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ABSTRACT

The controllable generation of diffusion models aims to steer the model to generate
samples that optimize some given objective functions. It is desirable for a variety of
applications including image generation, molecule generation, and DNA/sequence
generation. Reinforcement Learning (RL) based fine-tuning of the base model is a
popular approach but it can overfit the reward function while requiring significant
resources. We frame controllable generation as a problem of finding a distribution
that optimizes a KL-regularized objective function. We present Supervised Learn-
ing based Controllable Diffusion (SLCD), which iteratively trains a small classifier
to guide the generation of the diffusion model. Via a reduction to no-regret online
learning analysis, we show that the output from SLCD provably converges to the op-
timal solution of the KL-regularized objective. Further, we empirically demonstrate
that SLCD can generate high quality samples with nearly the same inference time
as the base model in both image generation and biological sequence generation.

1 INTRODUCTION

Diffusion models are an expressive class of generative models which are able to model complex
data distributions (Song et al., 2021a;b). Recent works have utilized diffusion models for a variety
of modalities: images, audio, and molecules (Saharia et al., 2022; Ho et al., 2022; Li et al., 2024;
Hoogeboom et al., 2022). However, modeling the distribution of data is often not enough for
downstream tasks. We want to generate data which satisfies a specific property, be that a prompt, a
specific chemical property, or a specific structure.

Perhaps the simplest approach is classifier-guided diffusion where a classifier is trained using a
pre-collected labeled dataset. The score of the classifier is used to guide the diffusion process to
generate images that have high likelihood being classified under a given label. However this simple
approach requires a given labeled dataset and is not directly applicable to the settings where the goal
is to optimize a complicated objective function (we call it reward function hereafter). To optimize
reward functions, Reinforcement Learning (RL) and stochastic optimal control based approaches
have been studied (Black et al., 2024; Oertell et al., 2024; Domingo-Enrich et al., 2025; Clark et al.,
2024; Fan et al., 2023; Uehara et al., 2024a;b). These methods require modifying the base model to
some degree which can be slow and expensive to train. We instead turn our attention to “fine-tuning
free" methods, which do not modify the base model. Such methods Li et al. (2024) rely on test-time
scaling in order walk the Pareto frontier of quality vs divergence from the base distribution. It is thus
desirable to devise an algorithm with this same property, but pays a fixed (and small) inference cost.

In this work, we ask the following question: Can we design a fine-tuning–free algorithm that achieves
optimal KL-regularized reward maximization while paying only a fixed, small inference cost? We
provide an affirmative answer to this question (Fig. 1). We view fine-tuning diffusion model as a
controllable generation problem where we train a guidance model – typically a lightweight small
classifier, to guide the pre-trained diffusion model during the inference time. Specifically, we frame
the optimization problem as a KL-regularized reward maximization problem where our goal is to
optimize the diffusion model to maximize the given reward while staying close to the pre-trained
model. Prior work such as SVDD (Li et al., 2024) also studied a similar setting where they also
train a guidance model to guide the pre-trained diffusion model in inference time. However SVDD’s
solution is sub-optimal, i.e., it does not guarantee to find the optimal solution of the KL-regularized
reward maximization objective. We propose a new approach, SLCD (Supervised Learning–based
Controllable Diffusion), which iteratively refines a classifier using feedback from reward functions
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Figure 1: An overview of the main experimental results. Top: Qualitative examples for continuous
diffusion image tasks (image compression and aesthetic maximization). Relaxing the KL constraint
at test time (larger η) consistently increases the score. Bottom left: SLCD stays closer to the initial
image distribution (lower FID score) for the same reward. Bottom right: SLCD is likewise effective
at controlling discrete diffusion models.

applied to the online data generated by the classifier itself while guiding a pre-trained diffusion
model. Conceptually, SLCD is rooted in classifier guidance, but introduces a novel mechanism for
learning the optimal classifier–one whose guidance provably ensures that the distribution induced on
the base model converges to the desired target distribution.

Through a reduction to no-regret learning (Shalev-Shwartz et al., 2012), SLCD finds a near optimal
solution to the KL-regularized reward maximization objective. Our analysis is motivated from the
classic imitation learning (IL) algorithms DAgger (Ross et al., 2011) and AggreVaTe(d) (Ross &
Bagnell, 2014; Sun et al., 2017) which frame IL as an iterative classification procedure with the main
computation primitive being classification. Our theory shows that as long as we can achieve no-regret
on the sequence of classification losses constructed during the training, the learned classifier can
guide the pre-trained diffusion model to generate a near optimal distribution.

On discrete and continuous diffusion tasks we find SLCD consistently outperforms other baselines
on reward and inference speed while maintaining a lower divergence from the base model. Overall,
SLCD serves a simple solution to the problem of fine-tuning both continuous and discrete diffusion
models to optimize a given KL-regularized reward function.

2 RELATED WORK

There has been significant interest in controllable generation of diffusion models, starting from
Dhariwal & Nichol (2021) which introduced classifier guidance, to then Ho & Salimans (2022) which
introduced classifier-free guidance. These methods paved the way for further interest in controllable
generation, in particular when there is an objective function to optimize. First demonstrated by Black
et al. (2024); Fan et al. (2023), RL fine-tuning of diffusion models has grown in popularity with
works such as Clark et al. (2024); Prabhudesai et al. (2023) which use direct backpropagation to
optimize the reward function. However, these methods can lead to mode collapse of the generations
and overfitting. Further works then focused on maximizing the KL-constrained optimization problem
which regularizes the generation process to the base model (Uehara et al., 2024b) but suffer either
from needing special memoryless noise schedulers (Domingo-Enrich et al., 2025) or needing to
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control the initial distribution of the diffusion process (Uehara et al., 2024a) to avoid a bias problem.
Our approach does not need to do any of these modification. Li et al. (2024) proposed a method to
augment the decoding process and avoid training the underlying base model, but yield an increase in
compute time. Their practical approach also does not guarantee to learn the optimal distribution. More
broadly, Mudgal et al. (2023); Zhou et al. (2025) investigate token-level classifier guidance for KL-
regularized controllable generation of large language models. Zhou et al. (2025) also demonstrated
that to optimize a KL-regularized RL objective in the context of LLM text generation, one just needs
to perform no-regret learning. While our approach is motivated by the Q# approach from Zhou
et al. (2025), we tackle score-based guidance for diffusion models in a continuous latent space and
continue time, where the space of actions form an infinite set–making algorithm design and analysis
substantially more difficult than the setting of discrete token and discrete-time in prior LLM work.

3 PRELIMINARIES

3.1 DIFFUSION MODELS

Given a data distribution q0 in Rd, the forward process of a diffusion model (Song et al. (2021b))
adds noise to a sample x̄0 ∼ q0 iteratively, which can be modeled as the solution to a stochastic
differential equation (SDE):

dx̄ = h(x̄, τ)dτ + g(τ)dw̄, x̄0 ∼ q0, τ ∈ [0, T ] (1)

where {w̄τ}τ is the standard Wiener process, h(·, ·) : Rd × [0, T ] → Rd is the drift coefficient and
g(·) : [0, T ] → R is the diffusion coefficient. We use qτ (·) to denote the probability density function
of x̄τ generated according to the forward SDE in equation equation 1. We assume f and g satisfy
certain conditions s.t. qT converges to N (0, I) as T → ∞. For example, if Eq. (1) is chosen to be
Ornstein–Uhlenbeck process, qT converges to N (0, 1) exponentially fast.

The forward process equation 1 can be reversed by:

dx =
[
−h(x, T − t) + g2(T − t)∇ log qT−t(x)

]
dt+ g(T − t)dw, x0 ∼ qT , t ∈ [0, T ], (2)

where {wt}t is the Wiener process. It is known (Anderson, 1982) that the forward process equation 1
and the reverse process equation 2 have the same marginal distributions. To generate a sample, we
can sample x0 ∼ qT , and run the above SDE from t = 0 to t = T to get xT . In practice, one can
start with x0 ∼ N (0, I) (an approximation for qT ) and use numerical SDE solver to approximately
generate xT , such as the generation processes from DDPM (Ho et al., 2020) or DDIM (Song et al.,
2021a).

3.2 CONTROLLABLE GENERATION

In certain applications, controllable sample generated from some target conditional distribution is
preferable. This can be achieved by adding guidance to the score function. In general, the reverse
SDE with guidance f(·, ·) is:

dx =
[
−h(x, T − t) + g2(T − t) (∇ log qT−t(x) + f(x, t))

]
dt+ g(T − t)dw. (3)

For convenience, for all 0 ≤ s ≤ t ≤ T , we use

P f
s→t(·|p) (4)

to denote the marginal distribution of xt, the solution to equation 3 with initial conditional xs ∼ p. In
the remaining of this paper, we may abuse the notation and use P f

s→t(·|x′) to denote a deterministic ini-
tial condition Pr [xs = x′] = 1. In particular, we use P prior

s→t(·|p) to denote the special case that f ≡ 0.

3.3 REWARD GUIDED GENERATION

In this paper, we aim to generate samples that maximize some reward function r(x) ∈ [−Rmax, 0],
while not deviating too much from the base or prior distribution q0. We consider the setting where
we have access to the score function of the prior q0 (e.g., q0 can be modeled by a pre-trained large
diffusion model).
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Figure 2: Covariate shift (left) and data collection in our approach (right). The left figure illustrates
covariate shift. In the offline naive approach, classifier will be trained under the green samples.
However in inference time, the classifier will be applied at the red samples – samples generated
by using the classifier itself as guidance. The difference in green samples (training distribution)
and red samples (testing distribution) is the covariate shift. Our approach (right) mitigates this by
iteratively augmenting the training set with samples drawn from guided diffusion. We rollin with the
classifier-guided diffusion to get to xt. We then rollout with the prior’s score function to get to xT

and query a reward r(xT ). The triple (t,xt, r(xT )) will be used to refine the classifier.

Formally, our goal is to find a distribution p that solves the following optimization problem:

max
p

Ex∼p[r(x)]−
1

η
KL(p∥q0) (5)

for some η > 0 which controls the balance between optimizing reward and staying close to the
prior. It is known (Ziebart et al., 2008) that p⋆, the optimal solution to the optimization in equation 5,
satisfies

p⋆(x) =
1

Z
q0(x) exp(ηr(x)), (6)

where Z > 0 is the normalization factor. Prior work treats this as a KL-regularized RL optimization
problem. However as we mentioned, to ensure the optimal solution of the KL-regularized RL
formulation to be equal to p⋆, one need to additionally optimize the state distribution qT (e.g., via
another diffusion process), or need to design special memory less noise scheduling (Domingo-Enrich
et al., 2025). We aim to show that we can learn p⋆ in a provably optimal manner.

4 ALGORITHM

We introduce a binary label y ∈ {0, 1} and denote the classifier p(y = 1|x) := exp(ηr(x)) (recall
that we assume reward is negative). The introduction of the binary label and the classifier allows us
to rewrite the target distribution as the posterior distribution given y = 1:

p(x|y = 1) ∝ q0(x)p(y = 1|x) = q0(x) exp(ηr(x)).

Given this formulation, the naive approach is to model p(x|y = 1) via the standard classifier-guided
diffusion process. In other words, we generate a labeled dataset {(x, y)} where x is from the
prior x ∼ q0, and the label is sampled from the Bernoulli distribution with mean exp(ηr(x)), i.e.,
y ∼ p(y|x). Once we have this data, we can add noise to x, train a time-dependent classifier that
predicts the noised sample to its label y. Once we train the classifier, we use its gradient to guide the
generation process as shown in Eq. (3).

While this naive approach is simple, this approach can fail due to the issue of covariate shift – the train-
ing distribution (i.e., qt – the distribution of x̄t) used for training the classifier is different from the test
distribution where the classifier is evaluated during generation (i.e. the distribution of samples x gen-
erated during the classifier-guided denoising process). This is demonstrated in left figure in Fig. 2. In
the worst case, the density ratio of the test distribution over the training distribution can be exponential
exp(Rmaxη), which can be too large to ignore when η is large (i.e., KL regularization is weak).

We propose an iterative approach motivated by DAgger (data aggregation, Ross et al. (2011)) to close
the gap between the training distribution and test distribution. First with the binary label y and our
definition of p(y = 1|xT ) = exp(ηr(xT )) (note xT represents the generated image), we can show
that the classifier p(y = 1|xt) for any t ∈ [0, T ) takes the following form:

p(y = 1|xt) = ExT∼P prior
t→T (·|xt)

exp(ηr(xT )). (7)
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Algorithm 1 Controllable diffusion via iterative supervised learning (SLCD)

Initialize R̂1.
for n = 1, . . . , N do

set fn as Eq. (9).
collect an additional training dataset Dn following Eq. (10).
train R̂n+1 on

⋃n
i=1 D

i according to Eq. (11).
end for
Return f n̂, the best of {f1, . . . , fN} on validation.

Intuitively p(y = 1|xt) models the expected probability of observing label y = 1 if we generate xT

starting from xt using the reverse process of the pre-trained diffusion model. We defer the formal
derivation to Appendix A which relies on proving that the forward process and backward process of a
diffusion model induce the same conditional distributions.

We take advantage of this closed-form solution of the classifier, and propose to model the classifier
via a distributional approach (Zhou et al., 2025) . Particularly, define r ∼ Rprior(·|xt, t) as the
distribution of the reward of a xT ∼ P prior

t→T (·|xt). The classifier p(y = 1|xt) can be rewritten using
the reward distribution Rprior(·|xt, t):

p(y = 1|xt) := Er∼Rprior(·|xt,t) exp(η · r). (8)

Our goal is to learn a reward distribution R̂ to approximate Rprior and use R̂ to approximate the
classifier as p(y = 1|xt) ≈ Er∼R̂(·|xt,t)

exp(ηr). This distributional approach allows us to take
advantage of the closed form of the classifier in Eq. (7) (e.g., there is no need to learn the exponential
function exp(ηr) in the classifier). Algorithm 1 describes an iterative learning approach for training
such a distribution R̂(·|xt, t) via supervised learning (e.g., maximum likelihood estimation (MLE)).

Inside iteration n, given the current reward distribution R̂n, we define the score of the classifier fn as:

∀t, xt : fn(xt, t) := ∇xt
ln
(
Er∼R̂n(·|xt,t)

exp(η · r)
)
. (9)

We use fn to guide the prior to generate an additional training dataset Dn := {(t,xt, r)} of size
M , where

t ∼ Uniform(T ),x0 ∼ N (0, I),xt ∼ P fn

0→t(·|x0)︸ ︷︷ ︸
Roll in with the score of the latest classifier fn as guidance

, xT ∼ P prior
t→T (·|xt), and r = r(xT )︸ ︷︷ ︸

Roll out with the prior to collect reward

. (10)

Note that the roll-in process above simulates the inference procedure – xt is an intermediate sample
we would generate if we had used fn to guide the prior in inference. The rollout procedure collects
reward signals for xt which in turn will be used for refining the reward distribution estimator R̂(·|xt).
This procedure is illustrated in the right figure in Fig. 2. We then aggregate Dn with all the prior
data and re-train the distribution estimator R̂ using the aggregate data via supervised learning, i.e.,
maximum likelihood estimation:

R̂n+1 ∈ argmax
R∈R

n∑
i=1

∑
(t,xt,r)∈Di

lnR(r|xt, t), (11)

where R is the class of distributions. This rollin-rollout procedure is illustrated in Fig. 2. We iterate
the above procedure until we reach a point where R̂n(·|xt, t) is an accurate estimator of the true
model Rprior(·|xt, t) under distribution induced by the generation process of guiding the prior using
fn itself. Similar to DAgger’s analysis, we will show in our analysis section that a simple no-regret
argument implies that we can reach to such a stage where there is no gap between training and testing
distribution anymore.

In the test time, once we have the score f n̂, we can use it to guide the prior to generate samples
via the SDE in Eq. (3). In practice, sampling procedure from DDPM can be used as the numerical
solver for the SDE Eq. (3). Another practical benefit of our approach is that the definition of the
distribution Rprior and the learned distribution R̂ are independent of the guidance strength parameter
η. This means that in practice, once we learned the distribution R̂, we can adjust η during inference
time as shown in Eq. (9) without re-training R̂.
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Remark 1 (Modeling the one-dimensional distribution as a classifier). We emphasize that from a
computation perspective, our approach relies on a simple supervised learning oracle to estimate
the one dimensional conditional distribution R(r|xt, t). In our implementation, we use histogram
to model this one-dimensional distribution, i.e., we discretize the range of reward [−Rmax, 0] into
finite number of bins, and use standard multi-class classification oracle to learn R̂ that maps from
xt to a distribution over the finite number of labels. Thus, unlike prior work that casts controllable
diffusion generation as an RL or stochastic control problem, our approach eliminates the need to talk
about or implement RL, and instead entirely relies on standard classification and can be seamlessly
integrated with any existing implementation of classifier-guided diffusion.
Remark 2 (Comparison to SVDD (Li et al., 2024)). The most related work is SVDD. There are
two notifiable differences. First SVDD estimates a sub-optimal classifier, i.e., Er∼Rprior(·|xt,t)[r]. The
posterior distribution in their case is proportional to q0(xT ) ·Er∼Rprior(·|xT ,T )[r] which is clearly not
equal to the target distribution. Second, SVDD does not address the issue of distribution shift and it
trains the classifier only via offline data collected from the prior alone.

We note that our method can also be adapted to discrete diffusion tasks as seen in Section 6. We refer
the reader to Appendix E for more details.

5 ANALYSIS

In this section, we provide performance guarantee for the sampler returned by Algorithm 1. We use
KL divergence of the generated data distribution P f n̂

0→T (·|N (0, I)) from the target distribution p⋆ to
measure its quality. At a high level, the error comes from two sources:

• starting distribution mismatch: in the sampling process, we initialize the SDE Eq. (3) with
samples from N (0, I), not the ground-truth qT (·|y = 1). However, under proper condition,
qT (·|y = 1) converges to N (0, I) as T → ∞ (see Lemma 3 of Chen et al. (2025)). In particular,
when Eq. (3) is chosen to be the OU process, qT (·|y = 1) converges at an exponential speed:
KL(N (0, I)∥qT (·|y = 1)) = O(e−2T ).

• estimation error of the guidance: the estimated guidance f n̂ is different from the ground truth
∇xt

ln p(y = 1|xt). But the error is controlled by the regret of the no-regret online learning.

We assume realizability:
Assumption 3 (realizability). Rprior ∈ R

Our analysis relies on a reduction to no-regret online learning. Particularly, we assume we have
no-regret property on the following log-loss. Note M as the side of the each online dataset Di.

Assumption 4 (No-regret learning). The sequence of reward distribution {R̂i} satisfies the following
inequality:

1

NM

N∑
i=1

∑
(t,xt,r)∈Di

ln
1

R̂i(r|xt, t)
−min

R

1

NM

N∑
i=1

∑
(t,xt,r)∈Di

ln
1

R(r|xt, t)
≤ γN .

where the average regret γN = o(N)/N shrinks to zero when N → ∞.

No-regret online learning for the log is standard in the literature (Cesa-Bianchi & Lugosi, 2006; Foster
et al., 2021; Wang et al., 2024; Zhou et al., 2025). Our algorithm implements the specific no-regret
algorithm called Follow-the-regularized-leader (FTRL) (Shalev-Shwartz et al., 2012; Suggala &
Netrapalli, 2020) where we optimize for R̂i on the aggregated dataset. Follow-the-Leader type of
approach with random perturbation can even achieve no-regret property for non-convex optimization
(Suggala & Netrapalli, 2020). This data aggregation step and the reduction to no-regret online
learning closely follows DAgger’s analysis (Ross et al., 2011).

Under certain condition, the marginal distribution qT defined by the forward SDE Eq. (1) converges
to some Gaussian distribution rapidly (see Lemma 3 of Chen et al. (2025)). For simplicity, we make
the following assumption on the convergence:
Assumption 5 (convergence of the forward process). KL(N (0, I)∥qT (·|y = 1)) ≤ ϵT .
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For OU processes, ϵT shrinks in the rate of exp(−T ). We assume the reward distribution class
satisfies certain regularity conditions, s.t. the estimation error of the classifier controls the score
difference:
Assumption 6. There exists L > 0, s.t. for all R,R′ ∈ R, and x, t:∥∥∇x ln

(
Er∼R(·|x,t) exp(η · r)

)
−∇x ln

(
Er∼R′(·|x,t) exp(η · r)

)∥∥
2

≤L
∣∣Er∼R(·|x,t) exp(η · r)− Er∼R′(·|x,t) exp(η · r)

∣∣ .
Standard diffusion models with classifier guidance train a time-dependent classifier and use the score
function of the classifier to control image generation (Song et al., 2021b; Dhariwal & Nichol, 2021).
Such assumption is crucial to guarantee the quality of class-conditional sample generation. We defer
a more detailed discussion on Assumption 6 to Appendix B. In general such an assumption holds
when the functions satisfy certain smoothness conditions.
Theorem 7. Suppose Assumption 3, 4, 5, and 6 hold. There exists n̂ ∈ {1, . . . , N}, s.t. f n̂ specified
by Algorithm 1 satisfies:

E
[
DKL

(
P f n̂

0→T (·|N (0, I))∥p⋆
)]

≤ ϵT +
1

2
T∥g∥2∞L2γN .

where the expectation is with respect to the randomness in the whole training process, and g is the
diffusion coefficient defined in Eq. (1).

Since P f n̂

0→T (·|N (0, I)) models the distribution of the generated samples when using f n̂ to guide the
prior, the above theorem proves that our sampling distribution is close to the target p⋆ under KL. Note
that ϵT decays in the rate of exp(−T ) when the forward SDE is an OU process, and γN decayes in
the rate of 1/

√
N for a typical no-regret algorithm such as Follow-the-Learder (Shalev-Shwartz et al.,

2012; Suggala & Netrapalli, 2020).

6 EXPERIMENTS

We compare SLCD to a variety of training-free and value-guided sampling strategies across four tasks.
For Best-of-N, we draw N independent samples from the base diffusion model and keep the one with
the highest reward. Diffusion Posterior Sampling (DPS) is a classifier-guidance variant originally for
continuous diffusion (Chung et al., 2023), here adapted to discrete diffusion via the state-of-the-art
method of Nisonoff et al. (2025). Sequential Monte Carlo (SMC) methods (Del Moral & Doucet,
2014; Wu et al., 2023; Trippe et al., 2022) use importance sampling across whole batches to select
the best sample. SVDD-MC (Li et al., 2024) instead evaluates the expected reward of N candidates
under an estimated value function, while SVDD-PM uses the true reward for each candidate with
slight algorithm modifications. We evaluate on (i) image compression (negative file size) and (ii)
image aesthetics (LAION aesthetic score) using Stable Diffusion v1.5 (Rombach et al., 2022), as
well as on (iii) 5’ untranslated regions optimized for mean ribosome load (Sample et al., 2019; Sahoo
et al., 2024) and (iv) DNA enhancer sequences optimized for predicted expression in HepG2 cells via
the Enformer model (Avsec et al., 2021).

In line with Li et al. (2024), we compare the top 10 and 50 quantiles of a batch of generations, in
Table 1. We compare to these methods as, like SLCD, all of these methods do not require training
of the base model. Overall, we see that SLCD consistently outperforms the baseline methods while
requiring nearly the same inference time as the base model, and omitting the need for multiple MC
samples during each diffusion step. These four tasks jointly cover two primary application domains of
diffusion models: image generation and biological sequence generation, providing a comprehensive
assessment of controllable diffusion methods.
6.1 REWARD COMPARISON

We compare the reward of SLCD to the baseline methods in Table 1. We see that SLCD is able to
consistently achieve higher reward than SVDD-MC and SVDD-PM, and the other baseline methods
in all four tasks. The margin of improvement is most pronounced in settings where the classifier
closely approximates the true reward, most notably the image compression task, where SLCD nearly
attains the optimal reward. To further see the performance of SLCD, we plot the reward distribution
of SLCD and the baseline methods in Fig. 3 and Fig. 1. We observe that SLCD produces a more
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Table 1: Top 10 and 50 quantiles of the generated samples for each algorithm (with 95% confidence
intervals). Higher is better. SLCD consistently outperforms the baseline methods. Baseline results
taken from Li et al. (2024) as the exact same settings were used.

Domain Quantile Pre-Train Best-N DPS SMC SVDD-MC SVDD-PM SLCD
Image: Compress 50% -101.4± 0.22 -71.2± 0.46 -60.1± 0.44 -59.7± 0.4 -54.3± 0.33 -51.1± 0.38 -13.60± 0.79

10% -78.6± 0.13 -57.3± 0.28 -61.2± 0.28 -49.9± 0.24 -40.4± 0.2 -38.8± 0.23 -11.05± 0.41

Image: Aesthetic 50% 5.62± 0.003 6.11± 0.007 5.61± 0.009 6.02± 0.004 5.70± 0.008 6.14± 0.007 6.31± 0.061

10% 5.98± 0.002 6.34± 0.004 6.00± 0.005 6.28± 0.003 6.05± 0.005 6.47± 0.004 6.59± 0.077

Enhancers (DNA) 50% 0.121± 0.033 1.807± 0.214 3.782± 0.299 4.28± 0.02 5.074± 0.096 5.353± 0.231 7.403± 0.125

10% 1.396± 0.020 3.449± 0.128 4.879± 0.179 5.95± 0.01 5.639± 0.057 6.980± 0.138 7.885± 0.231

5’UTR (RNA) 50% 0.406± 0.028 0.912± 0.023 0.426± 0.073 0.76± 0.02 1.042± 0.008 1.214± 0.016 1.313± 0.024

10% 0.869± 0.017 1.064± 0.014 0.981± 0.044 0.91± 0.01 1.117± 0.005 1.383± 0.010 1.421± 0.039

Figure 3: (Left) Reward vs. Inference Time on the Compression Task. Numeric labels on SLCD
indicate η, while those on the SVDD denote the duplication number applied at each step.(Center)
Distribution of rewards for DNA sequences (Enhancers) across different methods. SLCD demon-
strates superior performance with higher median and maximum rewards. (Right) Reward vs. number
of iterations of SLCD. The reward increases as the restart state distribution becomes richer.

tightly concentrated reward distribution with a higher median reward than the baseline methods,
while still maintaining generation diversity, as shown in Fig. 1 with a lower FID score than baseline
methods.
6.2 QUALITATIVE RESULTS

We present generated images from SLCD in Fig. 4. For the compression task, we observe three
recurring patterns: some images shift the subject toward the edges of the frame, others reduce the
subject’s size, and some simplify the overall scene to reduce file size. For the aesthetic task, the
outputs tend to take on a more illustrated appearance, often reflecting a variety of artistic styles.

As η increases, the KL constraint is relaxed, enabling a controlled trade-off between optimizing for
the reward function and staying close to the base model’s distribution. Notably, even under strong
reward guidance (i.e., with larger η), our method consistently maintains a high level of diversity in
the generated outputs.
6.3 FRÉCHET INCEPTION DISTANCE COMPARISON

Both SLCD and SVDD baselines allow one to control the output sample reward at test time, but
via different control variables: SLCD modulates the KL-penalty coefficient η, while SVDD-MC
and SVDD-PM vary the number of Monte Carlo rollouts evaluated at each diffusion step. Since
these control parameters can affect sample quality in different ways, we report both the Fréchet
Inception Distance (Heusel et al., 2017) (FID) and reward. For the same reward, higher FID indicates
that the model generates images stray farther from the base models distribution, a sign of reward
hacking. We evaluate these methods in Fig. 1. That is, the points on the curve form a pareto frontier
between reward and FID. SLCD is able to achieve a better reward-FID trade-off than SVDD-MC and
SVDD-PM.
6.4 INFERENCE TIME COMPARISON

An additional advantage of SLCD is its negligible inference overhead at test time, even when using
higher η values to achieve greater rewards. In Fig. 3, we compare the wall-clock generation time per
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-128.70 -117.22            -54.32              -35.78             -25.64 -22.84

-116.07 -109.13             -77.02 -49.52 -28.04            -25.64

-123.41           -113.50            -89.57             -50.00 -28.02             -27.89

Moving towards
edge

Smaller

Simpler
and cartoonish

5.54 5.96 6.07 6.23 6.38 6.56

Compress

Compress

Compress

Aesthetic
Sophisticated 

black-and-white

with η increaseTask Change

Aesthetic

5.20 5.44               5.48                5.52                6.38                6.63

Painting-like, 
illustrated

Figure 4: Images generated by SLCD with varying η values and their rewards . The first column shows
results from the base model, SD1.5, which corresponds to our method with η = 0. As η increases, the
KL penalty is relaxed, allowing the generated images to be more strongly optimized for the reward
function, and consequently, they diverge further from the base model’s original distribution.

image on an NVIDIA A6000 GPU for SLCD against SVDD-MC and SVDD-PM. SLCD achieves
higher rewards while requiring significantly fewer computational resources and substantially shorter
inference times than either baseline. Specifically, SLCD takes only 6.06 seconds per image, nearly
identical to the base model SD 1.5’s 5.99 seconds.

Importantly, unlike SVDD methods that incur increased computational cost to improve rewards,
SLCD maintains constant inference time across all η values, achieving enhanced performance with
no additional computation.

6.5 ABLATION STUDY

To elucidate the impact of each training cycle, we vary the number of SLCD iterations and plot the
resulting reward in Fig. 3. As additional iterations enrich the state distribution and mitigate covariate
shift for the classifier, the reward consistently rises. This confirms that our iterative approach can
mitigate covariate shift issue. In practice, we only require a small number of iterations to achieve
high reward (for example, 3 for the compression task)

Because the scaling parameter η can be chosen at test time when the distribution R̂ is fully trained,
SLCD enables test-time control over the KL penalty during inference. By modulating η at test-time,
practitioners can smoothly trade-off reward against sample quality without retraining the distribution
R̂, as demonstrated in Fig. 4.

7 CONCLUSION

In this work, we introduced SLCD, a novel and efficient method that recasts the KL-constrained
optimization problem as a supervised learning task. We provided theoretical guarantees showing
that SLCD converges to the optimal KL-constrained solution and how data-aggregation effectively
mitigates covariate shift. Empirical evaluations confirm that SLCD surpasses existing approaches, all
while preserving high fidelity to the base model’s outputs and maintaining nearly the same inference
time.
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We show the derivation for the classifier in Appendix A. We discuss Theorem 6 in Appendix B. In
Appendix C, we provide the proof for the main theorem in the main text. Then, we provide additional
technical lemmas in Appendix D. Finally, we provide more details on the training and evaluation of
SLCD in Appendix E. We finally provide more samples of the image experiments in Appendix F.

A DERIVATION FOR THE CLASSIFIER

Our goal is to show Eq. (7):

p(y = 1|xt) = ExT∼P prior
t→T (·|xt)

exp(ηr(xT )).

Our first step is to derive the classifier in terms of {x̄τ}τ , the forward process defined by Eq. (1). By
the law of total probability:

p(y = 1|x̄τ ) =
p(y = 1, x̄τ )

q(x̄τ )
=

∫
p(y = 1, x̄τ , x̄0)dx̄0

q(x̄τ )
=

∫
p(y = 1|x̄τ , x̄0)q(x̄τ , x̄0)dx̄0

q(x̄τ )

=

∫
p(y = 1|x̄τ , x̄0)q(x̄0|x̄τ )dx̄0.

By definition, the label y and x̄τ are independent when conditioning on x̄0, thus p(y = 1|x̄τ , x̄0) =
p(y = 1|x̄0) and

p(y = 1|x̄τ ) = Ex̄0|x̄τ
[p(y = 1|x̄0)] = Ex̄0|x̄τ

[exp(ηr(x̄0))] . (12)

By Lemma 12, the forward (Eq. (1))and reverse (Eq. (2)) processes have the same conditional
distribution. Thus, in Eq. (12), we can substitute x̄0, x̄τ , q(x̄0|x̄τ ) with the corresponding components
in the reverse process: xT , xT−τ , P prior

T−τ→T (xT |xT−τ ). Then we complete the proof by setting
τ = T − t.

One crucial property is: Eq. (12), the classifier defined in terms of the forward process, only depends
on the conditional distribution x̄0|x̄τ , not the joint distribution of (x̄0, x̄τ ). This means Eq. (7), the
classifier defined in terms of the reverse process, is accurate regardless of the marginal distribution of
xt.

In fact, when considering the data collection procedure Eq. (10), the roll-in step involves the classifier
estimator during training, so the marginal distribution of xt can be very different from qT−t, the
marginal distribution of the forward process. However, as long as the roll-out step uses the ground
truth reverse process, we are using the correct conditional distribution and the target classifier during
training is thus unbiased.

B DISCUSSION ON ASSUMPTION 6

Assumption 6 assumes that the estimation for the classifier results in good gradient estimation with
a small pointwise error. In this section, we show two sets of sufficient conditions that weaken
Assumption 6 to versions where the estimation errors are evaluated on the marginal distribution of
the reverse process. The conditions will depend on:

• R̂n̂: the reward distribution chosen by Algorithm 1;
• Rprior: the ground truth reward;

• p̂: the marginal distribution in the reverse process induced by guidance f̂ (returned by Algo-
rithm 1).

For simplicity, let

v̂(x, t) :=Er∼R̂n̂(·|x,t) exp(η · r)
v⋆(x, t) :=Er∼Rprior(·|x,t) exp(η · r)
V (x, t) :=v̂(x, t)− v⋆(x, t).
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Throughout this section, we discuss some natural conditions under which small error from estimating
v⋆(x, t) leads to small error on estimating ∇x ln v

⋆(x, t). The conditions are related to the smoothness
of functions V, v⋆, v̂, and the distribution p.

Firstly, we present the following lemma, showing that it’s sufficient to control ∇f1(x)−∇f2(x):
Lemma 8. Let f1, f2 be Rd → R, then

∥∇ ln f1(x)−∇ ln f2(x)∥2

≤ 1

infx |f1(x)|
∥∇f1(x)−∇f2(x)∥2 +

supx ∥∇f2(x)∥2
infx |f1(x)| infx |f2(x)|

|f2(x)− f1(x)|

B.1 SMOOTHNESS ASSUMPTIONS ON BOTH THE CLASSIFIER AND THE DISTRIBUTION

Our first set of assumptions is based on the smoothness of the functions and the smoothness of the
distributions: there exists M,L,Lp > 0, s.t.

• for all t, Ex∼p̂t

[(∑d
i=1

∂2V (x,t)
∂x2

i

)2]
≤ M2;

• for all t, supx ∥∇xv̂(x, t)∥2, supx ∥∇xv
⋆(x, t)∥2 ≤ L;

• for all t, Ex∼p

[
∥∇ log p(x)∥22

]
≤ L2

p.

We now present the following results that relates the difference of gradients to difference of function
value:
Lemma 9. Let F (·) be function that map from Rd → R, and p(·) be a PDF over Rd. Suppose
limxi→∞ F (x) · ∂F (x)

∂xi
p(x) = 0 for all i, and x−i. Then Ex∼p∥∇F (x)∥22 is bounded by:

√√√√√Ex∼p

( d∑
i=1

∂2F (x)

∂x2
i

)2
+ sup

x
(∥∇F (x)∥2)

√
Ex∼p [∥∇ log p(x)∥22]

√Ex∼p [F 2(x)].

Given these, we can show a version of Theorem 6. By definition, for all t,

inf
x

|v̂(x, t)|, inf
x

|v⋆(x, t)| ≥ exp(−ηRmax).

By Lemma 8 and Lemma 9: for all t.

Ex∼p̂t

[
∥∇x ln v̂(x, t)−∇x ln v

⋆(x, t)∥22
]

≤2 exp(2ηRmax)Ex∼p̂t

[
∥∇xv̂(x, t)−∇xv

⋆(x, t)∥22
]
+ 2 exp(4ηRmax)LEx∼p̂t

[
|v̂(x, t)− v⋆(x, t)|2

]
≤2 exp(2ηRmax) (M + L · Lp)

√
Ex∼p̂t

[|v̂(x, t)− v⋆(x, t)|2]

+ 2 exp(4ηRmax)LEx∼p̂t

[
|v̂(x, t)− v⋆(x, t)|2

]
This will only change the proof in Appendix C slightly.

B.2 SMOOTHNESS ASSUMPTION AND GRADIENT ESTIMATOR

In this section, we introduce another set of conditions based on the gradient estimator introduced
in Flaxman et al. (2004). We require smoothness assumptions on the functions and an additional
gradient estimator. For any function f : Rd → R, we define the gradient estimator ∇̂f to be:

∇̂f(x) :=
d

δ
Eu∼U(Sd−1) [f(x+ δu)u] ,

where Sd−1 := {x ∈ Rd : ∥x∥2 = 1} and δ > 0 is a free parameter. We use U(Sd−1) to denote the
uniformly random distribution over Sd−1. We assume there exist M > 0, s.t.:

• for all t, supx ∥∇2
xv̂(x, t)∥2, supx ∥∇2

xv
⋆(x, t)∥2 ≤ M
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We first present two properties of the gradient estimator.
Lemma 10. Let f1, f2 be two functions that map from Rd to R, then

∥∇̂f1(x)− ∇̂f2(x)∥2 ≤ d

δ
Eu∼U(Sd−1) [|f1(x+ δu)− f2(x+ δu)|] .

Lemma 11. Let f be Rd → R and supx ∥∇2f(x)∥2 ≤ M , then∥∥∥∇̂f(x)−∇f(x)
∥∥∥
2
≤ dδM

2
.

Given these, we can show that, for all t,
Ex∼p̂t

[
∥∇xv̂(x, t)−∇xv

⋆(x, t)∥22
]

≤3Ex∼p̂t

[
∥∇xv̂(x, t)− ∇̂xv̂(x, t)∥22

]
+ 3Ex∼p̂t

[
∥∇̂xv̂(x, t)− ∇̂xv⋆(x, t)∥22

]
+ 3Ex∼p̂t

[
∥∇̂xv⋆(x, t)−∇xv

⋆(x, t)∥22
]

≤3d2δ2M2

2
+

3d2

δ2
Ex∼p̂t

[(
Eu∼U(Sd−1) [v̂(x+ δu, t)− v⋆(x+ δu, t)]

)2]
≤3d2δ2M2

2
+

3d2

δ2
Ex∼p̂t

[∣∣Eu∼U(Sd−1) [v̂(x+ δu, t)− v⋆(x+ δu, t)]
∣∣]

≤3d2δ2M2

2
+

3d2

δ2
Ex∼p̂t,u∼U(Sd−1) [|v̂(x+ δu, t)− v⋆(x+ δu, t)|]

≤3d2δ2M2

2
+

3d2

δ2

√
Ex∼p̂t,u∼U(Sd−1)

[
(v̂(x+ δu, t)− v⋆(x+ δu, t))

2
]
,

where for the third inequality, we use the fact that v̂(·, ·), v⋆(·, ·) ∈ [0, 1]. The remaining steps follow
from Lemma 8, similar to Section B.1:
Ex∼p̂t

[
∥∇x ln v̂(x, t)−∇x ln v

⋆(x, t)∥22
]

≤2 exp(2ηRmax)Ex∼p̂t

[
∥∇xv̂(x, t)−∇xv

⋆(x, t)∥22
]
+ 2 exp(4ηRmax)LEx∼p̂t

[
|v̂(x, t)− v⋆(x, t)|2

]
≤2 exp(2ηRmax)

(
3d2δ2M2

2
+

3d2

δ2

√
Ex∼p̂t,u∼U(Sd−1)

[
(v̂(x+ δu, t)− v⋆(x+ δu, t))

2
])

+ 2 exp(4ηRmax)LEx∼p̂t

[
|v̂(x, t)− v⋆(x, t)|2

]
Compared to Algorithm 1, this approach requires one to additionally optimize for
(v̂(x+ δu, t)− v⋆(x+ δu, t))

2, i.e. to make sure v̂ and v are close under some “wider” distri-
bution. The value of δ is a free parameter that can be adjusted to improve the accuracy of the gradient
estimator.

B.3 PROOF OF LEMMA 8

∥∇ ln f1(x)−∇ ln f2(x)∥2 =

∥∥∥∥∇f1(x)

f1(x)
− ∇f2(x)

f2(x)

∥∥∥∥
2

≤
∥∥∥∥∇f1(x)

f1(x)
− ∇f2(x)

f1(x)

∥∥∥∥
2

+

∥∥∥∥∇f2(x)

f1(x)
− ∇f2(x)

f2(x)

∥∥∥∥
2

=
∥∇f1(x)−∇f2(x)∥2

|f1(x)|
+

1

|f1(x)f2(x)|
∥∇f2(x)(f2(x)− f1(x))∥2

≤ 1

infx |f1(x)|
∥∇f1(x)−∇f2(x)∥2 +

supx ∥∇f2(x)∥2
infx |f1(x)| infx |f2(x)|

|f2(x)− f1(x)| ,

B.4 PROOF OF LEMMA 9

We rewrite the target as componentwise form:

∥∇F (x)∥22 =

d∑
i=1

(
∂F (x)

∂xi

)2

.
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By applying integration by parts to the i-th dimension,∫
∂F (x)

∂xi
· ∂F (x)

∂xi
p(x)dx

=

∫
F (x) · ∂F (x)

∂xi
p(x)

∣∣∣∣∞
xi=−∞

dx−i −
∫

F (x)

(
∂2F (x)

∂x2
i

p(x) +
∂F (x)

∂xi

∂p(x)

∂xi

)
dx

=−
∫

F (x)

(
∂2F (x)

∂x2
i

p(x) +
∂F (x)

∂xi

∂ log p(x)

∂xi
p(x)

)
dx.

By summing over all coordinates, we get:

Ex∼p∥∇F (x)∥22 = −Ex∼p

[
F (x)

d∑
i=1

∂2F (x)

∂x2
i

]
− Ex∼p [F (x) ⟨∇F (x),∇ log p(x)⟩]

By Cauchy-Schwarz inequality:

Ex∼p∥∇F (x)∥22

≤


√√√√√Ex∼p

( d∑
i=1

∂2F (x)

∂x2
i

)2
+

√
Ex∼p

[
(⟨∇F (x),∇ log p(x)⟩)2

]√Ex∼p [F 2(x)]

≤


√√√√√Ex∼p

( d∑
i=1

∂2F (x)

∂x2
i

)2
+ sup

x
(∥∇F (x)∥2)

√
Ex∼p [∥∇ log p(x)∥22]

√Ex∼p [F 2(x)]

B.5 PROOF OF LEMMA 10

By Jensen’s inequality,

∥∇̂f1(x)− ∇̂f2(x)∥2 =
d

δ

∥∥Eu∼U(Sd−1) [f1(x+ δu)u]− Eu∼U(Sd−1) [f2(x+ δu)u]
∥∥
2

=
d

δ

∥∥Eu∼U(Sd−1) [(f1(x+ δu)− f2(x+ δu))u]
∥∥
2

≤d

δ
Eu∼U(Sd−1) [∥(f1(x+ δu)− f2(x+ δu))u∥2]

=
d

δ
Eu∼U(Sd−1) [|f1(x+ δu)− f2(x+ δu)| ∥u∥2]

=
d

δ
Eu∼U(Sd−1) [|f1(x+ δu)− f2(x+ δu)|] .

B.6 PROOF OF LEMMA 11

By Taylor’s theorem, for all x, b, there exists ξ(x, b), s.t.

f(x+ b) = f(x) + ⟨∇f(x), b⟩+ 1

2
b⊤∇2f(ξ(x, b))b.

Then ∥∥∥∇̂f(x)−∇f(x)
∥∥∥
2
=

∥∥∥∥dδEu∼U(Sd−1) [f(x+ δu)u]−∇f(x)

∥∥∥∥
2

=

∥∥∥∥dδEu∼U(Sd−1)

[
f(x)u+ δ⟨∇f(x),u⟩u+

δ2

2

(
u⊤∇2f(ξ(x, δu))u

)
u

]
−∇f(x)

∥∥∥∥
2

Because Eu∼U(Sd−1)[u] = 0,

Eu∼U(Sd−1) [f(x)u] = 0.
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Because Eu∼U(Sd−1)[uu
⊤] = 1

dI ,

Eu∼U(Sd−1) [⟨∇f(x),u⟩u] = Eu∼U(Sd−1)

[
uu⊤∇f(x)

]
= Eu∼U(Sd−1)

[
uu⊤]∇f(x) =

1

d
∇f(x).

Thus, by Jensen’s inequality, we have:∥∥∥∇̂f(x)−∇f(x)
∥∥∥
2
=

∥∥∥∥dδEu∼U(Sd−1)

[
δ2

2

(
u⊤∇2f(ξ(x, δu))u

)
u

]∥∥∥∥
2

≤dδ

2
Eu∼U(Sd−1)

[∥∥(u⊤∇2f(ξ(x, δu))u
)
u
∥∥
2

]
=

dδ

2
Eu∼U(Sd−1)

[∣∣u⊤∇2f(ξ(x, δu))u
∣∣ ∥u∥2]

=
dδ

2
Eu∼U(Sd−1)

[∣∣u⊤∇2f(ξ(x, δu))u
∣∣] ≤ dδ

2
Eu∼U(Sd−1)

[
∥u∥2∥∇2f(ξ(x, δu))u∥2

]
≤dδM

2
.

C PROOF OF MAIN THEOREM

Proof. By Assumption 4,

1

NM

N∑
i=1

∑
(t,xt,r)∈Di

ln
1

R̂i(r|xt, t)
≤min

R

1

NM

N∑
i=1

∑
(t,xt,r)∈Di

ln
1

R(r|xt, t)
+ γN

≤ 1

NM

N∑
i=1

∑
(t,xt,r)∈Di

ln
1

Rprior(r|xt, t)
+ γN .

After rearranging, we get

1

NM

N∑
i=1

∑
(t,xt,r)∈Di

ln
Rprior(r|xt, t)

R̂i(r|xt, t)
≤γN .

According to Eq. (10), each (t,xt), r is sampled from Rprior(·|xt, t). By taking expectation over
r|xt, t for all xt, t, we get:

1

NM

N∑
i=1

∑
(t,xt)∈Di

DKL

(
Rprior(·|xt, t)∥R̂i(·|xt, t)

)
≤γN .

By taking expectation over xt and t, we get:

1

N

N∑
i=1

E
t∼U(t),xt∼P fi

0→t(·|N (0,I))

[
DKL

(
Rprior(·|xt, t)∥R̂i(·|xt, t)

)]
≤γN ,

where xt is sampled from the SDE induced by R̂i. By Pinsker’s inequality,

1

N

N∑
i=1

E
t∼U(t),xt∼P fi

0→t(·|N (0,I))

[∣∣∣TV (Rprior(·|xt, t), R̂
i(·|xt, t)

)∣∣∣2]

≤ 1

N

N∑
i=1

1

2
E
t∼U(t),xt∼P fi

0→t(·|N (0,I))

[
DKL

(
Rprior(·|xt, t)∥R̂i(·|xt, t)

)]
≤ 1

2
γN .

This means, there exists n̂ ∈ {1, . . . , N}, s.t.

E
t∼U(T ),x∼P fn̂

0→t(·|N (0,I))

∣∣∣TV (Rprior(·|xt, t), R̂
n̂(·|xt, t)

)∣∣∣2 ≤1

2
γN .

Let

f̂(xt, t) :=f n̂(xt, t) = ∇xt
lnEr∼R̂n̂(·|xt,t)

exp(η · r)
f⋆(xt, t) :=∇xt

ln p(y = 1|xt) = ∇xt
lnEr∼Rprior(·|xt,t) exp(η · r)
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and

p̂t := P f̂
0→t(·|N (0, I)), pt := P f⋆

0→t(·|qT ),
recall that qT is the marginal distribution of the forward process at time T . By Lemma 13,

∂

∂t
DKL(p̂t∥pt) =− g2(T − t)Ex∼p̂t

[∥∥∥∥∇ log
p̂t(x)

pt(x)

∥∥∥∥2
2

]

+ Ex∼p̂t

[〈
g2(T − t)

(
f̂(x, t)− f⋆(x, t)

)
,∇ log

p̂t(x)

pt(x)

〉]
≤1

4
g2(T − t)Ex∼p̂t

[∥∥∥f̂(x, t)− f⋆(x, t)
∥∥∥2
2

]
.

By integrating over t ∈ [0, T ], we get:

DKL(p̂T ∥pT ) ≤DKL(p̂0∥p0) +
1

4

∫ T

0

g2(T − t)Ex∼p̂t

[∥∥∥f̂(x, t)− f⋆(x, t)
∥∥∥2
2

]
dt,

where p̂0 = N (0, I) and p0 = qT . By Assumption 5, DKL(p̂0∥p0) ≤ ϵT . By Assumption 6,∫ T

0

g2(T − t)Ex∼p̂t

[∥∥∥f̂(x, t)− f⋆(x, t)
∥∥∥2
2

]
dt

=T∥g∥2∞Et∼U(T ),x∼p̂t

[∥∥∥f̂(x, t)− f⋆(x, t)
∥∥∥2
2

]
≤T∥g∥2∞L2Et∼U(T ),x∼p̂t

[∣∣∣Er∼R̂n̂(·|xt,t)
exp(η · r)− Er∼Rprior(·|xt,t) exp(η · r)

∣∣∣2]
≤T∥g∥2∞L2Et∼U(T ),x∼p̂t

[∣∣∣TV(R̂n̂(·|xt, t), R
prior(·|xt, t))

∣∣∣2]
≤1

2
T∥g∥2∞L2γN

To conclude:

DKL(p̂T ∥pT ) ≤ ϵT +
1

2
T∥g∥2∞L2γN .

D TECHNICAL LEMMAS

The following lemma shows that the finite-dimensional distribution of the forward and reverse SDEs
are the same.
Lemma 12 (Section 5 of Anderson (1982)). Let {x̄τ}τ be the process generated by the forward SDE
in Eq. (1), and {xt}t be the process generated by the reverse SDE in Eq. (2). Then for all s > t, the
conditional distribution x̄t|x̄s and xT−t|x̄T−s have the same density, i.e. for all x, x′ ∈ Rd,

Pr [x̄t = x′|x̄s = x] = Pr [xT−t = x′|xT−s = x] .

This result is proved by considering the backward Kolmogorov equation of the forward process.
The proof is presented in Section 5 of Anderson (1982). For completeness, we include the proof in
Section D.1.

This result implies that the reverse and the forward SDE have the same “joint distribution” (in the
sense of finite-dimensional distribution). This can be proved by two steps:

1. using the Fokker-Planck equation to show that the forward and reverse SDE have the same
marginal distribution given proper initial conditions;

2. write the finite-dimensional distribution as the product of a sequence of conditional distribu-
tions and the initial marginal distribution by using Markovian property iteratively.
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The following lemma upper bound the KL-divergence between the marginal distributions of two
SDEs in terms of the difference in their drift terms:

Lemma 13 (Lemma 6 of Chen et al. (2023)). Consider the two Ito processes:

dXt =F1(Xt, t)dt+ g(t)dwt X0 = a

dYt =F2(Yt, t)dt+ g(t)dwt Y0 = a

wher F1, F2, g are continuous functions and may depend on a. We assume the uniqueness and
regularity conditions hold:

1. The two SDEs have unique solutions.

2. Xt, Yt admit densities p1t , p
2
t ∈ C2(Rd) for t > 0

And define the Fisher information information between pt, qt as:

J(pt∥qt) :=
∫

pt(x)||∇ log
pt(x)

qt(x)
||2dx

Then for any t > 0, the evolution of DKL(p
1
t∥p2t ) is given by:

∂

∂t
KL(p1t∥p2t ) = −g(t)2J(p1t∥p2t ) + Ex∼p1

t

[〈
F1(Xt, t)− F2(Xt, t),∇ log

p1t (x)

p2t (x)

〉]

D.1 PROOF OF LEMMA 12

Let q(xs, s|xt, t) be the conditional distribution of Eq. (1), where s ≥ t is the time index. And
q(xt, t) be the marginal distribution at time t. By the backward Kolmogorov equation:

∂q(x̄s, s|x̄t, t)

∂t
= −

∑
i

hi(x̄t, t)
∂q(x̄s, s|x̄t, t)

∂x̄i
t

− 1

2
g2(t)

∑
i

∂2q(x̄s, s|x̄t, t)

∂
(
x̄i
t

)2 (13)

According to Fokker-Planck equation, the marginal distribution q(x̄t, t) satisfies:

∂q(x̄t, t)

∂t
= −

∑
i

∂

∂x̄i
t

[
q(x̄t, t)h

i(x̄t, t)
]
+

1

2
g2(t)

∑
i

∂2q(x̄t, t)

∂
(
x̄i
t

)2 (14)

Because the joint distribution satisfies:

q(x̄s, s, x̄t, t) = q(x̄s, s|x̄t, t)q(x̄t, t),

we have

∂q(x̄s, s, x̄t, t)

∂t
=q(x̄t, t)

∂q(x̄s, s|x̄t, t)

∂t
+ q(x̄s, s|x̄t, t)

∂q(x̄t, t)

∂t
.

Plug in Eq. (13) and Eq. (14), we have:

∂q(x̄s, s, x̄t, t)

∂t

=q(x̄t, t)

(
−
∑
i

hi(x̄t, t)
∂q(x̄s, s|x̄t, t)

∂x̄i
t

− 1

2
g2(t)

∑
i

∂2q(x̄s, s|x̄t, t)

∂
(
x̄i
t

)2
)

+ q(x̄s, s|x̄t, t)

(
−
∑
i

∂

∂x̄i
t

[
q(x̄t, t)h

i(x̄t, t)
]
+

1

2
g2(t)

∑
i

∂2q(x̄t, t)

∂
(
x̄i
t

)2
)
.
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For the first and third terms:

− q(x̄t, t)
∑
i

hi(x̄t, t)
∂q(x̄s, s|x̄t, t)

∂x̄i
t

− q(x̄s, s|x̄t, t)
∑
i

∂

∂x̄i
t

[
q(x̄t, t)h

i(x̄t, t)
]

=−
∑
i

hi(x̄t, t)

(
q(x̄t, t)

∂q(x̄s, s|x̄t, t)

∂x̄i
t

+ q(x̄s, s|x̄t, t)
∂

∂x̄i
t

q(x̄t, t)

)
− q(x̄s, s|x̄t, t)q(x̄t, t)

∑
i

∂

∂x̄i
t

hi(x̄t, t)

=−
∑
i

hi(x̄t, t)
∂q(x̄s, s, x̄t, t)

∂x̄i
t

− q(x̄s, s, x̄t, t)
∑
i

∂

∂x̄i
t

hi(x̄t, t)

=−
∑
i

∂

∂x̄i
t

[
hi(x̄t, t)q(x̄s, s, x̄t, t)

]
.

For the second and forth terms:

1

2
g2(t)

∑
i

(
−q(x̄t, t)

∂2q(x̄s, s|x̄t, t)

∂
(
x̄i
t

)2 + q(x̄s, s|x̄t, t)
∂2q(x̄t, t)

∂
(
x̄i
t

)2
)

=− 1

2
g2(t)

∑
i

(
q(x̄s, s|x̄t, t)

∂2q(x̄t, t)

∂
(
x̄i
t

)2 + 2
∂q(x̄s, s|x̄t, t)

∂x̄i
t

∂q(x̄t, t)

∂x̄i
t

+ q(x̄t, t)
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.

To summarize, the joint distribution satisfies the following PDE

∂q(x̄s, s, x̄t, t)

∂t
= −

∑
i

∂

∂x̄i
t

[
q(x̄s, s, x̄t, t)h̄

i(x̄t, t)
]
− 1

2
g2(t)

∑
i

∂2q(x̄s, s, x̄t, t)

∂
(
x̄i
t

)2 ,

where h̄i(x̄t, t) is defined as:

h̄i(x̄t, t) := hi(x̄t, t)−
1

q(x̄t, t)
g2(t)

∂

∂x̄i
t

q(x̄t, t).

Divide q(x̄s, s) on both sides, we get the following PDE for the conditional distribution q(x̄t, t|x̄s, s)
(notice that this one is conditioning on the future):

∂q(x̄t, t|x̄s, s)

∂t
= −

∑
i

∂

∂x̄i
t

[
q(x̄t, t|x̄s, s)h̄

i(x̄t, t)
]
− 1

2
g2(t)

∑
i

∂2q(x̄t, t|x̄s, s)

∂
(
x̄i
t

)2 (15)

Recall that the reverse process is defined by:
dx =

[
−h(x, T − t) + g2(T − t)∇ log qT−t(x)

]
dt+ g(T − t)dw, t ∈ [0, T ].

The Fokker-Planck equation is given by:

∂p(xt, t)

∂t
= −

∑
i

∂

∂xi
t

[
−p(xt, t)h̄

i(xt, T − t)
]
+

1

2
g2(T − t)

∑
i

∂2p(xt, t)

∂
(
xi
t

)2 .

We substitute t with T − t and get:

−∂p(xT−t, T − t)

∂t
=
∑
i

∂

∂xi
T−t

[
p(xT−t, T − t)h̄i(xT−t, t)

]
+

1

2
g2(t)

∑
i

∂2p(xT−t, T − t)

∂
(
xi
T−t

)2 .

This PDE is identical to Eq. (15). By choosing the proper initial condition, we finish the proof.
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E ADDITIONAL DETAILS OF TRAINING AND EVALUATION

We provide more information about the experimental setup and then overview some of the details of
training and evaluation of SLCD in this section. The experiments are split up into two parts: image
tasks (image compression and aesthetic evaluation) and biological sequence tasks (5’ untranslated
regions and DNA enhancer sequences).

All experiments were conducted on a single NVIDIA A6000 GPU.

Our classifier network is constructed to predict a histogram over the reward space and trained with
cross-entropy loss. When training the classifier for the first iteration of DAgger (without any guidance)
we label all states in the trajectory with the reward of the final state. For subsequent iterations, we
only use states that are part of the rollout (i.e. the states in the trajectory that are computed solely
using the prior, after the rollin section which uses the latest classifier).

To apply classifier guidance, we compute the empirical expectation of the classifier. That is for B
buckets (r1, . . . , rB) and predictor R̂n(·|xt, t), we compute:

fn(xt, t) = ∇xt
ln

(
B∑
i=1

R̂n(ri|xt, t) exp(η · ri)

)
.

Because the gradient is invariant to the reward scale, we set ri to be a B equally spaced partition of
[0, 1].

E.1 EXPERIMENT TASK DETAILS

E.1.1 COMPARISON TASKS

Image Compression. The reward is the negative file size of the generated image, a non-differentiable
compression score. We use Stable Diffusion v1.5 (Rombach et al., 2022) as the base model for this
continuous-time diffusion task.

Image Aesthetics. Here the objective is to maximize the LAION aesthetic score (Schumman, 2022),
obtained from a CLIP encoder followed by an MLP trained on human 1-to-10 ratings. This benchmark
is standard in image-generation studies (Black et al., 2024; Domingo-Enrich et al., 2025; Li et al.,
2024; Uehara et al., 2024a;b). We again employ Stable Diffusion v1.5 as the base model.

5 ′ Untranslated Regions (5 ′ UTR) and DNA Enhancers. For sequence generation we aim to
maximize the mean ribosome load (MRL) of 5 ′ UTRs measured via polysome profiling (Sample et al.,
2019). Following Li et al. (2024), the base model is that of Sahoo et al. (2024) trained on Sample
et al. (2019). Likewise, using the same base model, we optimize enhancer sequences according to
expression levels predicted by the Enformer model (Avsec et al., 2021) in the HepG2 cell line.

E.1.2 COMPARISON METHODS

Best-of-N . We draw N independent samples from the base diffusion model and retain the single
sample with the highest reward.

DPS. Diffusion Posterior Sampling (DPS) is a training-free variant of classifier guidance originally
proposed for continuous diffusion models (Chung et al., 2023) and subsequently adapted to discrete
diffusion (Li et al., 2024). We use the state-of-the-art implementation of Nisonoff et al. (2025).

SMC. Sequential Monte Carlo (SMC) methods (Del Moral & Doucet, 2014; Wu et al., 2023; Trippe
et al., 2022) are a class of methods which use importance sampling on a number of rollouts, and
select the best sample. However, note that SMC based methods do this across the entire batch, not at
a per sample level.

SVDD-MC. SVDD-MC (Li et al., 2024) evaluates the expected reward of N candidates from the
base model under an estimated value function and selects the candidate with the highest predicted
return.

SVDD-PM. SVDD-PM (Li et al., 2024) is similar to SVDD-MC except that it uses the true reward
for each candidate instead of relying on value-function estimates.
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E.2 IMAGE TASK DETAILS (IMAGE COMPRESSION AND AESTHETIC)

For both image tasks, we use a lightweight classifier network, with model checkpoints sized at
4.93MB (compression) and 10.60MB (aesthetic).

The prompts are generated under the configuration of SVDD Li et al. (2024). In the image compression
task, we generate 1,400 images per iteration and train for one epoch. The results are reported using
the checkpoint from the 4th iteration. For the aesthetic evaluation task, we generate 10,500 images in
the first iteration, followed by 1,400 images in each subsequent iteration, and train for 6 epochs. The
results are reported using the checkpoint from the 8th iteration. For the compression task, we adopt
the same architecture as Li et al. (2024). For the aesthetic task, we add five additional residual layers
to account for its increased complexity. Notably, our classifier takes the latent representation as direct
input, without reusing the VAE (as in SVDD for compression), CLIP (SVDD for aesthetics), or the
U-Net (SVDD-PM for estimating x̂0). This results in a significantly more lightweight design, both in
network size (approximately 10MB compared to over 4GB) and in runtime (Fig. 3 center).

E.2.1 HYPERPARAMETERS

For the image tasks, the following hyperparameters are used:

Table 2: Image Task Hyperparameters. If two values are provided, the first corresponds to the
compression task, and the second to the aesthetic task.

Hyperparameter Value
Seed 43
Learning rate 1× 10−4

Optimizer betas (0.9, 0.999)
Weight decay 0.0
Gradient accumulation steps 1
Batch size (classifier) 8
Batch size (inference) 1
Guidance scale 150/75
Train iterations (per round) 1/6
Eval interval (epoches) 1

E.3 SEQUENCE TASK DETAILS (5’ UTR AND DNA ENHANCER)

Following Li et al. (2024), for the Enhancer task, we use an Enformer model Avsec et al. (2021),
and for the 5’ UTR task, we use ConvGRU model Dey & Salem (2017). We reference our classifier
guidance implementation based off of Li et al. (2024). Both of these tasks are discrete diffusion
problems and use the masking setup of Sahoo et al. (2024), following Li et al. (2024).

We use the following hyperparameters for the sequence tasks. In order to not be bound to a specific
η, we take use the gradient of the empirical mean computing the samples for the next iteration with
a guidance scale of 10. We can then change η at test time as shown in the paper. Due to the more
light-weight nature of these tasks, we did 8 iterations of training for the DNA enhancer task. Likewise,
we did 7 iterations for the 5’ UTR task. Unlike the image tasks, we do not reinitalize the classifier
network for each iteration.

E.3.1 HYPERPARAMETERS

For the DNA enhancer and 5’ UTR tasks, the following hyperparameters are used:
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Table 3: DNA Enhancer and 5’ UTR Task Hyperparameters
Hyperparameter Value
Seed 43
Learning rate 1× 10−4

Optimizer betas (0.9, 0.95)
Weight decay 0.01
Gradient accumulation steps 4
Batch size (classifier) 5
Batch size (inference) 20
Guidance scale 10
Train iterations (per round) 200
Initial train iterations 600
Classifier epochs 1
Eval interval (steps) 20

F MORE IMAGE SAMPLES

Fig. 5 provides further results for the image compression task using prompts that were not seen
during training. The consistent performance across these novel inputs demonstrates the generalization
capability of SLCD.

Fig. 6 presents more images generated by SLCD on the image compression task, with different values
of the parameter η. Each image is shown with its corresponding reward, demonstrating how varying
η affects the trade-off between compression efficiency and visual quality.

Fig. 7 shows additional samples from the image aesthetic task, also generated with varying η
values. These examples highlight SLCD’s ability to optimize for aesthetic quality under different
configurations.
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-126.06 -101.46 -69.01 -47.67             -26.50 -27.83

-162.32 -116.85 -74.70 -32.27 -20.96 -18.65

-152.51 -124.54 -92.18 -58.31           -34.14 -33.48

Llama

Fish

Crab

with η increasePrompts

-119.68.        -87.52            -55.69 -20.91           -16.30            -17.22

Dolphin

-134.25        -97.73 -65.13 -36.11            -29.37 -24.06

Eagle

Figure 5: Additional images generated by SLCD with varying η values and their corresponding re-
wards on the image compression task. The prompts used were not seen during training, demonstrating
the generalization capability of our method.
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-128.70 -117.22            -54.32              -35.78             -25.64 -22.84

-116.07 -109.13             -77.02 -49.52 -28.04            -25.64

-123.41           -113.50            -89.57             -50.00 -28.02             -27.89

Cat

Butterfly

Panda

with η increasePrompts

-115.25          -87.64              -62.02             -41.14             -35.39          -27.35

Dog

-129.63            -98.57        -63.41 -37.98             -31.19     -20.53

Horse

-91.71 -69.82 -50.52 -43.33             -21.98 -22.25

Monkey

-121.87 -93.88 -60.75 -44.34            -23.02 -18.57

Rabbit

Figure 6: More images generated by SLCD with varying η values and their rewards on the image
compression task.
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5.84 6.14   6.15 6.20 6.30 6.48

6.06 6.31 6.33 6.37   6.33 6.40

5.97 6.03 6.33 6.41 6.45 6.66

Cat

Butterfly

Panda

with η increasePrompts

6.18 6.19 6.23 6.26 6.71 6.92

Dog

5.54 5.96 6.07 6.23 6.38 6.56

Horse

6.40               6.32 6.23 6.52 6.58 6.75

Monkey

5.20                  5.44               5.48                5.52                6.38                6.63

Rabbit

Figure 7: More images generated by SLCD with varying η values and their rewards on the image
aesthetic task.

26


	Introduction
	Related Work
	Preliminaries
	Diffusion models
	Controllable generation
	Reward guided generation

	Algorithm
	Analysis
	Experiments
	Reward Comparison
	Qualitative results
	Fréchet Inception Distance Comparison
	Inference Time Comparison
	Ablation Study

	Conclusion
	Derivation for the classifier
	Discussion on Assumption 6
	Smoothness assumptions on both the classifier and the distribution
	Smoothness assumption and gradient estimator
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 10
	Proof of Lemma 11

	Proof of Main Theorem
	Technical Lemmas
	Proof of Lemma 12

	Additional Details of Training and Evaluation
	Experiment Task Details
	Comparison Tasks
	Comparison Methods

	Image Task Details (Image Compression and Aesthetic)
	Hyperparameters

	Sequence Task Details (5' UTR and DNA Enhancer)
	Hyperparameters


	More Image Samples

