
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LSH TELLS YOU WHAT TO DISCARD: AN ADAPTIVE
LOCALITY-SENSITIVE STRATEGY FOR KV CACHE
COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based large language models (LLMs) use the key-value (KV) cache
to significantly accelerate inference by storing the key and value embeddings of
past tokens. However, this cache consumes significant GPU memory. In this work,
we introduce LSH-E, an algorithm that uses locality-sensitive hashing (LSH) to
compress the KV cache. LSH-E quickly locates tokens in the cache that are co-
sine dissimilar to the current query token. This is achieved by computing the
Hamming distance between binarized Gaussian projections of the current token
query and cached token keys, with a projection length much smaller than the em-
bedding dimension. We maintain a lightweight binary structure in GPU memory
to facilitate these calculations. Unlike existing compression strategies that com-
pute attention to determine token retention, LSH-E makes these decisions pre-
attention, thereby reducing computational costs. Additionally, LSH-E is dynamic
– at every decoding step, the key and value of the current token replace the embed-
dings of a token expected to produce the lowest attention score. We demonstrate
that LSH-E can compress the KV cache by 30%-70% while maintaining high
performance across reasoning, multiple-choice, and long-context retrieval tasks.

1 INTRODUCTION

The advent of large language models (LLMs) has enabled sharp improvements over innumerable
downstream natural language processing (NLP) tasks, such as summarization and dialogue gener-
ation (Zhao et al., 2023; Wei et al., 2022). The hallmark feature of LLMs, the attention module
(Bahdanau, 2014; Luong, 2015; Vaswani, 2017), enables contextual processing over sequences of
tokens. To avoid repeated dot products over key and value embeddings of tokens, a key-value (KV)
cache is maintained in VRAM to maintain these calculations. This technique is particularly popular
with decoder LLMs.

However, the size of the KV cache scales quadratically with sequence length n and linearly with
the number of attention layers and heads. For example, maintaining the KV cache for a sequence of
4K tokens in half-precision (FP16) can require approximately ∼16GB of memory for most models
within the Llama 3 family (Dubey et al., 2024). These memory costs are exacerbated with batched
inference and result in high decoding latency (Fu, 2024). Consequently, there is significant interest
in compressing the size of the KV cache to enable longer context windows and low-resource, on-
device deployment.

An emerging strategy for reducing the size of the KV cache is token eviction. This approach drops
the key and value embeddings for past tokens in the cache, skipping future attention calculations
involving these tokens. Various token eviction/retention policies have been explored in recent liter-
ature, including the profiling of token type preferences (Ge et al., 2023), retention of heavy-hitter
tokens (Zhang et al., 2024b;a), and dropping tokens based on the high L2 norms of their key em-
beddings (Devoto et al., 2024). The latter approach (Devoto et al., 2024) is intriguing as eviction
decisions are performed pre-attention. However, this L2 dropout strategy only performs well on
long-context retrieval tasks. It is specialized to retain only those tokens with the highest attention,
which we find unsuitable for free-form reasoning tasks. Existing literature suggests that retaining

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

tokens with a diverse spectrum of attention scores (skewing high) is necessary (Guo et al., 2024;
Zhang et al., 2024b; Long et al., 2023).

Is there a non-attentive KV cache compression strategy that is performant over a wide variety of
tasks? This work answers this question positively by introducing a novel strategy, LSH-E, that
dynamically determines token eviction pre-attention via locality-sensitive hashing (LSH) (Goemans
& Williamson, 1995; Charikar, 2002). LSH-E evicts a past token from the cache whose key em-
bedding is highly cosine dissimilar to the current query token embedding. The intuition behind this
strategy is that high cosine dissimilarity indicates a low dot-product attention score. To efficiently
scan for cosine (dis)similar tokens without performing attention, LSH-E leverages the SimHash
(Charikar, 2002; Goemans & Williamson, 1995) to instead compare Hamming distances between
c-length binary hashes of cached key embeddings and the current query embedding. We depict a
high-level visualization of this strategy in Figure 1.

LSH-E requires minimal overhead: for a total sequence length of ℓ tokens with embedding dimen-
sion d, LSH-E maintains a constant-size, low-cost binary array in GPU memory of size c×k bytes,
where c ≪ d is the hash dimension and k ≪ ℓ. Cached tokens with key embeddings that register
low Hamming similarity measurements to decoded query embeddings are gradually replaced.

(a) KV cache during decoding (b) LSH comparison at decoding step 4

Figure 1: An abstract visualization of LSH-E eviction strategy. Figure 1a depicts the strategy
for several decoding steps. The cache can only maintain 5 tokens due to memory constraints. At
each decoding step, LSH-E projects the query embedding of the current token i and all previous
key embeddings to binary hash codes. LSH-E then measures the negative of Hamming distances
between the query code of token i and key codes of all tokens j in the cache. Each step, LSH-E
evicts the key/values of the token with the lowest score (marked as red) from the cache. Figure 1b
depicts the LSH comparison for decoding step 4, marking the token “said” for removal, as its high
Hamming indicates low cosine similarity (and thus, low attention).

Our contributions are as follows:

• We introduce a novel attention-free token eviction strategy, LSH-E, that leverages locality-
sensitive hashing (LSH) to quickly locate which token in the cache is the least relevant to the
current query. This ranking procedure consists entirely of cheap Hamming distance calculations.
The associated binary array for computing these similarities requires minimal memory overhead.

• Novel Attention-Free Token Eviction For a Llama 3 model, LSH-E can compress the KV cache
by 30%-70% with minimal performance drop. LSH-E demonstrates high performance on reason-
ing tasks (GSM8K free-form Cobbe et al. (2021), MedQA free-form Cobbe et al. (2021)), long-
context retrieval (Needle-in-a-Haystack, Common Word task, Ruler QA (Hsieh et al., 2024)), and
multiple-choice (GSM8K MC, MedQA MC).

• State-of-the-Art Performance To the best of our knowledge, LSH-E achieves state-of-the-art
performance for attention-free eviction across a wide variety of tasks. LSH-E outperforms L2

eviction in high-compression regimes over free response reasoning and MC tasks, while perform-
ing comparably in long-context retrieval tasks for which the L2 eviction method is designed to
perform well.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• Open-Source Implementation Upon public release of our manuscript, we will release an open-
source implementation of LSH-E through a fork of the popular cold-compress library (https:
//github.com/AnswerDotAI/cold-compress).

2 PRELIMINARIES

We aim to capture tokens whose query embeddings will form a large sum of dot products (i.e.,
attention scores) with other key embeddings, but without explicitly calculating attention. We will
leverage locality-sensitive hashing (LSH) to quickly determine cosine similarities since the angle
is equivalent to the dot product (for unit vectors). In this section, we review technical concepts
crucial to attention and locality-sensitive hashing. We assume some base level of similarity with
transformers, but we refer the reader to precise formalism (Phuong & Hutter, 2022).

Scaled Dot-Product Attention Consider a sequence of n tokens with e-dimensional real-valued
representations x1, x2, . . . , xn. Let Q = [q1 q2 · · · qn] ∈ Rn×d, K = [k1k2 · · · kn] ∈ Rd×n

where qi = Wqxi, ki = Wkxi and W,K ∈ Rd×e. The query and key projectors Wq and Wk are
pre-trained weight matrices. We also define a value matrix V = [v1 v2 v2 · · · vn] ∈ Rdout×n with
vi = Wvxi with trainable V ∈ Rdout×d, the scaled dot-product attention mechanism is given as

Attention(Q,K, V) = V · softmax
(Q⊤K√

d

)
. (1)

Typically, attention layers contain multiple heads {hi}Ji=1 each with distinct query, key, and value
projectors {W (hi)

q ,W
(hi)
k ,W

(hi)
v }Ji=1. In a multi-head setup, attention is computed in parallel across

all heads, and the outputs are concatenated together and then passed through a linear layer for pro-
cessing by the next transformer block.

As Q,K, V are updated with each new incoming token, to avoid significant re-computation, the
current state of Q⊤K, Q, and K are maintained in the KV cache. Our goal is to bypass attention
computation and caching for select tokens, i.e., sparsify the attention matrix Q⊤K, K, and V .

Locality-Sensitive Hashing We will now describe a family of locality-sensitive hashing (LSH)
functions able to efficiently approximate nearest neighbors (per cosine similarity) of key/query vec-
tors in high-dimensional Rd through comparison in a reduced c-dimensional space (per Hamming
distance) with c≪ d. Here, ”locality-sensitive” means points that are close together according to a
distance function distd(·, ·) in the ambient space remain close per another distance function distc(·, ·)
in the lower-dimensional space with high-probability. For a rigorous treatment of LSH functions,
see (Andoni et al., 2018; Charikar, 2002).

Formally for our setup, distd(x, y) ≜ cos θx,y = x⊤y
||x|| ||y|| and distc(p, q) ≜ dH(p, q) which denotes

the Hamming distance. We will project each vector from Rd into Zc
2, the space of c-bit binary strings

(which is often referred to as a binary hash code). To acquire a c-bit long hash code from an input
vector x ∈ Rd, we define a random projection matrix R ∈ Rc×d whose entries are independently
sampled from the standard normal distribution N (0, 1). We then define

h(x) = sgn(Rx), (2)
where sgn(·) (as an abuse of conventional notation) is the element-wise Heaviside step function:

sgn(x) :=
{
1, x ≥ 0

0, x < 0
.

For two unit vectors x, y ∈ Rd we have that,

1

c
· E[dH

(
h(x), h(y)

)
] =

θx,y
π

, (3)

where θx,y = arccos(cos(θx,y)). We do not prove equation 3 in this work; see Theorem §3.1 in
(Goemans & Williamson, 1995, Theorem 3.1). In particular, if x and y are close in angle, the

3

https://github.com/AnswerDotAI/cold-compress
https://github.com/AnswerDotAI/cold-compress

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Hamming distance between h(x) and h(x) is low in expectation. Increasing the hash dimension c
reduces variance.

The geometric intuition behind this LSH scheme is the following: each row R:,i of R defines a
random hyperplane in Rd. The Heaviside function sgn(·) indicates whether x is positively or nega-
tively oriented with respect to the hyperplane R:,i. Thus, the c hyperplanes divide the d dimensional
space into multiple partitions, and the resulting c-dimensional hash code is an index into one of the
partitions in which x is located. Therefore, vectors with the same or similar hash codes lie in the
same or close-by partitions and, therefore, are likely similar in angle.

Remark LSH is conventionally used to find the set of approximate nearest neighbors of an input
x ∈ Rd against a large collection of candidates Y = {yi}Ni=1 (Andoni et al., 2018). In particular, the
user searches for argmini dH(h(x), h(yi)) – the closest matching code. As we will see in Section
3, we are instead interested in argmaxi dH(h(x), h(yi)): the token with the most dissimilar hash
code to the query.

2.1 RELATED WORKS

KV Cache Compression Many popular compression strategies adopt an eviction approach, which
removes embeddings from the KV cache. H2O (Zhang et al., 2024b) and Scissorhands (Liu et al.,
2024b) calculate token importance by their accumulated attention scores and keep the ”heavy hitters’
in the cache. FastGen (Ge et al., 2023) performs a profiling pass before the generation stage that
assigns to each head, according to the head’s attention patterns, a pruning policy which only retains
categories of tokens (punctuation, special, etc.) favored by the head. These eviction strategies
depend on the computation of attention scores for their policy. An attention-free L2 dropout method
(Devoto et al., 2024), which we compare ourselves to in this work, uses the observation that high-
attention tokens tend to have low L2 key norms to approximately keep important tokens in cache.

Other methods seek to merge KV caches across heads, such as grouped query attention (GQA)
(Ainslie et al., 2023; Dubey et al., 2024). KVMerger (Wang et al., 2024) and MiniCache (Liu et al.,
2024a), which searches for similarity between tokens in consecutive attention layers and subse-
quently merges KV cache entries across these layers. While these consolidation approaches prevent
memory complexity associated with KV caches from scaling with depth or multi-head attention, the
size of any singular cache still tends to scale with sequence length.

Memory Efficient Transformers Multi-Query Attention (Shazeer, 2019) and Grouped Query At-
tention (Ainslie et al., 2023) reduce the number of key-value matrices by sharing them across mul-
tiple query heads to save KV cache memory usage. However, they require re-training or up-training
the LLM. Cache quantization methods (Hooper et al., 2024; Sheng et al., 2023) reduce the KV cache
size by compressing the hidden dimension instead of along the sequence dimension but can result in
information loss. Linear Transformer (Katharopoulos et al., 2020) reduces memory usage by replac-
ing the softmax attention with linear kernels and, therefore, achieves constant memory requirement.
Similar to our work, Reformer (Kitaev et al., 2020) employs LSH to find similar tokens as a way
to replace the softmax attention. It creates hash buckets of tokens that form local attention groups
and only attends to tokens in the same and neighboring buckets. However, this makes Reformer
vulnerable to missing important tokens due to hash collision or boundary issues, and therefore, it
must use multiple hash tables to mitigate this issue.

3 LSH-E: A LOCALITY-SENSITIVE EVICTION STRATEGY

We now formalize our eviction method reflected in Algorithm 1. We assume that the KV cache has a
limited and fixed budget and conceptually divide the KV cache management during LLM inference
into two stages: the initial Prompt Encoding Stage and then a Decoding Stage (i.e., generation).

Let C be a constant and fixed cache budget, K be the key cache, and V be the V cache in a K-V
attention head. We define our eviction policy as a function

Kt,Vt,Ht ← P (q,Kt−1,Vt−1,Ht−1) (4)
where Ht ∈ {0, 1}b×C is a hash table that contains hash codes of keys in K. We then define a
function Fscore to assign a score for each key inside the K cache. Fscore outputs an array which

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

contains the negative of hamming distances dH between the hash code of a query vector q and
columns ofH, which are hash codes of all non-evicted keys.

Fscore(q,K) = −dH(h(q),H) (5)

The eviction index et at any step t is selected as the index with the lowest score:

et ← argminFscore(qt−1,Ht−1) (6)

which points to the key that is most distant from the query vector at time step t. Entries at index et
from the K and V are evicted andH is updated (step 3-6 of Algorithm 1).

Algorithm 1 LSH-E (timestep t)

Require: query q, key k, value v, key cache K, value cache V , hash tableH
1: et ← argminFscore(qt,Ht−1) ▷ Determine eviction index et
2: del Ket

t−1, Vet
t−1,Het

t−1 ▷ Remove entries at index et from KV cache and hash table
3: Kt ← Kt−1 ∪ kt ▷ Update key cache
4: Vt ← Vt−1 ∪ vt ▷ Update value cache
5: Ht ← Ht−1 ∪ h(kt) ▷ Add hash of kt to the hash table
6: A← Attention(q,KT ,VT) ▷ Calculate attention

Prompt Encoding Stage During the prompt encoding stage, the model processes the prompt,
xprompt = [x1, ..., xN] ∈ RN×d. The KV cache and the hash table are first filled to full by the
first C tokens. K0 = {k1, ..., kC},V0 = {v1, ..., vC},H0 = h(K0) =

⋃
i∈[1,C] h(ki). We then set

t← C + 1, and begin Algorithm 1.

Decoding Stage Let xdecoding = [z1, ...zT] ∈ RT×d be the generated tokens during auto-
regressive decoding. In the decoding stage, we continue Algorithm 1 by setting t < −N + 1.
The generation completes at time step N + T .

Complexity Our strategy assumes a fixed memory budget, and therefore, uses constant memory.
The computation overhead per time step is also constant, because Fscore is calculated for a constant
C number of key vectors in the cache. The extra memory overhead that LSH-E introduces to each
attention head is the hash table H, which only uses C ∗ b bits of space and is independent of the
sequence length. The hash table is stored on GPU memory and does not introduce any latency
bottlenecks associated with CPU-to-GPU streaming (Strati et al., 2024).

4 EXPERIMENTS

Tasks We evaluated our LSH eviction strategy across various tasks to demonstrate its effectiveness
in reducing the memory cost of the KV cache while preserving the language quality of the gener-
ated text. Our experiments are split into three main categories: free response question answering,
multiple choice, and long-context retrieval. Our long context retrieval tasks include the multi-key
needle-in-a-haystack task and the common words task from (Hsieh et al., 2024). Question answering
tasks include GSM8K (Cobbe et al., 2021) and MedQA (Jin et al., 2021).

Metrics The question-answering tasks were evaluated using BERTScore (which includes preci-
sion, recall, and F1 scores), ROUGE (ROUGE-1, ROUGE-2 and ROUGE-L and ROUGE-Lsum),
and GPT4-Judge. GPT-4 was prompted to look at both the model prediction and the ground truth an-
swer, then provide a score from 1 - 5 on the coherence, faithfulness, and helpfulness of the answer in
addition to similarity between the prediction and ground truth (we named this metric GPT4-Rouge).
In this section, we report the average of these four scores. For details on individual scores, please see
Appendix A. For the system prompts given to GPT-4, refer to Appendix B.2. For multiple-choice
tasks, we use accuracy as our metric. The metric used to evaluate long context retrieval tasks is the
string matching score from Hsieh et al. (2024), whose definition is in Appendix B.1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Configuration and Setup We conducted experiments using Meta’s Llama3 8B-Instruct model
(Dubey et al., 2024). Our method is agnostic to grouped-query attention, so we used the default
group size of 4. The maximum sequence length was set to the sum of the maximum prompt length
and the maximum number of allowed generated tokens needed for each task. We conducted exper-
iments using cache budgets of 10%, 30%, 50%, 70%, and 90% of the full KV cache. Based on
insights from (Xiao et al., 2023; Child et al., 2019; Beltagy et al., 2020), we also keep the most
recent 10 tokens and the first 4 tokens of the prompt always in the KV cache. We chose the L2

norm-based eviction method (Devoto et al., 2024) as a baseline for comparison because it is also an
eviction method that does not depend on the attention score. All experiments were conducted on the
Google Cloud Platform G2 instances with Nvidia L4 24GB graphics cards.

4.1 FREE RESPONSE QUESTION ANSWERING

We tested our strategy against tasks that require generating accurate answers using multi-step rea-
soning. Specifically, we used the GSM8K and MedQA datasets to assess language quality for each
strategy, given a constrained KV cache budget. Both tasks are used to test the potential side effects
of compression on the LLM’s reasoning ability.

4.1.1 GSM8K FREE RESPONSE RESULTS

GSM8K consists of grade-school-level math problems that typically require multiple reasoning
steps. As shown in Figure 2, our LSH eviction strategy consistently outperforms the L2 norm-based
method across various cache sizes. Notably, even when the KV cache budget is set to 50% of the
full capacity, the LSH eviction strategy maintains a high answer quality, with minimal degradation
in BERTScore F1, ROUGE-L, and GPT4-Judge scores.

(a) BERTScore F1 (b) Rouge L (c) GPT4-Judge

Figure 2: GSM8K Question Answering Performance. We measure BERTScore F1, Rouge-L, and
GPT4-Judge for different cache budgets on a grade school math task. LSH-E outperforms L2 for
all three metrics for every budget, with sharp differences for the 50% and 30% compression.

4.1.2 MEDQA FREE RESPONSE RESULTS

MedQA is a free response multiple choice question answering dataset collected from professional
medical board exams. We sample 100 questions from this dataset. Each question has 5 choices
and only one correct answer, along with ground truth explanations and reasoning steps. Figure 3
illustrates that LSH-E performs better than L2 eviction for all budgets tested. For both datasets,
LSH-E produced more coherent and helpful answers across all cache budgets than L2 eviction per
Table 7. For detailed experiment results, please refer to Appendix A.

4.2 MULTIPLE CHOICE QUESTION ANSWERING

We evaluated our method on multiple-choice versions of GSM8K and MedQA. Multiple choice is a
more difficult test of a model’s reasoning capability under the constraint of cache compression, as it
takes away the ability to use intermediate results in the generated text. The model has to keep useful
tokens during prompt compression in order to pick the correct answer choice.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) BERTScore F1 (b) Rouge L (c) GPT4-Judge

Figure 3: MedQA Question Answering Performance. We measure BertScore F1, Rouge-L, and
GPT4-Judge for different cache budgets on a medical exam task. LSH outperforms L2 for all three
metrics for every budget, with a significantly higher performance for the 30% and 10% budgets.

4.2.1 GSM8K MULTIPLE CHOICE RESULTS

For the multiple choice experiments, LSH significantly outperforms L2 for cache budgets of 30%
and 50%. As shown in Figure 4a, the L2 method’s accuracy drops significantly at smaller cache
sizes, while the performance of LSH-E does not significantly drop until the cache budget is set at
10%.

(a) Accuracy on the GSM8K Multiple Choice (b) Accuracy on the MedQA Multiple Choice

Figure 4: Multiple Choice Tasks Performance. On GSM8K, LSH-E outperforms the baseline full
cache on GSM8K at 70% and 50% cache budgets and significantly outperforms L2 at 70%, 50%,
and 30%. LSH-E performs on par with L2 overall on MedQA with higher performance at 90%
(near uncompressed performance) and 70% budget and slightly lower performance at 50% budget.

4.2.2 MEDQA MULTIPLE CHOICE RESULTS

Per Figure 4b, the MedQA multiple choice experiment, LSH offers better performance than L2

eviction for all tested cache budgets except for 50%. Performance between both methods is highly
similar at lower budgets.

4.3 LONG-CONTEXT RETRIEVAL

To evaluate LSH-E’s ability to retain and retrieve important pieces of information from long con-
texts, we used the Needle-in-a-Haystack and Common Words tasks from Hsieh et al. (2024). These
tests benchmark the ability of a compression strategy to retain important tokens inside the KV cache
within a large, complex stream of context. The L2 eviction method (Devoto et al., 2024) is specifi-
cally designed for these types of benchmarks, so closely matching its performance will demonstrate
the task versatility of LSH-E.

4.3.1 NEEDLE-IN-A-HAYSTACK

In this task (evaluated with a 4k context length), the model must extract specific information buried
within a large body of text. As illustrated in Figure 5b, LSH-E slightly outperforms L2 at every

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Common Words task (b) Needle-in-a-Haystack task

Figure 5: Long-Context Tasks. We measure string-matching scores for two long-context retrieval
tasks. LSH-E performs on par with L2 on the Common Words task with slightly higher perfor-
mance at a 30% cache budget and slightly lower performance at a 10% budget. For the Needle-in-
a-Haystack task, LSH-E performs on par with L2 with slightly higher performance at a 50% cache
budget.

cache budget except for 90%, and both methods see a sharp drop in the ability to recall the “nee-
dle” (a small, targeted piece of context) after the cache budget drops to 50% and lower. LSH-E
outperforms L2 for these smaller cache sizes.

4.3.2 COMMON WORDS

In the Common Words task, the model must identify the most frequent words from a long list.
Figure 5a demonstrates that LSH-E performs on par with L2 eviction in general and slightly better
at 30%, 50%, and 90% cache budget. Both methods outperform the full cache model at 90% cache
size, indicating that some cache compression can actually increase performance. Neither method
experienced a significant drop in performance until the cache budget was reduced to 30%.

4.4 MEMORY USAGE

Table 2 compares the memory usage of the KV cache and relevant data structures of L2 and LSH-E
on the GSM8K and MedQA question answering experiments. LSH-E maintains H, a binary hash
matrix of the attention keys in memory and, therefore, has slightly higher memory usage than L2

eviction. Our implementation uses 8 bits for binary values instead of 1 bit. Using 1-bit binary
numbers would reduce the memory overhead of LSH-E by a factor of 8 and narrow the difference
in memory usage between LSH-E and L2.

Table 1: LSH Hash Dimension Ablation. We assesses GSM8K Question Answering performance
for different LSH dimensions. The cache budget is fixed at 50%. LSH dimension does significantly
impact performance. Small LSH dimensions slightly outperform larger LSH dimensions.

LSH
Dim

BERTScore
F1 Rouge L GPT4

Judge
Compression

Ratio

Cache
Memory

(GB)

4 0.8807 0.3974 4.3833 0.3728 2.8062

8 0.8802 0.3975 4.4113 0.3734 2.8355

16 0.8807 0.3972 4.3753 0.3716 2.8941

24 0.8802 0.3951 4.3733 0.3711 2.9527

32 0.8796 0.3926 4.3220 0.3710 3.0113

64 0.8797 0.3900 4.2333 0.3702 3.2456

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: GSM8K and MedQA Question Answering KV Cache Memory Usage. LSH-E main-
tains a binary hash matrix of attention keys in memory and, therefore, has slightly higher memory
usage than L2. Our implementation uses 8-bits for binary values instead of 1-bit. Using 1-bit binary
numbers will reduce the memory overhead of LSH-E by a factor of 8 and decrease the difference in
memory usage between LSH-E and L2.

GSM8K MedQA

Cache
Budget

(%)
Strategy Compression

Ratio

Cache
Memory

(GB)

Compression
Ratio

Cache
Memory

(GB)

10 L2 0.8355 0.7603 0.9289 2.5342
LSH-E 0.8380 0.8120 0.8812 2.6338

30 L2 0.6234 1.7740 0.6957 7.3492
LSH-E 0.6018 1.8531 0.6360 7.5786

50 L2 0.3968 2.7876 0.4175 12.1641
LSH-E 0.3716 2.8941 0.3901 12.5235

70 L2 0.1967 3.8013 0.1803 17.2325
LSH-E 0.1857 3.9351 0.1740 17.7285

90 L2 0.0859 4.8150 0.0498 22.0474
LSH-E 0.0823 4.9761 0.0483 22.6734

100 Full 0.0000 12.6934 0.0000 51.1181

4.5 ABLATION ON LSH DIMENSION

To determine the effect of the LSH compression dimension, we conducted an ablation study using
the GSM8K free response dataset. Fixing the cache budget to 50%, we tested LSH dimensions
of 4, 8, 16, 32 and 64 bits. Table 1 shows the results. The choice of LSH dimension does not
significantly impact performance. In fact, 8 bits performed the best, but not noticeably better than
higher dimensions. This demonstrates that LSH-E does not require a high hashing dimension and
can be executed with minimal storage overhead. When using 8 bits, the storage overhead is 1 byte×
cache size. For example, in a Llama3 70B-Instruct deployment with 80 layers, 8 KV-heads, sequence
length of 8192, batch size of 8 and 50% cache budget, LSH dimension of 8-bits, we have that 16-bits
and 32-bits only use an extra 20MB, 40MB, and 80MB respectively, which are significantly smaller
than the KV cache size of 640GB.

4.6 ATTENTION LOSS RATIO ANALYSIS

We perform an attention loss ratio (ALR) analysis between LSH-based ranking and L2-based rank-
ing. Our implementation is an adaptation of the methodology described in Devoto et al. (2024). This
section explores how much of the uncompressed attention matrix is preserved between LSH-E and
the L2 eviction strategy in Devoto et al. (2024).

Compressing the KV cache entails dropping KV pairs. Per (Devoto et al., 2024), we can define
the attention loss caused by the compression as the sum of the attention scores associated with the
dropped KV pairs in layer l and head h via the equation Lm

l,h =
∑

p∈Dm
l,h

al,h,p, where al,h,p is the
average attention score at position p for layer l and head h, and Dm

l,h denotes the positions of the m

dropped KV pairs, with |Dm
l,h| = m. We process a selection of prompts and examine how proposed

evictions by the L2 eviction strategy and LSH-E would affect the sum of attention scores.

To quantify the additional attention loss introduced by using an alternative ranking method (such as
L2 norm or LSH-E’s Fscore) instead of the true attention-based ranking, we define the cumulative
attention loss difference as:

Yl,h =

n∑
m=1

(
Lm
l,h − Lm

l,h,ref

)
, (7)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

where Lm
l,h,ref is the cumulative attention loss when dropping the KV pairs with the actual lowest

attention scores. The value Yl,h is non-negative, and a lower value indicates that the ranking method
closely approximates non-compressed attention. Figure 6 depicts the ALR for the L2 eviction rank-
ings and an LSH ranking.

It is important to note that LSH-E is not designed to produce a global ranking among as the L2

method is designed to do (via a low-to-high ordering of all L2 key norms). LSH-E ranks the
importance of past tokens with regards to the current token – and this ranking changes every step.
To simulate a comparison, we record the average Hamming distance between the key code of token
i and the query codes of all tokens j > i. We then sort tokens from lowest to highest average
Hamming distance. Figure 6a reflects the ALR according to this ranking system. The L2 ranking
exclusively prefers high-attention tokens, while the LSH ranking prefers medium-to-high-attention
tokens. Based on our empirical results in Section 4, the selection of tokens over a spectrum of
attention scores skewing towards high results in greater task versatility compared to the L2 eviction.

(a) ALR using LSH ranking (b) ALR using L2 ranking

Figure 6: Attention Loss Ratio (ALR). We compare how the eviction strategy of LSH-E and the
L2 method (Devoto et al., 2024) affects the ALR per equation 7. Our tested model is Llama3-
8B-Instruct, which contains 32 heads and 32 attention layers. Cell (i, j) depicts the ALR of head
i in attention layer j. A darker score indicates a lower ALR. The L2 method exhibits extremely
low ALR, thus indicating exclusive preference for high-attention tokens. LSH-E prefers to select
medium-to-high attention tokens.

5 DISCUSSION & CONCLUSION

In this paper, we introduce LSH-E, a novel attention-free eviction strategy for KV cache compres-
sion in transformer-based LLMs. By leveraging locality-sensitive hashing (LSH) to approximate
cosine similarity, LSH-E dynamically determines which tokens to evict from the cache without
performing costly attention calculations. Our experiments demonstrate that LSH-E can achieve
30-70% compression of the KV cache while maintaining strong performance across various tasks,
including free-response Q&A, multiple-choice Q&A, and long-context retrieval.

The key advantage of LSH-E lies in its ability to efficiently compress the KV cache pre-attention,
enabling significant memory savings and faster inference times. Compared to traditional strategies
like L2 norm-based eviction (Devoto et al., 2024), LSH-E excels particularly in reasoning and
multiple-choice tasks, where maintaining a diverse set of tokens in the cache is crucial for generating
accurate and coherent responses.

There are several potential areas for future work. Investigating hybrid approaches that combine
LSH-based eviction with attention-based mechanisms such as (Zhang et al., 2024b; Ge et al., 2023)
could offer a middle ground between computational efficiency and retention of high-importance
tokens. Further, reducing the overhead associated with maintaining binary hash codes (e.g., by
optimizing bit precision) could further enhance the applicability of LSH-E to memory-constrained
environments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate nearest neighbor search in high
dimensions. In Proceedings of the International Congress of Mathematicians: Rio de Janeiro
2018, pp. 3287–3318. World Scientific, 2018.

Dzmitry Bahdanau. Neural machine translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing, pp. 380–388, 2002.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective l 2
norm-based strategy for kv cache compression. arXiv preprint arXiv:2406.11430, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yao Fu. Challenges in deploying long-context transformers: A theoretical peak performance analy-
sis. arXiv preprint arXiv:2405.08944, 2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801,
2023.

Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6):
1115–1145, 1995.

Zhiyu Guo, Hidetaka Kamigaito, and Taro Watanabe. Attention score is not all you need for token
importance indicator in kv cache reduction: Value also matters. arXiv preprint arXiv:2406.12335,
2024.

Ankit Gupta, Guy Dar, Shaya Goodman, David Ciprut, and Jonathan Berant. Memory-efficient
transformers via top-k attention. arXiv preprint arXiv:2106.06899, 2021.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. Ruler: What’s the real context size of your long-context language models? arXiv
preprint arXiv:2404.06654, 2024.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What dis-
ease does this patient have? a large-scale open domain question answering dataset from medical
exams. Applied Sciences, 11(14):6421, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Mini-
cache: Kv cache compression in depth dimension for large language models. arXiv preprint
arXiv:2405.14366, 2024a.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024b.

Sifan Long, Zhen Zhao, Jimin Pi, Shengsheng Wang, and Jingdong Wang. Beyond attentive tokens:
Incorporating token importance and diversity for efficient vision transformers. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10334–10343, 2023.

Minh-Thang Luong. Effective approaches to attention-based neural machine translation. arXiv
preprint arXiv:1508.04025, 2015.

Mary Phuong and Marcus Hutter. Formal algorithms for transformers. arXiv preprint
arXiv:2207.09238, 2022.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of
large language models with a single gpu. In International Conference on Machine Learning, pp.
31094–31116. PMLR, 2023.

Foteini Strati, Sara Mcallister, Amar Phanishayee, Jakub Tarnawski, and Ana Klimovic.
D\’ej\avu: Kv-cache streaming for fast, fault-tolerant generative llm serving. arXiv preprint
arXiv:2403.01876, 2024.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adap-
tive kv cache merging for llms on long-context tasks. arXiv preprint arXiv:2407.08454, 2024.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya Kailkhura, Beidi Chen, and Atlas Wang. Q-hitter:
A better token oracle for efficient llm inference via sparse-quantized kv cache. Proceedings of
Machine Learning and Systems, 6:381–394, 2024a.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024b.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX

A QUESTION ANSWERING GRANULAR EXPERIMENT RESULTS

Table 3: GSM8K and MedQA Question Answering BERTScore

GSM8K MedQA

Cache
Budget

(%)
Strategy Precision Recall F1 Precision Recall F1

10 L2 0.8585 0.7983 0.8270 0.8330 0.8126 0.8226
LSH-E 0.8602 0.8067 0.8323 0.8570 0.8080 0.8317

30 L2 0.8853 0.8487 0.8665 0.8554 0.8336 0.8443
LSH-E 0.8934 0.8557 0.8740 0.8665 0.8343 0.8500

50 L2 0.8907 0.8611 0.8756 0.8659 0.8412 0.8533
LSH-E 0.8970 0.8652 0.8807 0.8689 0.8417 0.8551

70 L2 0.8946 0.8653 0.8796 0.8679 0.8425 0.8549
LSH-E 0.8964 0.8666 0.8812 0.8687 0.8427 0.8555

90 L2 0.8961 0.8665 0.8810 0.8681 0.8427 0.8552
LSH-E 0.8965 0.8670 0.8814 0.8682 0.8427 0.8552

100 Full 0.8967 0.8672 0.8816 0.8682 0.8428 0.8553

Table 4: GSM8K Question Answering Rouge

Cache
Budget

(%)
Strategy Rouge 1 Rouge 2 Rouge L Rouge

Lsum

10 L2 0.1961 0.0494 0.1533 0.1795
LSH-E 0.2044 0.0510 0.1558 0.1840

30 L2 0.3979 0.1515 0.2924 0.3410
LSH-E 0.4529 0.1900 0.3471 0.3882

50 L2 0.4800 0.2070 0.3588 0.4109
LSH-E 0.5133 0.2379 0.3972 0.4404

70 L2 0.5103 0.2337 0.3907 0.4364
LSH-E 0.5213 0.2424 0.4040 0.4460

90 L2 0.5191 0.2403 0.4014 0.4438
LSH-E 0.5224 0.2433 0.4055 0.4465

100 Full 0.5239 0.2449 0.4054 0.4474

B METRICS AND PROMPTS

B.1 STRING MATCH SCORE

The string matching score is calculated as:

String Matching Score =
Number of correctly matched characters in predicted string

Total number of characters in GT
× 100

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 5: GSM8K Question Answering GPT4-Judge

Cache
Budget

(%)
Strategy Similarity to GT Coherence Faithfulness Helpfulness

10 L2 1.0020 1.3140 1.0940 1.0320
LSH-E 1.0360 1.4860 1.2000 1.1100

30 L2 1.4300 2.5340 1.9700 1.9820
LSH-E 2.6920 3.8880 3.3900 3.3680

50 L2 2.3060 3.5760 3.1420 3.1120
LSH-E 3.5660 4.5780 4.2880 4.3040

70 L2 3.1200 4.2660 3.9520 3.9420
LSH-E 3.8400 4.6960 4.4540 4.4820

90 L2 3.6060 4.5660 4.3140 4.3560
LSH-E 3.9120 4.7240 4.5200 4.5420

100 Full 3.9240 4.7340 4.5760 4.5980

Table 6: MedQA Question Answering Rouge

Cache
Budget

(%)
Strategy Rouge 1 Rouge 2 Rouge L Rouge

Lsum

10 L2 0.3043 0.0717 0.1536 0.2885
LSH-E 0.3457 0.1102 0.1706 0.3242

30 L2 0.4285 0.1461 0.2128 0.4070
LSH-E 0.4495 0.1701 0.2271 0.4256

50 L2 0.4736 0.1845 0.2395 0.4495
LSH-E 0.4808 0.1935 0.2449 0.4554

70 L2 0.4837 0.1943 0.2472 0.4580
LSH-E 0.4871 0.1974 0.2488 0.4611

90 L2 0.4866 0.1966 0.2487 0.4606
LSH-E 0.4870 0.1973 0.2494 0.4610

100 Full 0.4865 0.1976 0.2484 0.4602

Table 7: MedQA Question Answering GPT4-Judge

Cache
Budget

(%)
Strategy Similarity to GT Coherence Faithfulness Helpfulness

10 L2 1.1031 1.6955 1.6395 1.2829
LSH-E 1.9695 3.5167 2.6650 2.5472

30 L2 1.9391 3.6326 2.9420 2.8428
LSH-E 2.5108 4.4145 3.5334 3.6130

50 L2 2.8497 4.5108 3.7967 3.9499
LSH-E 3.0216 4.7299 4.1385 4.2544

70 L2 3.1945 4.7554 4.2348 4.3851
LSH-E 3.2318 4.8094 4.2917 4.4342

90 L2 3.2652 4.8183 4.3183 4.4578
LSH-E 3.2908 4.8389 4.3546 4.5069

100 Full 3.3369 4.8173 4.3418 4.5000

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B.2 GPT-4-JUDGE PROMPT

For the GPT-4-Judge metric used in evaluating free response question answering tasks, we accessed
the GPT-4o model through OpenAI’s API.

For the GPT4-Rouge metric, the prompt given to the model is:

You are shown ground-truth answer(s) and asked to judge the quality of an
LLM-generated answer.

Assign it a score from 1-5 where 1 is the worst and 5 is the best based
on how similar it is to the ground truth(s).

Do NOT explain your choice. Simply return a number from 1-5.

====GROUND TRUTHS====
{labels}

====ANSWER====
{prediction}

For the other three GPT4-Judge based on criteria, the prompt given to the model is:

You are shown a prompt and asked to assess the quality of an LLM-
generated answer on the following dimensions:

===CRITERIA===
{criteria}

Respond with "criteria: score" for each criterion with a newline for each
criterion.

Assign a score from 1-5 where 1 is the worst and 5 is the best based on
how well the answer meets the criteria.

====PROMPT====
{prompt}

====ANSWER====
{prediction}

The list of criteria is:

CRITERIA = {
"helpful": "The answer executes the action requested by the prompt

without extraneous detail.",
"coherent": "The answer is logically structured and coherent (ignore

the prompt).",
"faithful": "The answer is faithful to the prompt and does not contain

false information.",
}

C ATTENTION SCORES AND KEY NORMS VISUALIZATION

We further examine the method of our chief competitor, the L2 eviction method (Devoto et al., 2024).
In particular, in Figure 7 we examine the key-norm-attention correlation suggested by the authors.
Indeed, low key-norms, even across prompts, demonstrate a strong correlation with attention score.

D ANALYSIS OF THE RELATIONSHIP BETWEEN ATTENTION SCORES AND
LSH HAMMING DISTANCE

In this section, we follow up on our ALR in Section 4.6. We analyze the relationship between atten-
tion scores and average LSH Hamming distances using 50 randomly selected prompts from GSM8K.
We stress that this metric does not perfectly capture the ”ranking” system of LSH-E (which cannot
perform a global/full-sequence token-importance ranking like L2 eviction).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 7: Attention and Key Norms. Attention scores and corresponding L2 norms of key vectors
(excluding the first token) for a sample of heads (0,8,16,24,31) in the 8th layer for a sample input
sequence. Each subplot shows the attention heatmap (top) and the corresponding key norm values
(bottom) for a particular head, allowing for a direct comparison between attention patterns and key
norm values across different heads.

For each prompt, we performed the following:

1. Captured States: Extracted normalized key and query vectors from every layer and head
combination after applying rotary positional embeddings.

2. Applied Random Projections: Applied multiple random Gaussian projections, varying
the projection length (number of bits). We tested with projection lengths of 8, 16, 24, and
32.

3. Computed Hamming Distances: Computed the Hamming distances between the pro-
jected and binarized vectors and averaged this over multiple projections to mitigate the
randomness that LSH introduces and to obtain a more stable estimate of the Hamming
distances.

4. Computed Correlations: Calculated the Pearson correlation coefficient between the atten-
tion scores and the inverted average Hamming distance for each layer and head combination
and for each projection length.

D.1 RESULTS

The average Pearson correlation between the attention scores and the inverted average Hamming
distances is 0.2978 ± 0.1947. Table 8 and Figure 8a detail the average Pearson correlation per
projection length.

Table 8: Average Pearson correlation between attention scores and inverted average Hamming dis-
tances per projection length, computed for 50 randomly selected prompts from GSM8k. Higher
projection lengths have stronger correlations.

Projection Length Mean Standard Deviation

8 0.2017 0.1890
16 0.2793 0.1852
24 0.3345 0.1806
32 0.3754 0.1792

D.2 OBSERVATIONS

• Correlation with Projection Length: As shown in Figure 8a and Table 8 the average
Pearson correlation increases with projection length. This is likely due to the more detailed

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) Correlations for varying LSH dimension. We
study the Pearson correlations between attention
scores and the inverted average Hamming distances,
computed over 50 randomly selected prompts from
GSM8K, as a function of projection length for Llama-
3-8B-Instruct. The tested projection lengths are 8,16,
24, and 32. The error bars indicate the standard de-
viation. Correlation strengthens as projection length
increases.

(b) Correlations by layer. We measure the Pearson
correlations between attention scores and the inverted
average Hamming distances for each transformer layer
in Llama-3-8B-Instruct computed over 50 randomly
selected prompts from GSM8K. Error bars indicate
standard deviation. The final three layers have the
weakest correlations.

(c) Correlations by head. We study the Pearson cor-
relation between attention scores and the inverted aver-
age Hamming distances for each head in Llama-3-8B-
Instruct computed over 50 randomly selected prompts
from GSM8K. Error bars indicate standard deviation.
There is minimal variation between heads.

(d) Correlation Heat Map. We examine the average
Pearson correlation between attention score and the
inverted average Hamming distances (LSH ranking)
across all layers and attention heads of Llama-3-8B-
Instruct. As attention mass tends to concentrate over
a few tokens (Gupta et al., 2021; Sheng et al., 2023),
the slightly-weak, but positive correlation indicates the
LSH ranking is selecting medium-to-high-attention to-
kens.

Figure 8: Correlations of Attention and Inverted Hamming Distances

vector representation in the projected space, allowing for finer-grained similarity compar-
isons.

• Layer-wise Trends: Figure 8b shows a slight decrease in the average Pearson correlation
for the later transformer layers. Earlier layers may be more focused on recognizing broader
patterns where the similarity LSH captures is more pronounced compared to the latter lay-
ers, which may focus on specifics not captured as effectively by Hamming distances.

• Head-wise Consistency: The correlation between attention scores and inverted average
Hamming distance is relatively consistent across different attention heads, with little vari-
ance as seen in Figure ‘8c. This uniform behavior indicates that the relationship between

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

attention scores and LSH-measured similarity is, to a large extent, independent of specific
head functions.

• LSH vs. L2 Norms: While L2 norms were more effective at identifying high-attention
tokes, LSH excelled at identifying tokens with moderate attention scores that are vital for
the generation of coherent language output. This aligns with the findings of Guo et al.
(2024), which suggests that tokens with low to medium attention scores are crucial for
high-quality language generation.

• LSH and Token Similarity: LSH tended to group tokens together that are similar across
dimensions, producing lower Hamming distances. Tokens with very high attention scores
may only have strong associations for a relatively small subset of dimensions, which may
not always be captured effectively by LSH.

D.3 ALR COMPUTATION METHODOLOGY

We compute the Attention Loss Ratio (ALR) for each layer l and head h as follows:

1. Data Capture During the model’s forward pass, we capture the necessary data for analysis:
• Attention Probabilities al,h ∈ Rn×n: The attention scores between queries and keys.
• Key Norms ∥kl,h,p∥2: The L2 norms of key vectors at each position p.
• Key and Query Vectors kl,h,p ∈ Rd and ql,h,p ∈ Rd: Used for LSH ranking.

2. Mean Attention Scores For each token position p, we compute the mean attention score
across all positions it attends to:

āl,h,p =
1

n

n∑
q=1

al,h,p,q. (8)

3. Ranking Methods
• Ideal Attention-Based Ranking Rank positions in ascending order of āl,h,p (from

lowest to highest attention score).
• L2 Norm Ranking Rank positions in descending order of the key norms ∥kl,h,p∥2.
• LSH Ranking Apply Locality-Sensitive Hashing (LSH) to key and query vectors us-

ing random projections, compute Hamming distances, and rank positions in ascending
order of the average Hamming distance.

4. ALR Calculation For each m from 1 to n, compute the cumulative attention losses: This
allows us to quantitatively compare how well different ranking methods (e.g., L2 norm and
LSH ranking) approximate the ideal scenario where the least important KV pairs (those
with the lowest attention scores) are dropped during cache compression.

Lm
l,h =

m∑
i=1

āl,h,π(i), (9)

Lm
l,h,ref =

m∑
i=1

āl,h,σ(i), (10)

where π(i) and σ(i) are the indices of the i-th position in the ranking method and the ideal
attention-based ranking, respectively. The ALR for each head and layer is then calculated
as Yl,h =

∑n
m=1

(
Lm
l,h − Lm

l,h,ref

)
.

A lower Yl,h indicates that the ranking method closely approximates the ideal attention-
based compression.

5. Aggregation We repeat the above steps for multiple prompts and average the ALR values
to obtain the final ALR matrix across layers and heads.

18

	Introduction
	Preliminaries
	Related Works

	LSH-E: A Locality-Sensitive Eviction Strategy
	Experiments
	Free Response Question Answering
	GSM8K Free Response Results
	MedQA Free Response Results

	Multiple Choice Question Answering
	GSM8K Multiple Choice Results
	MedQA Multiple Choice Results

	Long-Context Retrieval
	Needle-in-a-Haystack
	Common Words

	Memory Usage
	Ablation on LSH Dimension
	Attention Loss Ratio Analysis

	Discussion & Conclusion
	Question Answering Granular Experiment Results
	Metrics and Prompts
	String Match Score
	GPT-4-Judge Prompt

	Attention Scores and Key Norms Visualization
	Analysis of the Relationship between Attention Scores and LSH Hamming Distance
	Results
	Observations
	ALR Computation Methodology

