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A LLM PROMPTS

In this section, we show the prompts of large language models
(LLMs) for speaker prediction. Through our experiments, we ob-
served that using prompts in Japanese leads to higher prediction
accuracy than using prompts in English. This is probably because
the input texts are in Japanese; using prompts in the same language
could reduce confusion for the LLMs. For the understanding of our
prompts, we have translated them into English. The introduced
prompts are fed into GPT-4 as system prompts while user prompts
only contain the texts in each comic.

A.1 Character Name Extraction

The prompt we used for extracting character names from dialogues
is shown below. Since the names that appear in dialogues might be
incomplete, potentially leading to multiple names being extracted
for the same character, we instructed the LLMs to use contextual
information to infer and output full names wherever possible.

Given a sequence of manga text in Japanese,
identify the names of the characters
estimated to appear.

### Note
— When extracting character names, provide
full names if possible, e.g., "Taro

Yamada".

— If full names are not explicitly
mentioned, analyze the context within the
text to deduce the full names.

- If the name of a character is unknown,
describe them by their occupation or their
relationship with other characters, e.g.,
"the teacher" or "Yamada's mother".

### Input/Output format
[Input format]
Text ID | Text

[Output format]

Character ID | Character Name

A.2 Context Extraction

The prompt we used for extracting a story summary and character
profiles is shown below. Here, we take the prompt for LoveHina
vol@1 as an example. We instructed the LLMs to output the con-
text information in Japanese to make the language consistent as
mentioned above.

1

!

e

L A

EN

<

20

21

22

Given a sequence of manga text in Japanese
and a list of characters who appear in it,
produce a story summary and character
profiles based on the following steps.
Note: The output should be in Japanese.

1. Summary: summarize the story in the
manga.

2. Characters: For each character listed,
provide details about their attributes,
including gender, estimated age, role, a
brief description, and relationships with
other characters.

### List of appearing characters
Character ID | Character Name

A | Keitaro

B | Naru

### Input/Output format
[Input format]
Text ID | Text

[Output format]
1. Summary:

2. Characters:
- Keitaro:

- Naru:

A.3 Initial Speaker Prediction (w/o candidates)

The prompt of the initial speaker prediction based only on the
texts is shown below. We instructed the LLMs to output not only
the predicted speaker’s name but also a confidence level for that
prediction. The data with a low confidence level is not used in the
subsequent steps. We defined five confidence levels and provided
detailed explanations for the criteria.

Given a sequence of manga text in Japanese
and a list of characters who appear in it,
predict the speaker of each text
considering the context information.
Please also output a confidence level of
prediction on a scale of 5.

### Note
- Not all the given characters might be
speaking in the provided text.
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— The number of output lines should be the
same as the number of input lines.

#4## List of appearing characters
Character ID | Character Name

A |
B |

Keitaro
Naru

##4# Context information

1. Summary: Keitaro tries to

2. Characters:

- Keitaro: Main character who
— Naru: Heroine of the story.

### Input/Output format
[Input format]
Text ID | Text

[Output format]
Text ID | Character Name |
Confidence Level

Character ID |

### Confidence level
Score and criteria:

1: Completely uncertain, the prediction is
near random.

2: Low confidence, the probability that the
prediction is correct is less than 50%.

3: Moderate confidence, the prediction is
likely correct but could be wrong.

4: High confidence, the prediction is
probably correct, but not 100% certain.

5: Very high confidence, the prediction is

almost certainly correct.

### Input/Output example

[Input]

1 | Hey, Naru.

2 | What, Keitaro?
[Output]

1 | Keitaro | A | 5
2 | Naru | B | 4

A.4 Tterative Speaker Prediction (w/ candidates)

The prompt of the iterative speaker prediction using the speaker
candidates is shown below. A speaker candidate is obtained for each
text based on the character identification results. We integrated
image-based predictions and textual information by providing LLMs
with speaker candidates. We also supplied the prediction probability
for each speaker candidate so that LLMs can use the information,
which leads to 2.0% improvement in accuracy as shown in Table 3
of the main paper.
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Given a sequence of manga text in Japanese
and a list of characters who appear in it,
predict the speaker of each text
considering the context information.
Please also output a confidence level of
prediction on a scale of 5.

For each text,
candidate, which is obtained from the
image-based prediction, along with a
probability for that prediction. Use this
as a reference.

you will be given a speaker

### Note

— Not all the given characters might be
speaking in the provided text.

— The number of output lines should be the
same as the number of input lines.

- If no image-based predictions are given,
predict the speaker based on the text and
the context.

- The image-based predictions may not
always be correct. Exercise caution,
especially when the prediction probability
is low.

### List of appearing characters
Character ID | Character Name

A | Keitaro

B | Naru

### Context information

1. Summary: Keitaro tries to
2. Characters:

- Keitaro: Main character who

- Naru: Heroine of the story.

### Input/Output format
[Input format]

Text ID | Text |
(Prediction Probability)

Speaker Candidate

[Output format]
Text ID | Character Name |
Confidence Level

Character ID |

### Confidence level
Score and criteria:

1: Completely uncertain, the prediction is
near random.

2: Low confidence, the probability that the

prediction is correct is less than 50%.
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3: Moderate confidence, the prediction is
likely correct but could be wrong.

4: High confidence, the prediction is
probably correct, but not 100%

5: Very high confidence, the prediction is

certain.
almost certainly correct.

### Input/Output example

[Input]
1 | Hey, Naru. | Keitaro (0.56)
2 | What, Keitaro? | Naru (0.8)

[Output]
1 | Keitaro | A | 5
2 | Naru | B | 4

B CHARACTER REGION CLASSIFIER

This section describes the details of character region classification.
We utilize the ResNet50 model [3], adapted to classify character
regions. Our training method consists of a pre-training phase on
general comics and a fine-tuning phase for individual unseen comics
in the test set. The steps of pre-training, fine-tuning, and testing
are detailed below.

Pre-training. We pre-train the models for comic character clas-
sification using Manga109 dataset [1, 7]. The model are initialized
with weights from a model trained on ImageNet [2, 3]. The training
set includes 349 characters from the Manga109 training set, which
consists of separated titles from the test set. Character regions are
cropped and resized to 270x270, followed by data augmentation
including random 256%256 crops, horizontal flips, and rotations.
Training lasts for 50 epochs using AdamW optimizer [5] with a
batch size of 32. The learning rate is set to 1x 10~4, and it is reduced
by a factor of 0.1 after the 20th and 40th epochs.

Fine-tuning. In the character identification step of our framework,
the pre-trained model is fine-tuned for each comic in the test set
using the pseudo labels generated from speaker prediction results.
We split the whole data into train and validation sets, allocating
10% of the data randomly for validation. We run fine-tuning with 10
epochs and select the model with the highest validation accuracy.
The learning rate is set to 1 X 10~%, with other parameters and
augmentation strategies being consistent with the pre-training
phase.

Testing. In testing, we used 10-crop testing [4] with crops sized
at 256x256 from the image resized to 270x270. To handle the in-
stability of training with noisy labels, we used a simple ensemble
approach: we trained five models using the same training data,
where the output probability of classification is calculated by av-
eraging the outputs from all models. As future work, we might be
able to employ specific methods to handle noisy labels to improve
the results [6, 8].

C MAIN RESULTS

In this section, we present more examples of our experimental re-
sults, which were obtained using the same experimental settings as

ACM MM, 2024, Melbourne, Australia

the results of Table 1 in the main paper. As mentioned in Section
4.2, to validate the effectiveness of our proposed iterative multi-
modal fusion method, we conducted evaluations in two aspects:
Unimodal vs. Multimodal and One-Step vs. Iterative. Addi-
tionally, we analyze the limitations of our current method through
several failure examples to show the direction of future work.

C.1 Unimodal vs. Multimodal

To show the effectiveness of using multimodal information, we
compare our proposed multimodal method with the methods using
only visual information or textual content, as shown in Figure A
and Figure B. Color of the bounding box indicates the predicted
character label. Red labels indicate failure predictions. The results
of LLM only and K-means+SGG baseline are shown as text-only
and image-only results, respectively. As explained in the main pa-
per, K-means+SGG used the ground truth to map each cluster into
character labels because the image-only approach cannot identify
character labels. For the LLM only method, we did not perform
character identification.

From Figure A, we can observe that LLMs struggle to make accu-
rate predictions in the case that the texts lack distinctive character
features. However, when combining these with image-based predic-
tions, visual information provides essential cues about the speakers,
enabling the model to make correct predictions. The results in Fig-
ure B show that an image-only method failed to predict the case
that the speaker is not the character closest to the text. In contrast,
the multimodal method can predict correctly by using textual con-
tent such as story context. These results show the effectiveness of
using multimodal information for these tasks, which accords with
how humans do when reading comics, i.e., identifying the speaker
of dialogue using both visual and textual information.

C.2  One-Step vs. Iterative

Experimental results of character identification and speaker predic-
tion under different iteration times are shown in Figure C and Fig-
ure D. The accuracy for both character identification and speaker
prediction improves as the number of iterations increases. This
demonstrates that enhanced results of character identification can
positively influence the accuracy of speaker prediction, and vice
versa, further validating the effectiveness of our iterative approach.
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Figure A: Speaker prediction results obtained using a single modality (textual information) and multiple modalities combined.

Color of the bounding box indicates the predicted character label. Red labels indicate failure predictions. Courtesy of Tashiro
Kimu, Hikochi Sakuya, Yoshimori Mikio, Karikawa Seyu.
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Figure B: Speaker prediction results obtained using a single modality (visual information) and multiple modalities combined.

The labels on the boxes (e.g., ‘A’) are character labels. Labels in brackets are the ground truth. (e.g., ‘A (B)’ is the case where the

ground truth is B but the prediction is A.) * indicates that the image-based method used the ground truth of character labels.

Courtesy of Ayumi Yui, Hanada Sakumi.
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C.3 Failure Examples

Figure E shows the cases where increasing the number of itera-
tions leads to poorer prediction results. In the first example, for
the texts positioned on the left (purple box with label D), the LLMs
initially made correct speaker prediction in iteration 1. However,
since character B is closer to these texts, its label is propagated to
these texts, leading to incorrect predictions in iteration 2. In the
second example, the character classifier originally made the correct
identification. However, labels of the character C are changed to
incorrect label B. This is because the labels to dialogue are prop-
agated to characters even if the character does not speak in this
figure.

These examples show that improving the accuracy of either
character identification or speaker prediction does not necessarily
enhance the performance of the other in the case that the cor-
respondence between text and character regions is not clear. It
suggests future directions such as a method to generate reliable
pseudo-labels or a robust training method to handle noisy labels.

Iteration 2

Iteration 1

Figure E: Failure examples where prediction results deteri-
orate with increasing iterations. Courtesy of Matsuda Nao-
masa, Hanada Sakumi.

D ZERO-SHOT RESULTS

Figure F shows the results under entirely zero-shot settings where
only images are provided as inputs. Experimental settings are de-
scribed in Section 4.4 of the main paper.
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