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SM A

The following inequalities will be used different times in the proofs without explicit mention:

1) For any real values aq,...,a, > 0and s > 1,

(a1 4+ an)” <7 Hal + -+ ap).

It follows immediately considering the convex function = + z° applied to the the weighted

sum @1+--+an/n,

2) For every values ay,...,a, € Rand 0 < s < 1,

a1+ +anl” <laa]” + - o+ fan[*.

It follows immediately studying the s-Holder function x — |z|°.
By means of (2), (3) and (5), we can write forz > 1 and [ > 2

T (1)
@ 40 gy (1) = E[ S K]

{exp{ltT[Zw Xj-i-b }H
:E{exp {ith(l)l—l—itTjle(l) H
Lo {7 x)e1)}

- E[exp {1 (tT1)b{) }]

.li
Hew

ie.
£V (X) £ Ni(0,5(1)),
with k x k covariance matrix with element in the ¢-th row and j-th column as follows
S(1)i; = 0F + 02 (e, 2.
Observe that we can also determine the marginal distributions,
Il (%) ~ N(0,2(1),.,),
where

E(l)r,r = Ul? + 05||x(r)Hﬂ2{I'
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Now, for ¢ > 1 and [ > 2, by means of (2), (3) and (6) we can write
B )

= e (it [ D wl0w £ 000 + 401 1A

Jj=1

n

:IE exp {1th(1)1+1tT Z (l) (¢po fl 1)( ))}|f1(l_12l}

B [exp {1 (=760 £ (%) HA )

exp{ — 5% (00 1V X )}

::]:

—E[exp {i(tTl)bg”H
- 1

. .
S
3 | =

= exp{ - %af(tT1)2}

J

— exp { _ % [ag(tTl)Q n (tT(¢ o fITV(X, n)))z] }

j=1

= exp{ - %tTE(l,n)t},
ie.
fi(l)(x7 n)lfl(fi,lr)L i Nk(07 Z(l, n))?

with k x k covariance matrix with element in the ¢-th row and j-th column as follows

2
()i =0 + 22 (6 e F TV (X,m)), (60 F{ TV (X,m)) .

Observe that we can also determine the marginal distributions,

X, n)| {7 ~ N (0.2, n)r,), (15)

where

2
os _
S )y = 0 + ~2llé e FY ™V (X, n)|fn-

SM A.1: ASYMPTOTICS FOR THE ¢ — th COORDINATE

First of all, from Definition 1, note that since fi(l) (X) does not depend on n we consider the limit as

n — oo only for fi(l) (X, n) foralll > 2. It comes directly from Equation (6) that, for every fixed [ and

n the sequence ( fi(l) (X, n)) ;> 18 exchangeable. In particular, let pg ) denote the de Finetti (random)

probability measure of the exchangeable sequence ( fi(l) (X, n))i>1. That is, by the celebrated de

Finetti representation theorem, conditionally to pg ) the f; ® (X, n)’s are iid as pg ) Now, let consider

the induction hypothesis that, p= q(l D as n — 400, where ¢~V = N (0,%(I — 1)). To
establish the convergence in distribution we rely on Theorem 5.3 of Kallenberg (2002) known as Levy
theorem, taking into account the point-wise convergence of the characteristic functions. Therefore
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we can write the following expression:

T (1)
P (x,n) (t) = E[elt fi (Xm)]

1,...,

n
= AV B - S (00 O x) )
— 1B o { - 2 3 (¢ (00 £V %) J ol
_ eféag(tTl)gE_ﬁE{exp )
=g [ [ oo

([ - (oen) i an)']

Observe that the last integral is with respect to k coordinates: i.e. df = (dfy,...,dfx). Denote as

2 the convergence in probability. We will prove the following lemmas:

L1) foreach! > 2and s > 1,]P’[p£f_l) €Y, =1 whereY, ={p: [[¢ef|z.p(df) < +oo};
L2) [(t" (e f))pn Dap) B (T (p o £))2¢V=D(df), as n — +o0;

L3) f (t"(p o f)?[1 —exp{ — 9%(@@5 o f))Q}]pgllfl)(df) 20, as n — +oo for every
€(0,1).

SM A.1.1: PROOF OF L1

In order to prove the three lemmas, we will use many times the envelope condition (4) without explicit
mention. For [ = 2 we have

Enw-ff”(xmﬂzk]SE_(ZW o)
<E (Z|¢ 70 x1) ]
g]Ek“Zlqbo ]

— 1ZE[|¢ 1]

<k ZE[w + 817 X1

(26)° 1Z(a + BE[I£) (X))
< 400,

13
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where we used that from (14), fr(yli) (X) ~ N (0,07 + 02z ||2,) and then

1 sm r om
E{f (O™ = Mam(of + 0% 7 l2) ™,
where M., is the c-th moment of | N (0, 1)|. Now assume that L1 is true for (I — 2), i.e. foreach s > 1
itholds [ ||¢ e f||Rkp(l 2 (df) < +oo uniformly in n, and we prove that it is true also for (I — 1).

k
Ello o £ X mllgl A2 S ERY loo £ X ml 1A
r=1

k

< @)Y (0t + o[£V 1))

r=1

k
< Dl(a7 kS) + D2(b7 k7 S) ZED]CS;D( )‘m§|fl7 7nj| .

r=1
From (15) we get
2
ms - UUJ —
B[00 om0 5] = Mas (0 + 2216 e FD (X, )2, )

sm

2sm

= o B2 (X, )

g

S MmSQSm—l (O_gsm +

Thus we have

-1 s _
Elll¢ o £ (X, n)|[5: 1002
25m

k 1
< Di(a,k,s) + Ds(b,k,s,m Z( 2sm [||¢0F(l 2(X, n) |25 [pt-2 D /2’
r=1

where

sm — sm— - =2 sm -
B[l o FUD X, n) B 2] <E[am 3 1o 0 47X m)Pmpd 2]
=1

< Dy(s,m)n*™ / ()™ D8P (df,)
< Da(s,mn"™ / 6 e B2 (A ),

sm
where the last inequality is due to the fact that |¢(f,.)|?*™ < ( Zle |o(fr) |2) and then

/|¢ FPrpl=2(d /(Zkb )" p 2>(df1,...,dfk>=/|\¢.f|\]§1mpn (df).
So, we proved that

Ell¢ e £ (X, )30 [p{ 2]

r vz (16)
< Difa,k,s) + Dalb.kosom) S (3 027 Das,m) [ oo pIEml )
r=1
which is finite by induction hypothesis uniformly in n. To conclude, since pg L
FV X n)ph Y we get
-1
1199 flpll @) = ll6 o £ (X))
a7

E[E[[l¢ e £ (X, )l [p 2] [pl Y]
< cost(a, k,s,m) < oo

14
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which is bounded uniformly in n since the inner expectation is bounded uniformly in n by (16).

Remark: Y is a measurable set with respect to the weak topology for each s > 1, indeed for each
R € N defining the map

R:U—R, Tr(p)= /B o I Flepta) = / 16 Flls X (o (£)p(f)

where U := {p : p distribution of ar.v. X : Q — RF} endowed with the weak topology, since
NrenTR ' (0,00) = Y; and (0,00) is open, it is sufficient to prove that T is continuous. Let
(pm) C U such that p,,, converges to p with respect to the weak topology, then by Definition 3

Ta(pn) = T)l = | [ 160 FI5Xmon(Don(@h) = [ 16# FlEeXimon(Ppan)] -

because the function f — [|¢ @ f||%. X5, (0))(f) is continuous (by composition of the continuous
functions ¢ and ||||*) and bounded by Weierstrass theorem.

SM A.1.2: PROOF OF L2

By induction hypothesis, pg -b converges weakly to a p{/~1) with respect to the weak topology

and the limit is degenerate, in the sense that it provides a.s. the distribution ¢¢~1). Then p(l b

converges in probability to p(!~). Then for every sub sequence n’ there exists a further sub se-

quence n” such that pff,fl) converges a.s. to p{‘ =Y. By induction hypothesis, p{/~1) is absolutely

continuous with respect to the Lebesgue measure. Since ¢ is a.s. continuous and the sequence

((tT(ng of ))2)7121 uniformly integrable with respect to pg -b (by Cauchy-Schwarz inequality and

L1 [ (€7 (¢ )pi 2 (df) < [[t2: [ @ o Fl2:p% " (df) < oo, thus is L*-bounded for each
s > 1, and so uniformly integrable, then we can write the following

/ (7 (b o £ D (df) =2 / (7 (b o £))%D(df).

Thus, as n — 400
/ (T (60 )0V (df) B / (7 (60 £)* D (df).

SM A.1.3: PROOF OF L3

Let p > 1 and g > 1 such that % + 1 = 1. By means of Holder inequality

/Hd).fH]?{k(l*E e (¢°f))2) (=1 (qf)
1/p o2 .7 , Vg
/”¢ * f”Rkpnl D(df )) (/(1 — e (U (d0f)) )qu_l)(df))

Since ¢ > 1, foreveryy > Owehave 0 < 1—e¢ ¥ < 1,then (1—e ¥)?1 < (1—eY) <y. It
implies the following

/ |60 FI2n (1 — e S @) 0D (g )

< ([ 16w 0t s >)1/ p( / %(tT(aﬁof))QpEf’”(df))l/ "
< ([1oeizpt=2an) " (10852 [ 100 fI2ep@n) " 0

as n — oo since by L1 the two integrals are bounded uniformly in n. Thus for every y > 0 and
0c(0,1)e>eV=0<1-eW<1-e¥<1weget

0< / (' )" |1~ exp —Hg(tTw-f))Q}}ps—”(df)
<16 [ o e FI2 1 - exp { = 22 (6 D)ol (@r) =0

asn — —+oo.

15
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SM A.1.4: COMBINATION OF THE LEMMAS
We conclude in two steps.

Step 1: uniform integrability. Define y = y,,(f) = %(tT(QS e f))2. Thus

_ 1524712 _ _ n
P 0 (1) = 727D E[(/e =) |
= e 29 WD R[4, ]
where A,, = ( J e=vn(Dpli—) (df)) . (Ap)n>1 is is uniformly integrable because it is L°-bounded
for all s > 1. Indeed, since 0 < e~ ¥~(f) < 1

Bla;) <[( [p0-0an)"] =B -1

Step 2: convergence in probability. By Lagrange theorem for y > 0 there exists § € (0, 1) such
thate™¥ = 1 — y 4 y(1 — e~¥?). Then for every n there exists a real value 6,, € (0, 1) such that the
follow equality holds:

o2

Zea, - )"

A":(172n

where

A=W @e oAy
A= [ (60 )2 [1—exp { — 0,55 (" (00 1))}V ()

Using the definition of the exponential function, i.e. €* = lim,, o (1 + )", L2 and L3 we get that
P o2
A Bep{ =% [WoenPdIan}, asnoo

Conclusion: since convergence in probability with uniform integrability implies convergence in
mean, by the two above steps we get

o2

20T 112 0’2
@ 0 () = € BTV B[] exp { = (712 - 2 /(tT(¢ R RICT)

—exp{— 5[V 402 [0 ) Van)]}

= exp{ — %tTZ(l)t},

where X(1) is a k x k matrix with elements
S0 =0t + % [ oels)a" V),

where ¢(‘~1) = N (0, %(I — 1)). Then the limit distribution of fi(l)(X) is a k-dimensional Gaussian
distribution with mean 0 and covariance matrix (1), i.e. as n — 400,

FOX,n) 4 N (0, (1)),

SM B.1

Fix: > 1,1 > 1,n € N. We prove that there exists a random variable H i(l) (n) such that

l l l
1@ n) = £ )| < HP )|z = yler, 2,y € RIP —aus.

16
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i.e. fixed & € (2 the function = — fi(l) (x,n)(&) is Lipschitz. We proceed by induction on the layers.
Fix z,y € R’. For the first layer, by (5) we get

I

1
@) (© = £ @ m)(©)] = | o ©r; + 600 = (3wl @y + 47 (©)|

Jj=1

I I
S uiien - uilie
Jj=1 Jj=1

I
=3O - w)
j=1
I
<> [wl©|lws - ui
j=1
’ I
< llz = yllar Y w3 ()

j=1

where we used that |z; — y;| < ||z — y|/rz. Set H( )( ) = Z§:1 |wl(lj) . Suppose by induction
hypothesis that for each j > 1 there exists a random variable H ]( -b (n) such that | f;l_l) (z,n)(§) —

f;lil)(y, n)(§)| < H;lil) (n)(&)|lx — yl||rr, and let Ly be the Lipschitz constant of ¢. Then by (6)
we get

11 @ n)(e) — £

—~

y,n)(©)]

= ]jﬁngff}(aqb(f;“)(x,n)) +5(6) - [jﬁjilw” ©o(7' P w,m) + (@) |
= ]% :1“33' ©o(f} " (@m) - % gwﬁz O/ )|

< ;ﬁg OO0 ) = 6 ()|

< j%g O£ @) — £ )

< j%; WO HI )l — e

< llz = yllas IZ ©H ()

Set

HO (n

Thus we proved that fixed [ > 1,and ¢ > 1, foreachn € N
Pl{ge: 110 @mn© - 1w ©) < B m)©llr - yllar }] = 1.

Thus, each process fi(l) (1), fi(l) (2), ... isP-a.s. Lipschitz, in particular is IP-a.s. continuous processes,
i.e. belongs to C(R’;R). In order to prove the continuity of fi(l) we can not just take the limit as

n — +oo of (9) because the left quantity converges to | fi(l) (x) — fi(l) (y)| only in distribution and
not P-a.s., but we can prove the continuity by applying Proposition 2, as we will show in SM B.2.

17
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SM B.2

Fix ¢ > 1,1 > 1. We show the continuity of the limiting process fi(l) by applying Proposition 2. Take
two inputs z, y € R’. From (7) we know that [fl-(l)(a:), fl-(l)(y)] ~ N5(0,%(1)) where

11 l2l2: (o )
(1) = 2 2 R » /R
1) =0 [1 1}““ {<x,y>w Il |

s =at |1 1]+ [ [oty o] o',

where ¢~ = N,(0,%(I — 1)). We want to find two values & > 0 and 3 > 0, and a constant
H® > 0 such that

l l «
E[1A7w) - £ @] < HOlly — )"

Defining a” = [1, —1] we have " (y) — f”(z) ~ N(a”0,a7%(l)a). Consider or = 26 with 6
integer. Thus

l l
@) = £ @) ~ | aTS0aN (0. D) ~ (@7 S(0)a)’ [N (0, 1),
We proceed by induction over the layers. For [ = 1,
E[I17 () = 1P @] = Co@™s(1)a)’
= Co(ol |yl — 202y, 2)er + o |l2llfr)’
= Co(02)’ (lyllzr — 20y, 2)mr + Il [1§r)°
= Co(02)’|ly — x|

where Cy is the -th moment of the chi-square distribution with one degree of freedom. By hypothesis
¢ is Lipschitz.

/ lu —v|*q"=(du, dv) < HD |y — 2|2
Then,
110 @) — 1O @) ~ [N (0,1)[* (aT = (1)a)°

6(u)[2 = 26(w)6(v) + |$(v)/*)g" ) (du, dv))
6(u) — 6(0)124" ) (du, dv))’

0
< IN(0,1)*(o Li /|u v|?2q(- 1)(du,dv))

0
=[N (0, 1)]*

2
Oy

< IN(0, 1) (02 L3)° / ft — 024D (du, do)
<IN, 1) (02L2)!H Y |y — 2|12
Thus we conclude
B[ ) — 10 @[] < HOlly - 2l1%,

where the constant H() can be explicitly derived by solving the following system

{H(l) = Cy(c2)?

HY = Cy(o2 L3)"HITD.

It is easy to get HD = C}(02)"(L3)"~Y?. Notice that this quantity does not depend on i.
Therefore, by Proposition 2, by placing o = 26 and 8 = 26 — I, for every 6 > I/2 (53 needs to be
positive then we take 6 > I/2) there exists a continuous version fi(l)(e) of the process fi(l) with P-a.s.
locally v-Holder paths forevery 0 < v < 1 — %

18
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e Thus fi(l)(e) and fi(l) are indistinguishable (same trajectories), i.e there exists (¥ C
with P(Q(®)) = 1 such that for each w € Q®), 2 > £ (2)(w) is locally y-Holder for each
0<y<l-—g

e Define O = ﬂ9> /2 Q) then for each 0 < &y < 1 there exists 6, such that 5, <

1- % < 1, thus for each w € Q* C Q%) the trajectory = + fi(l)(x)(w) is locally

do- Holder continuous.

By Proposition 2 we can conclude that fi(l) has a continuous version and the latter is P-a.s locally
~-Holder continuous for every 0 < v < 1.

SM B.3

Fix ¢ > 1,1 > 1. We apply Proposition 3 to show the uniform tightness of the sequence ( fi(l) (n))n>1

in C(R%;R). By Lemma 2 fi(l) (1), fi(l) (2), ... are random elements in C(R’; R). First we show that
the sequence f(Ors,n),>1 is uniformly tight in R. We use the following statement from (Dudley,
2002, Theorem 11.5.3)

Proposition 4. Let (C, p) be a metric space and suppose f(n) 4 f where f(n) is tight for all n.
Then f(n)n>1 is uniformly tight.

Since (R, | - |) is Polish every probability measure is tight, then f(Orz,n) is tight in R for every

n. Moreover, by Lemma 1 f;(Ogr,n),>1 A fi(l)(ORz), then by Proposition (4) f(Ogz,n),>1 is
uniformly tight in R. In order to apply Proposition 3 it remains to show that there exist two values
a>0and B > 0, and a constant () > 0 such that

E(I£0,m) = fO@ )| < HOlly - 2", 2y R neN

uniformly in n. The first idea could be try to bound (uniformly in n) the expected value of I, i(l) (n)
obtained in (10), but this turns out to be very difficult. Thus we choose another way. Take two points

2,y € R, From (8) we know that £ (y, )|f(l b N(o, o2(l,n)) and f; (g, n)|f(l 17)L
N(0,02(l,n)) with joint distribution N2 (0, (1, n)), where

_ [z E(ay
0= |5y oty
[ o2(ln)  B(l,n)a,
=(0) = [z(z,n)m,y o2(l,n) |
with,
02(1) = o + o ||l
oy(1) = o + oIyl
2(1)90711 = 0'13 + 0'02.;<$7y>R17
2 n
g, —
Ui(l,n)=0§+f2|¢of}l V()P
2 n
0-0.)
oy(ln)=af +-23 " Joo £V (y.n)l?,
Jj=1
2 n
ow _
S n)zy ;Zqﬁ S @)oY (yn)
=1
Defining a”’ = [1,—1] we have that fi( (y,n)|f1(l717)l — fi(l)(:c,n)|f1(fi)17)l is distributed as

N(aT0,a”'%(1,n)a), where
Ts(1,n)a = a,j(l,n) —25(1,n) .y + 02(l, ).

19
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Consider o = 26 with 6 integer. Thus

.....

Start first with the case [ = 1.

B[ @, n) — £0 @ n)?| = Coa™ S (1)a)?
= o3yl ~ 20 {0 + oLl
Co(02)"(lyll3s — 20y, x)as + 23’
— ool - oI

where Cj is the f-th moment of the chi-square distribution with one degree of freedom. Set H(Y) =
Cy(c2)?. By hypothesis induction suppose that for every j > 1

B[l wm) = £ ) 2] < By - a2

By hypothesis ¢ is Lipschitz, then
B[ () = £ m) | 0] = CotaTs (0, m)a)’

0
= Co(a2m) = 22, n)y + 02(11) )

Using the induction hypothesis

E[\ff”(ym)—fi(l)(x»”ﬂ%]:E{]E“f@( m) = 10|20
2L2 6 n

}jﬂullw> 1 )]

< Ce(%Li) H” Dy — |2

We can get the constant H® by solving the same system as (12), obtaining H®) =
Cl(a2)¥ (L )= which does not depend on 7. By Proposition 3 setting v = 20 and 3 = 26 — I,
since 5 must be a positive constant, it is sufficient to take § > I /2 and this concludes the proof.

SMC

Fix k inputs X = [z(1) ... 2(®)] and a layer I. We show that as n — 400

(f(l) Xn) - —>®N;c

where (X) denotes the product measure and with (1) as in (7). We prove this statement by proving
the n large asymptotic behaviour of any finite linear combination of the fi(l) (X,n)’s,fori € L C N.

20
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See, e.g. Billingsley (1999) for details. Following the notation of Matthews et al. (2018b), consider a
finite linear combination of the function values without the bias, i.e.,

TOWLp,X,n) =3 pil £V (X, n) = b"1].
€L

Then for the first layer we write

TWO(L,p, X Zp,[Zw”x]}

€L j=1

Z '(£,p.X

where

(L, p, X szw

€L

and for any [ > 2

TO(L, p, X, n) = sz[ i (oo f(l Y(X,n))

€L

Z L,p,X,n),

where

DLpXon) =Y piw(ee £V (X n)).

€L
For the first layer we get

OTm(2px) (1) = E[eitTT“)(L,p,X)}

el (i ]}

j=14ieL

- f[ [1E [exp {itT {piwz(}j)xj} H

j=lieL

[ Tew{ - Zr(ex)’)

Jj=1l4ieLl

o Ese)

ieL  j=1

exp{ — %tT@(E,p, 1)t},

ie.
T(l) ('Cvpv X) i Nk(ov @(‘Capv 1))7

with k£ x k covariance matrix with element in the i-th row and j-th column as follows

@’i,j (‘Capv 1) = prO'i <l'(2), x(j)>]RIa

21
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where pTp = 3", p?. Forl > 2 we get
]E|: it 7D (£,p,X,n) ‘f(l 1):|

=E[exp{itT[fzzpzw (0o 10| i)

j=1l1ieLl

ﬁHE[exp{nT[ Tepeoe £ )| AL

liel

11 eXp{ - fpz (tT(¢°fl VX, n)))Q}

j=lieLl

e -2 Z( (6o 10 xm)) )

el j=1

= exp{ — %tT@(Lp, lm)t}7

E: H

ie.

,,,,,

with k x k covariance matrix with element in the i-th row and ]—th column as follows

2
Ou5(L.p,Lin) = pTpZ2 (¢ o BTV (X,m)), (90 V(X))

where pTp = ier p?. Thus, along lines similar to the proof of the large n asymptotics for the i — th
coordinate (just replacing o2 < 0 and 02 < pT po2), we have that for any | > 2, as n — +o0,

eroeaxn® e { = 5703 [ (00 0) o Diah)]}

= exp{ - %tTG(ﬁ,p, l)t}7

ie. 7O (L, p, X, n) converges weakly to a k-dimensional Gaussian distribution with mean 0 and
k x k covariance matrix ©(L, p, [) with elements

0;;(L,p,1) = p"po?, /</> )a"' =P (df),
where ¢~V (df) = ¢ V(df1,...,dfx) = Np(0,0(L,p,1 — 1))df. To complete the proof just
observe that ©(L, p, 1) = pT p(1).

SM D.1

We will use, without explicit mention, that the series > ;- ¢* converges when |g| < 1. In particular
when ¢ = 1/2 the series sum to 1. Fix, ! > 1 and n € N . We prove that there exists a random variable
H® (n) such that

AFO (@) FO(y,0) < HOM)w—ylr, 2.y €RLP—as.

It immediately derives from the Lipschitzianity of each component, indeed by (9) we get

S0 Dy,
d(F(l)(x,n),F(l)(yvn))oo - ~ 2’ 1 Jf|f((:(:)n) . f-((lz)/(y )n)|
Zgl ~ 1 (y,m)|

l
<o~ gl Y 5 HO ).
i=1
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It remains to show that the series Y .-, 21% H (l)( ) converges almost surely. By (10) we get

n

— 1 o 1 Ly )] -1
SHY () =) o= ) e [Hy T (n)
23 2.5 ﬁ;

Ly HOD -
U

Mg

=1

lw|
2i

1
|w£,_3-|

It remains to show the convergence almost surely of the series .- We apply the three-series

Kolmogorov criterion (Kallenberg, 2002, Theorem 4.18). Call X; :=

IN

e By Markov inequality P(X; > 1) < E[X;] = NGO s Y p(X; > 1)
E[IN(0,02)[] < o0

e Cally; = X]I{X <1y < Xi. Then Y, E[V;] < S B[] = Y5°, EINGou)]
E[IN(0,02)]] < 0

o V(Y;) = E[Y?] —E2[Y;], thus oo, V(i) = D2 1]E[Y2] > oo E2[Y;]. The first series
converges since E[Y?] < E[X?] = %1(1)] = Z¢ (then Y EY; < 02> & < 00),
and the other series converges since 0 < E[Y;] < E[Xi} implies E2[Y;] < E2[X;] =

2
EINO (then Y E2[Yi] < E2[IN(0,02)[] 3 & < 00).
)
Denoting Qg” =3 “isl and by setting H®) (n) := L—\/‘% > Hj(l_l) (n)le) we complete the
proof.

SM D.2

Fix [ > 1. We show the continuity of the limiting process F by applying Proposition 2. We will

use, without explicit mention, that the function r
I 1 1@ -1 w) co 1 _

z,y € R* and fix @ > 12 even integer. Slrtc)e ZZ 197 m <> 2—1 1 and, by

L@ W] e o

i=1 27 <1+|f(")(w)—fi(l>(y)|) < Z’L 1 21

Jensen inequality, also o =1, we get

21 %) - 1P )l
d(FD(z), FO(y <221+|f(l)(x) fu) »

) a
<>|)
21 @) - )

ng( (
>

) — )“
1+ (@) - 1P )]
0@ — 1O

Thus, by applying monotone convergence theorem to the positive increasing sequence g(N) =
SNk £ @) — 9 (y)|* (which allows to exchange E and 3°°° ), we get

23



Published as a conference paper at ICLR 2021

sfe 2] <5[ S S0 ]
1o 0
:E[ngnw;%m (2) — 10w
Al
= B3 gl - 1]
=3 SE[0@ - 1w
1=1
=3 o HOe — g
=1
= HOllz — g

where we used (11) and the fact that H®) does not depend on ¢ (see (12)).

Therefore, by Proposition 2, for each o« > I, setting 8 = « — I (since [ needs to be positive, it

is sufficient to choose o > I) F) has a continuous version FV¥) and the latter is P-a.s locally
~-Holder continuous for every 0 < v < 1 — é

e Thus FV(®) and F® are indistinguishable (same trajectories), i.e there exists Q(®) c
with P(Q(®)) = 1 such that for each w € Q) 2 — F"(z)(w) is locally y-Hélder for
each0<'y<1—£.

e Define * = (. ; Q(®), then for each 0 < &y < 1 there exists o such that 5o < 1 — aio <

1, thus for each w € Q* C Q@) the trajectory = — F(2)(w) is locally &o-Holder
continuous.

By Proposition 2 we can conclude that F) has a continuous version and the latter is P-a.s locally
~v-Holder continuous for every 0 < v < 1.

SME

GENERAL INTRODUCTION TO DANIELL-KOLMOGOROV EXTENSION THEOREM

Let X be a set of indexes and {(E,, £;) }zex measurable spaces. On F := X, x F, we can consider
the o-algebra & := @), x &, that is

E=o0(ng,zeX) :U< U ng(fz))

where foreachx € X, 1, : E — E,,w := (Wg)zex — Tz(w) = w,. € is generated by measurable
rectangles. A measurable rectangle A is of the form

A = Xzex A, such that only a finite number of A, € &, are different from E,

0-ALGEBRA ON THE SPACE OF FUNCTIONS

Fix X = R! and (S,d) Polish space. We consider the measurable sets {(Fy, &)} rex =
{(S,B(S))}scrs thus we can construct a measurable space

(B.€) = (xoex Ea, R &) = (S¥,B(5%))

reX
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where S®' = X zers S is the set of all functions from R into S and

B(S™) = &) B(S)

z€RI!

=o( U m(B9))

z€RI!

=0 ({A := Xgzex A, such that only a finite number of A, are different from S })

An example of measurable rectangle is
A=85XA, ) X S XAy XS XS X+ XAy XS XS %x...

where k& € N and only for (!, ..., z(®) the cartesian products are different to S.

Denote by Z = (Zy)gert»> Zz = (2, H,P) — S any stochastic process of interest, such as fi(l)(n)

or fi(l) for some [ > 1,7 > 1and n > 1 when S = (R, | - |), or even F()(n) or F() for | > 1 and
n>1when S = (R, || - ||o). Consider the finite-dimensional distributions of Z

A={PZy _,wonB(S)zW eR je{1,... k}, ke N}

If A is consistent in the sense of Kolmogorov theorem, then there exists an unique probability measure
P’ on (S®', B(S®")) such that the canonical process Z' = (Z,)pers» Z, : S® — 8w — Z,(w) =
w(x) on (SRI , B(SRI), IP’) has finite-dimensional distributions that coincide with A.

1
SM E.1 : EXISTENCE OF A PROBABILITY MEASURE ON S®' FOR THE SEQUENCE PROCESSES

Fix S = R. Fix a layer [, a unit ¢ > 1 on that layer and n € N. We want to prove that there
exists a probability measure P(“t™) on (RRI B (RRI )) such that the associated canonical process
O™ RE" s R, w + w(x) has finite-dimensional distributions that coincide with

(i,l,n) _ (3,1,n)
A - Px(l) (k) ?
A keN

where Pﬁ’ll)’ri). (18 the distribution of fi(l) (X, n). We do not know the exact form of this distribution

but we know the distribution of the conditioned random variable fi(l) (X, n)| fl(lflr)b (see (8)). Thus,
since from (8) the distribution of fi(l) (X) is well known, proceeding by induction it is sufficient to

prove the existence of two probability measures P(»1™) and P on (]RRI, B (RRI )) such that the

[1—1
associated canonical processes 9552’1’71), and @;(Dl’l’n)ll_l have finite-dimensional distributions that

coincide respectively with

AGLn) . {P(i,l,n) } and AL {P(i,l,n,)uq}
keN keN’

(D) . (k) [1—1 (1) .. x(k)

where P} = Ni(0,2(1,X)) and P50 = Ni(0,2(1,n, X)) defined on B(R*). Ob-

D,k
serve that, for simplicity of notation, we have always avoided to write the dependence of the
covariance matrix on the inputs matrix X, but in this case it is important to emphasize this. For the
proof we defer to the limit case in the next subsection since the proof is the same step by step. When

S = R*°, recall that given a sequence of probability spaces {(RRI , B(RRI), P55 there exists
a unique probability measure P(:™) on (x22,RE' | @ B(RE')) = ((ROO)RI , B((R“)RI)) such
that, for each measurable rectangle A = X2, A; where only for a finite number of 7 the set A; is
different from R®', then P (A) = T[22, PG:L)(A;). Moreover this probability is denoted as
P = @22, P(-Lm) This means that the existence of the stochastic processes fi(l) (n) implies the
existence of the stochastic processes F()(n).
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I
SM E.2 : EXISTENCE OF A PROBABILITY MEASURE ON S®' FOR THE LIMIT PROCESS

Note that, as observed in previous section, the existence of the stochastic processes fi(l) on
(RRI,B(RRI)) implies the existence of the stochastic processes F) on ((ROO)RI,B((ROO)RI)).
Then we focus on the proof when S = R. Fix a layer [ and a unit ¢ > 1 on that layer. We want to
prove that there exists a probability measure P(*!) on (RRI ,B (RRI )) such that the canonical process
@,Sf’l) RE SR wes w(z) has finite-dimensional distributions that coincide with

i) _ (@)
AGD — {P.tu),...,m“”}keN7

where P;Si?,...,x () are the finite-dimensional distributions of fi(l) determined in (7), i.e. ngf’ll))’wx ) =

Ni(0,%(1,X)) defined on B(R¥). By Daniell-Kolmogorov existence result (Kallenberg, 2002,

Theorem 6.16) it is sufficient to prove that for each k € N and for each 21, ..., z(¥) elements on
RZ, then
Péff){,__,ﬂl),..A,gc(’c) (B(l) oo x BED g R x BGTD ...« B(k)) s
il z— z
_ Pé(l){,,_,x(z—l),$<z+1),...,x<k>(B(l) w oo BED o gl L« B(k)),

forevery z € {1,...,k} and for every BY) € B(R) forall j = 1,...,k, j # z. Fix k € N, k inputs
@ x® 2 e {1,...,k} and BY) € B(R) forall j = 1,...,k, j # 2. Define the projection
T : R — RF=1 such that 7 (y1, ..., k) = [Y1,- -+, Y2—1, Y241, - - - Y] . Thus, condition (18)
is equivalent to the following:

(4,0) _ pliD)
P& a0 O Tz] = Pﬂ[z](z<1>,...,z<k>>’

where on the left we have the image measure of Pz(f’ll))___ L under .. We prove this by

proving that the respective Fourier transformations coincide. In the following calculations we
define y = [yh e ,yk]T, y[z] = [yl, e Yr—15Yz 1y - - ,yk]T and t = [tl, ce ,tk}T, t[k] =
ti, . ta_1,tsq1,...,t5]7, then by definition of image measure we get

[ + y g g

it? il
P (ptin (t)) = /}Rk_1 eltivtel (P;m) 200 © T21) (Y[

(1),

it~ i,
= /Rk et [Z](Y)Pagm),...,xw) (dy).

Now, recalling that 1; is the & x 1 vector with 1 in the j-th position and 0 otherwise, since 7] (y) =

Y(z)- defining 77, (t) = Zlej# 1;t; we get t[j;]w[z] (y) = yTﬂ[*z] (t). Then

ST :
. tr,) = el ‘ff[z](t)P(Z;l) (d
w(Pi(i? ,,,,,, (*) "”lzJ)( 1) /Rk 20,0 (4Y)
= i, 71'* t
@Pl(.(il;,...,w(k)( 2(®)

= @N(0,50,x)) (]2 (1))
—exp{ - %n[*z] (O X) ity (1))
= exp{ — %t[j;]i(l,X)t[z]},
where i(l, X)) is the matrix 3(I, X) without the z-th row and the z-th column. But since f)(l , X) =

S, (zD, L 2F)) we get ; t)) = 0.0 t;,1) for each t;,; and
(b ( ) wee @(Pidl)) w<k>°”[z1)(”) ggpi[;])(m(l),__,m(m)( 1) 2

thus the two Fourier transformations coincides, as we wanted to prove.

SM E.3: EXISTENCE OF A PROBABILITY MEASURE ON C(R!; R)

If Z is, in addition, a continuous stochastic process then we will show that there exists a probability

measure PZ on C(R’;R) C RE' endowed with a g-algebra G C B(RE') such that the finite-
dimensional distribution of Z’ and Z coincide.
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As suggested by Kallenberg (2002) (page 311) we consider C(R?; R) with the topology of uniform
convergence on compacts, that is
{pR : C(RL;R) x C(RY;R) — [0, 00),

(@rswz) > ps(wr,we) = 351 e sub,ep, o) Elwi (@) —wa(@)r) 1)

The Borel o-field G := B(C(R’;R), pr) is generated by the evaluation maps 7, thus it coincide
with the product o-field, i.e. G = o(T"), where

I'= {Fx(1)7___7x(k)(A)|A = Aw“) X e X Ax(k)7Ax(j) € B(R)7$(j) € Rl,j € {1, .. .,k}, ke N}

where Ty 0 (A) = {w € C(RT;R)|w(@M) € Ay, ... ,w(@®) € A, }. Note that since
o(T) C B(R®") then G = o(T) C B(REF').

Theorem 3. There exists a unique probability measure PZ on (C(R;R), G) such that the canonical
process Z' restricted to (C(R;R), G)) has finite-dimensional distributions that coincide with those
of Z.

For the existence of PZ consider the following

Lemma 6. Let (Z,),cr: be a R-valued continuous stochastic process defined on (2, H,P). Then

{Z Q= C(RL;R)
w—= Z(w) = (Zz(w)) ger?

is a random variable, i.e. measurable from (Q, H) into (C(R!;R),G).

Proof. By previous proposition G = o(I'), then taking O € o(I'), O =T,y (A) for some
EeN {20, . .. 2" cRland A= A, x -+ X Ay, Ay € B(R),we get
{w S Q|Z(w) S O} = {w € Q|Zx(1>(w) S Aac(l)’ ceey Zx(k)(OJ) € Ax(k)}
k
= ({Z» €Ay} €H

j=1

where we used that Z,,(;) are random variables from (2, #) into (R, B(R)). O

Then we can define a probability measure P? on (C(R!; R), G) being the image measure of Z under
P, that is
VO G, P40O)=P(Z¢c0)

Now we prove that the finite-dimensional distributions of Z’ coincide with those of Z. It is sufficient
to prove the following

. . . . . / .
Lemma 7. PZ coincide wit the image measure of the canonical process Z' under P restricted to

(C(R";R), Q).

Proof. Fix O € G = o(I'), O = ',y 0 (A) for some k € N, {zM ... 2™} c R! and
A=A, X X Ay, Az € B(R) By definition of PZ,
P#(0) =P(Z €T, o0 (4))
=P({w € Q|Z(w) € O})
= ]P’({w S Q|Zx(1) (w) €Ay, ooy Ly (w) S Az(k))

= gDZ<1>,,__,I<k> (A4)
By Daniell-Kolmogorv extension theorem the finite-dimensional distributions of Z coincide with
those of the canonical process Z' under P, then P%,, . (A) =P'(Z' € 0). O

The uniqueness of P follows by the uniqueness [P’.
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SM E.4: o(x2,C(R;R)) C o(C(RT;R*)
First, note that x 22, C(R!; R) ~ C(R?; R*), indeed the map
Z: C(R;R®) - x2,C(R;R), W (wr,wa, ... )

is an isomorphism because is linear and bijective, indeed w is || - ||oo-continuous if and only if each
component w; is | - |-continuous. It means that each element in one space could be seen as an element
in the other and vice-versa, but different topologies are defined on these spaces. Now we prove that
the sigma algebra generated by the product topology in x5°,C'(R!; R) is contained on the sigma
algebra generated by the topology of uniform convergence on compact set in C(R?; R>). For each
f, g € C(RT;R°°) we have the following distances

Porod(f>9) = Yiey 3¢ (Z?%O:I 37 SUD, e g (o) E(1 fil@) — gi(x)l))7 on x32; C(R;R)
punif (£,9) = Yy e sWse (o) §( X021 6(fi(2) = gi(@)])),  on C(RI,R)

(20)

Using that £ is increasing and continuous and that sup, (>, hi(z)) < >, sup, h;(x) it can be
proved that there exists a constant C' > 0 such that || f|lunif < C||f|lprod. This mean that if

he BoY(f) = {g : |If = gllproa < €} than b € BEI(f) = {g : |f = gllunis < €}, thatis
BProd(f) Bg:zf (f) which implies o(pprod) C 0 (punis)- In particular each compact with respect

to || - || proa is compact with respect to || - ||unif, indeed considering a || - || proq-compact K then for
every sequence (k;) C K there exists (k;;) C K and k € K such that ||k;; — k||,r0a — 0. Moreover

5

ki, — kllunis < Cllki; — kllproa — 0,1.e. K is compact with respect to || - [|unf-

SMF

In this section we prove the Proposition 1.

Proof. By Proposition 16.6 of Kallenberg (2002) f(n) 4 fin C(RY; S) iff f(n) A finC(K;S)
for any K C R! compact. By Lemma 16.2 of of Kallenberg (2002) the latter holds iff f(n) 14 f
and (f(n))n>1 is relatively compact in distribution in C(XK; S). Note that converge of the finite-
dimensional distributions holds in R? iif it holds in the restriction K for any compact K C R’. The
space (C(K; S), px ), namely the space of continuous functions from a generic compact K C R to a
Polish space .S and C'(K; S) endowed with the uniform metric px (f, g) = sup,cx d(f(z), g(x)), is
itself a Polish space (Aliprantis & Border, 2006, Lemma 3.97 and Lemma 3.99). Thus by Proposition
16.3 of Kallenberg (2002), i.e. Prohorov Theorem, on C'(K, S) (f(n))n>1 is relatively compact in

distribution iif (f(n)),>1 is uniformly tight. Thus, so far we have shown that f(n) A fin C(R!;S)

iff: 1) f(n) 4 f and ii) the sequence (f(n)),>1 is uniformly tight on C'(K, S) for a generic compact
K C RZ. It remains to show that the latter holds if (f(n)),>1 is uniformly tight on C'(R’; S). Fix
K compact in R? and Consider the map

i (C(R;S), ps) = (C(K;S),pK), [ — fix

where f|x is the restriction of f to K and pg is the metric pr defined in (19) when S = R and pyniy
defined in (20) when S = R*°. By proposition 16.4 of Kallenberg (2002) if wx is continuous then it
moves uniformly tight sequences into uniformly tight sequences. The continuity of 7 follows by
the proof of Proposition 16.6 of Kallenberg (2002). O
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