)‖

)
+
(
1− u2

)(∥∥∇2
xh(x, y)

∥∥
op + ‖∇xyh(x, y)‖

)
≤ max

{
∇2
yh(x, y) + ‖∇xyh(x, y)‖,

∥∥∇2
xh(x, y)

∥∥
op + ‖∇xyh(x, y)‖

}
with (i) following due to Hölder’s inequality and (ii) follows from the inequality 2ab ≤ a2 + b2.
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