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Abstract

It’s widely acknowledged that deep learning models with
flatter minima in its loss landscape tend to generalize bet-
ter. However, such property is under-explored in deep
long-tailed recognition (DLTR), a practical problem where
the model is required to generalize equally well across all
classes when trained on highly imbalanced label distribu-
tion. In this paper, through empirical observations, we ar-
gue that sharp minima are in fact prevalent in deep long-
tailed models, whereas naı̈ve integration of existing flatten-
ing operations into long-tailed learning algorithms brings
little improvement. Instead, we propose an effective two-
stage sharpness-aware optimization approach based on the
decoupling paradigm in DLTR. In the first stage, both the
feature extractor and classifier are trained under param-
eter perturbations at a class-conditioned scale, which is
theoretically motivated by the characteristic radius of flat
minima under the PAC-Bayesian framework. In the sec-
ond stage, we generate adversarial features with class-
balanced sampling to further robustify the classifier with the
backbone frozen. Extensive experiments on multiple long-
tailed visual recognition benchmarks show that, our pro-
posed Class-Conditional Sharpness-Aware Minimization
(CC-SAM), achieves competitive performance compared to
the state-of-the-arts. Code is available at https://
github.com/zzpustc/CC-SAM .

1. Introduction
Modern deep learning models, composed of multiple

neural network layers with millions of parameters, have

achieved remarkable successes in computer vision [24, 33,

† Equal contribution. � Corresponding authors. Work was primarily

done when Z. Zhou worked as L. Li’s intern at Tencent AI Lab, Shenzhen.

41, 48]. A key enabler of deep learning is the collection

of large-scale datasets [29, 42, 64], which are normally split

into training and testing sets with presumably i.i.d. sam-

ples. However, such scenario provides relatively trivial tests

for the generalization of machine learning models. In prac-

tice, label [17, 25, 56] and domain [14, 18, 23] distribution

shifts are prevalent, due to the disparity between the data

preparation and evaluation protocols. A classical example

is imbalanced [15] or long-tailed recognition [60], where

a model is trained on highly imbalanced source label dis-

tribution ps(y) while evaluated on a uniform target label

distribution pt(y).

In this paper, we focus on the practical yet challeng-

ing deep long-tailed recognition (DLTR) problem, which

is inherent in the visual world [32, 60] with fundamen-

tal connections to many disciplines such as the power-

law scaling in network science [2] and the Pareto prin-

ciple in economics [39]. In computer vision, numerous

deep long-tailed learning studies have emerged in recent

years, which mainly belong to 5 categories: class re-

balancing [7, 10, 28, 40, 45, 52, 54], information augmenta-

tion [22, 27, 31, 50, 55], decoupled training [20, 58, 62], rep-

resentation learning [9, 32, 51, 59, 65] and ensemble learn-

ing [6, 53, 63].

In this work, we propose a novel approach to DLTR

from a distinct angle, by seeking out flat minima in the loss

landscape of modern neural networks to ensure model ro-

bustness under parameter perturbation. Such optimization

strategy, termed flattening in our context, have been shown

in a myriad of literature to effectively improve generaliza-

tion of deep learning models in terms of supervised learn-

ing [13, 21, 35, 43], self-supervised learning [30] and con-

tinual learning [11, 44]. However, application and adap-

tion of flattening in the context of DLTR remain under-

explored. To fill this gap, we first show later in this paper
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(Section 2.2.2) that existing flattening methods are ineffec-

tive for long-tailed learning, consistent with the observation

from a very recent paper [49], due to severe label distribu-

tion shifts. Accordingly, we present a new efficient variant

of the sharpness-aware minimization (SAM) [13] technique

based on the Decoupling paradigm [20] of DLTR, which

leverages the invariance of the class conditional distribution

between the source and the target domain. In a nutshell, our

contributions are three-fold:

• Through the lens of flattening, we corroborate a very

recent observation [49] that existing sharpness-aware

minimization techniques are suboptimal for deep long-

tailed learning, justifying the need of more effective

approaches to this important and practical issue.

• We introduce Class-Conditional Sharpness-Aware

Minimization (CC-SAM), a novel algorithm tailored

for DLTR that improves model generalization by ro-

bust training against class-conditioned parameter per-

turbation. This technique is motivated by the char-

acteristic radius of flat minima we derive under the

PAC-Bayesian framework and can be implemented ef-

ficiently.

• We integrate CC-SAM with the two-stage decoupling

paradigm of DLTR. Extensive experiments demon-

strate that our method can achieve competitive perfor-

mance on multiple public DLTR benchmarks, with re-

markable robustness to out-of-distribution samples for

open long-tailed recognition [32].

2. Preliminaries
2.1. Problem Setup

Throughout the paper, we denote scalars as s, vectors as

s, sets as S and equality by definition as :=. For a typical

d-way classification task in DLTR, suppose we are given a

training dataset S =
⋃n

i=1{(xi,yi)} , where n is the to-

tal number of samples. Let’s denote {n1, n2, ..., nd} as the

sample number of each class, where n =
∑

i ni. With-

out loss of generality, we assume ni < nj if i < j, and

usually nd � n1, following a highly imbalanced class dis-

tribution. We further write the training (source) distribution

as ps(x,y) = ps(x|y)ps(y) and the testing (target) dis-

tribution as pt(x,y) = pt(x|y)pt(y). Consider a family

of models parameterized by w ∈ W ⊆ R
k; given a loss

function l: W × X × Y → R+, we define the empirical

training loss LS(w) := 1
n

∑n
i=1 l(w,xi,yi) and the pop-

ulation testing loss LT (w) := E(x,y)∼pt(x,y)[l(w,x,y)].
Having observed only S , the goal is to optimize for model

parameters w having lowest risk LT (w) at test time.

In DLTR, a key challenge is the label distribution

shift between the training and testing sets, i.e., ps(y) �=

(a) 1D global loss landscape. (b) 1D local loss landscape.

Figure 1. Loss value vs. noise norm ratio ||ε||2/||θ||2. All ex-

periments are conducted on the CIFAR-10-LT with an imbalance

ratio of 100, implemented with the same backbone ResNet-32 and

averaged over 5 random seeds.

pt(y) [17]. However, it’s logical to assume no distribu-
tion shift within each individual class. That is, the train-

ing and testing samples are drawn i.i.d. from the same

class-conditional distribution, which indicates ps(x|y) =
pt(x|y). Here, we build our flattening algorithm upon the

decoupling paradigm of DLTR [20], where the feature ex-

tractor f(x;ϕ) and classifier h(z;θ) are trained by dis-

tinct sampling strategies in a two-stage manner, with w :=
(ϕ,θ).

2.2. Motivation

Previous studies have shown strong connection between

the geometry of the loss landscape and generalization of

deep learning models [1, 16,19,21]. In this section, we first

empirically demonstrate that many deep long-tailed mod-

els exhibit sharp minima, and then show that naı̈ve appli-

cation of classical flattening operations results in limited

improvement. Motivated by these observations, we theo-

retically analyze the characteristic radius of flat minima in

DLTR to show that a class-conditional flattening procedure

is required.

2.2.1 Sharpness in Deep Long-Tailed Models

To show the pervasive sharpness in current DLTR mod-

els, we select two baselines (empirical risk minimization

of cross-entropy (CE), LDAM-DRW [7]) and two advanced

methods (MiSLAS [62], GCL [26]) from recent literature

to conduct experiments1. By perturbing the parameter θ of

the classifier h with increasing noise ε, we observe the loss

of each model on CIFAR-10-LT in Figure 1.

Figure 1(a) shows that, at global scale, the loss of CE is

the sharpest across a wide noise range. However, due to the

fact that DLTR methods usually employ distinct loss func-

tions, it’s hard to compare the sharpness of their loss land-

scapes in a fair and meaningful way. Moreover, large noise

ratio can easily flip the sign of parameters and deteriorate

1We re-implement all models via their publicly released code.
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Figure 2. Performance gain of naı̈ve integration of flattening op-

erations with DLTR algorithms. The number represents the stage

where flattening applies. For example, “SN.1.2” means we apply

spectral normalization on both stages. Only the first-stage result

of LDAM is reported since it’s a one-stage approach. All exper-

iments are conducted on CIFAR-100-LT with imbalance ratio of

100.

the classifier decision boundary. Therefore in this paper,

we only consider locally flat minima, i.e., in the perturba-

tive (||ε||2 � ||w||2) regime shown in Figure 1(b). From

this local view, only MiSLAS is observed to have a compa-

rable or flatter minimum than CE, suggesting that the exist-

ing DLTR methods have poor generalization and robustness

against model parameter perturbation. More detailed 2D

loss landscapes covering overall, head and tail classes are

depicted in Appendix E, and corroborate our observation

in 1D.

2.2.2 Naı̈ve Integration of Flattening Procedures

To improve the generalization of deep long-tailed models,

we experiment to navigate flatter minima by integrating the

existing flattening operations (stochastic weight averaging

(SWA) [16], spectral normalization (SN) [4], gradients pe-

nalization (GP) [61], and model perturbation (MP) [44])

into five representative deep long-tailed learning baselines

to see if they are generally beneficial for DLTR. Illustrated

in Figure 2, these flattening methods bring little or nega-

tive gains in most cases. Even though in some cases they

are beneficial, the corresponding baselines (mainly LDAM-

DRW) are too weak so that the final performance are still

sub-optimal, which calls for more effective flattening proce-

dures for DLTR. More implementation details are provided

in the Appendix C.

2.2.3 Characteristic Radius of Flat Minima

Let’s re-consider flattening operations in DLTR from a the-

oretical perspective. The empirical loss LS(w) is typically

non-convex for deep neural network models, whose land-

scape may exhibit multiple local or global minima with sim-

ilar values of LS(w) while having drastically different gen-

eralization performance (i.e., significantly different values

of LT (w)). In order to find a more effective approach for

generalization in DLTR, motivated by the high correlation

between sharpness of the loss landscape and model gener-

alization [19], we follow the sharpness-aware minimization

(SAM) framework [13] by optimizing an upper bound of

LT (w) derived from the PAC-Bayesian framework [34].

Given a prior over the parameters before observing any data

and a posterior over the parameters dependent on the train-

ing set and learning algorithm, the PAC-Bayesian frame-

work bounds the generalization error of any model in terms

of the KL divergence between the two probability distribu-

tions. Assuming a Gaussian prior and posterior, we arrive

at the following generalization bound (formal proof in Ap-
pendix D):

Theorem 1 (Perturbative PAC-Bayesian Generalization
Bound). For any ρ > 0, 0 < δ < 1, number of samples
n ∈ N

+, k := dim(w), with probability at least 1− δ over
a training set S sampled i.i.d. from distribution T ,

LT (w) ≤ max
||ε||2≤

√
kρ
LS(w+ε)+

√
||w||22
4ρ2 + log(nδ ) +O(1)

n− 1
.

Intuitively, optimizing the perturbative bound as a sur-

rogate function effectively seeks out parameter solutions

whose neighborhoods have uniformly low empirical train-

ing loss, thus achieving a flat minimum. Now, our key in-

sight is that the bound is convex with respect to the radius ρ
of the flat minima, hence there exists an optimal ρ∗ which

gives the tightest generalization bound:

ρ∗ := arg min
ρ

⎡⎣ max
||ε||2≤

√
kρ
LS(w + ε) +

√
||w||22
4ρ2 + log(nδ )

n− 1

⎤⎦ .

(1)

We denote ρ∗ as the characteristic radius of the flat min-

ima centered at w. It’s worth mentioning that such opti-

mal perturbation radius is overlooked by previous literature

on sharpness-aware optimization, mainly due to arguments

that the PAC-Bayesian bound is too loose to capture the real

generalization error [35]. However, our Theorem 1 inspired

from [8, 12] ensures a non-vacuous bound (i.e., the square

root term falls below 1, see empirical evidence in Appendix
B) in the over-parameterized ”deep learning” regime, ren-

dering the characteristic radius relevant for optimization.

Moreover, the perturbative bound can be approximated

by a first-order Taylor expansion, yielding

max
||ε||2≤

√
kρ
LS(w + ε) ≈ max

||ε||2≤
√
kρ

[
LS(w) + εT∇wLS(w)

]
= LS(w) +

√
kρ||∇wLS(w)||2

(2)
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Mini-batch

(a) Stage 1: Class-conditional sharpness-aware minimization. We take three

classes and classifier perturbation as examples for illustration.

Mini-batch

(b) Stage 2: Robust training of the classifier by progressively gener-

ating adversarial features.

Figure 3. The overall framework of CC-SAM.

and the optimal perturbation vector

ε̂∗(w) ≈ arg max
||ε||2≤

√
kρ

[
LS(w) + εT∇wLS(w)

]
=

√
kρ

∇wLS(w)

||∇wLS(w)||2
. (3)

Substitute Eqn 2 into 1, and ignore log(nδ ) by assuming ρ �
||w||2 as we discussed in Sec 2.2.1, obtaining

ρ∗ ≈
( ||w||2
2||∇wLS(w)||2

) 1
2

k−
1
4 (n− 1)−

1
4 (4)

with the approximated optimal generalization bound

L̂T (w) ≈ max
||ε||2≤

√
kρ∗

LS(w+ ε)+
1

2
√
n− 1

· ||w||2
ρ∗

. (5)

The first term captures the sharpness of LS at w, and the

second term serves as a regularizer on the magnitude of w,

akin to the L2 regularization in SAM [13]. A key differ-

ence here is that our regularization term is well motivated

by theoretic interpretation from the PAC-Bayesian bound.

3. Methodology
In this section, we introduce our two-stage sharpness-

aware optimization algorithm based on Decoupling [20] in

detail. In the first stage of the decoupled training, both the

feature extractor and classifier are trained under parameter

perturbations at a class-conditioned scale. In the second

stage, we generate adversarial features to further robustify

the classifier while freezing the backbone. The complete

pseudo-code is shown in Algorithm 1.

3.1. Stage 1: Class-Conditional Sharpness-Aware
Minimization (CC-SAM)

Note that a key assumption we made in Theorem 1 when

deriving the characteristic radius of flat minima is that the

training data S are drawn i.i.d. from the target distribution

T . However, as we explained in Sec 2.1, such assumption

is invalid due to the severe label distribution shift between

training and testing sets in DLTR. To resolve this funda-

mental conflict, we turn to the class conditional distribution

ps(x|y) and pt(x|y) instead, for which the i.i.d. assump-

tion reasonably holds. Accordingly, we decompose the to-

tal loss LT (w) and derive a generalization bound for each

class separately, obtaining

LT (w) =

k∑
c=1

Lc
T (w) =

k∑
c=1

Ex∼pt(x|c) [l(w,x, c)] , (6)

L̂c
T (w) = max

||ε||2≤
√
kρ∗

c

Lc
S(w + ε) +

1

2
√
n− 1

· ||w||2
ρ∗c

,

≈ (2||w||2||∇wL
c
S(w)||2)

1
2 k

1
4 (nc − 1)−

1
4 (7)

ρ∗c =

( ||w||2
2||∇wLc

S(w)||2

) 1
2

k−
1
4 (nc − 1)−

1
4 , (8)

ε̂∗c(w) ≈
√
kρ∗c

∇wL
c
S(w)

||∇wLc
S(w)||2

. (9)

An immediate observation of Eqn 8 is that the charac-

teristic radius ρ∗c is class-dependent, more specifically, neg-

atively correlated with the label frequency nc. One pos-

sible interpretation is that the model is more confident re-

garding the majority classes with higher nc, due to non-

asymptotic estimation error given limited samples, hence it

requires a smaller perturbative region in the parameter space

to ensure flat loss landscape with respect to that class. Ad-

ditionally, the class-wise generalization bound L̂c
T (w) in

Eqn 7 is positively related to the class-wise gradient norm

||∇wLc
S(w)||2, which effectively enforces hard example

mining.

It follows that optimizing the approximated general-

ization bound L̂T (w) =
∑k

c=1 L̂
c
T (w) yields an effec-

tive algorithm in the first stage, namely Class-Conditional
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Algorithm 1: Training Paradigm of CC-SAM

Input: Training Dataset

S ∼ ps(x,y) = ps(x|y)ps(y)
Output: Model trained with CC-SAM

Stage 1:

Initialize w = {ϕ,θ} randomly

while not converged do
foreach batch Bi in S do

Compute empirical loss LS with Bi

Estimate the class-specific gradient set

G = {g1, g2, ..., gk} with respect to LS
Perturb w with G according to Eqn 8 and

Eqn 9

Update w via Eqn 10 and Eqn 11

Stage 2:

Freeze ϕ
while not converged do

Sample batches via class-balanced sampler

S ′ = {B′
1,B′

2, ...,B′
m} ∼ ps(x|y)·Uniform(y)

foreach batch B′
i in S ′ do

Computing empirical loss LS with B′
i

Obtain the adversarial feature via Eqn 12

Evaluate overall loss according to Eqn 13

and Eqn 14

Update θ accordingly

Sharpness-Aware Minimization (CC-SAM):

Given learning rate η,

w ← w − η∇wLCC-SAM
S (w) (10)

≈ w − η
k∑

c=1

∇wL̂c
T (w)|w+ε̂∗c(w), (11)

which is computationally efficient since it only involves

first-order gradients. Even when w is close to the optimal

w∗, where ∇wLS(w)|w∗ ≈ 0, the gradient for each class

∇wLc
S(w)|w∗ for estimating the optimal perturbation vec-

tor ε̂∗c(w) in Eqn 9 is most likely far from zero, circumvent-

ing the need for computing high-order terms.

3.2. Stage 2: Robust Training of the Classifier

For the second stage, we freeze the backbone to maintain

feature representation and concentrate on refining the deci-

sion boundary of the classifier. Following Decoupling, we

adopt the class-balanced sampling strategy in this stage, to

rectify the classifier with uniform label distribution. As de-

picted in the Figure 3(b), when taking original feature z as

the input of classifier h(z;θ), we can generate adversarial

features in forward pass as follows:

zadv = z + λ
∇zLS(z;θ)

||∇zLS(z;θ)||2
(12)

LA = h(zadv;θ) (13)

where λ is the hyper-parameter to scale the adversarial gra-

dient ∇zLS(z;θ)/||∇zLS(z;θ)||2. Moreover, we employ

a progressive strategy to balance LS and LA. At epoch t,

L = (1− t

T
)LS +

t

T
LA (14)

where T is the total number of epochs in this stage, and LA
dominates the training progressively.

4. Evaluation

In this section, we evaluate our method on multiple

mainstream DLTR datasets and compare it with popular

baselines including the state-of-the-art (SOTA) methods.

Moreover, we also report the result on open-set recogni-

tion [32, 47] tasks to demonstrate the excellent robustness

of CC-SAM to out-of-distribution samples. In the end, an

ablation study is presented to verify the effectiveness of our

design choices.

4.1. Datasets and Baselines

Following the mainstream evaluation protocol [7, 63],

we conduct experiments on five major long-tailed datasets,

CIFAR-10-LT, CIFAR-100-LT, Places-LT [32], ImageNet-

LT [32], and iNaturalist 2018 [46].

CIFAR-10-LT/CIFAR-100-LT: These two datasets are

sampled from the original CIFAR with different imbal-

ance ratios β = Nmax/Nmin, where Nmax and Nmin are

the corresponding number of the most and least frequent

classes. Following [26], we set the imbalance ratio as {200,

100, 50} for evaluation.

Places-LT & ImageNet-LT: Both datasets were first pro-

posed by OLTR [32]. Places-LT contains 62.5K training

images spanning 365 classes in total, with imbalance ra-

tio 996. ImageNet-LT has 115.8K training images covering

1000 categories, with imbalance ratio being 256.

iNaturalist 2018: As a naturally long-tailed classification

dataset, iNaturalist 2018 contains 437.5K trainin images

from 8142 categories, and its imbalance ratio is 512. We

follow the official spilt in our evaluations.

For fair comparison, we exclude ensemble or pre-

training models in our experiments. The baselines and

state-of-the-art methods evaluated include (1) class re-

balancing: LDAM-DRW [7], LDAM-DRW + SAM [38],

De-confound-TDE [45], Lifted Loss [36], Focal Loss [28],

OpenMax [3], BBN [63], LADE [17], DisAlign [58],
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CIFAR-10-LT CIFAR-100-LT

Imbalance Ratio 200 100 50 200 100 50

CE 65.68 70.70 74.81 34.84 38.43 43.90

CE + Mixup [57] 65.84 72.96 79.48 35.84 40.01 45.16

LDAM-DRW [7] 73.52 77.03 81.03 38.91 42.04 47.62

De-confound-TDE [45] - 80.60 83.60 - 44.15 50.31

CE + Mixup + cRT [20] 73.06 79.15 84.21 41.73 45.12 50.86

BBN [63] 73.47 79.82 81.18 37.21 42.56 47.02

Contrastive Learning [51] - 81.40 85.36 - 46.72 51.87

BGP [49] - - - 41.20 45.20 50.50

MiSLAS [62] 77.31 82.06 85.16 42.33 47.50 52.62

VS + SAM [38] - 82.40 - - 46.60 -

GCL [26] 79.03 82.68 85.46 44.88 48.71 53.55

CC-SAM 80.94 83.92 86.22 45.66 50.83 53.91

Table 1. Top-1 Accuracy on CIFAR-10-LT and CIFAR-100-LT. All methods take ResNet-32 as the backbone. All baseline results except

BGP are directly adopted from [26]. “-” means the original paper didn’t report the corresponding results.

cRT Stage 1 + dir Stage 1 + mag Stage 2 Acc

� 37.8

� � 38.9

� � 37.5

� � � 40.1

� � � � 40.6

Table 2. Ablation studies on Places-LT. “Stage 1 + dir” en-

forces parameter perturbation along the recommended direction

(∇wL
c
S(w)/||∇wL

c
S(w)||2 in Eqn 9) with magnitude of 1,

whereas “Stage 1 + mag” enforces perturbation with the recom-

mended magnitude (ρ∗c in Eqn 9) in a random direction.

LUNA [5], BGP [49], VS+SAM [38] (2) information aug-

mentation: RSG [50], (3) decoupled training: Decouple-τ -

norm [20], cRT [20], MisLAS [62], GCL [26], (4) repre-

sentation learning: Range Loss [59], OLTR [32], IEM [65],

Contrastive Learning [51], ResLT [9].

Our code is implemented with Pytorch 1.4.0 and all ex-

periments are carried out on Tesla V100 GPUs. We train

each model with batch size of 64 (for CIFAR-10-LT and

CIFAR-100-LT) / 128 (for Places-LT) / 256 (for ImageNet-

LT) / 512 (for iNaturalist 2018), SGD optimizer with mo-

mentum of 0.9. We apply similar tricks in Balanced Soft-

max [40] as the mainstream methods have done. Although

we implemented CC-SAM under a two-stage framework, it

serves as a general technique to improve the existing DLTR

methods without model perturbation (Appendix A.3).

Intuitively, CC-SAM brings more computation overhead

due to additional gradient descents. But we only perturbed

the last several layers as an efficient version of CC-SAM in

our evaluation. A simple training time comparison is pre-

sented in Appendix A.5.

4.2. Main Results

We evaluate CC-SAM on the five mainstream public

benchmarks mentioned above, and the corresponding re-

sults are reported in Table 1 and Table 3. The best method

is bolded and the second best is underlined. Accord-

ing to the evaluations, we observe that CC-SAM unani-

mously attains the best ranking on CIFAR-LT datasets. On

large scale datasets (Places-LT, ImageNet-LT, and iNatural-

ist 2018), CC-SAM shows competitive performance com-

pared to other advanced methods, too. Specifically, it con-

sistently brings better gains to the medium and tail classes,

demonstrating the effectiveness of class-conditional flatten-

ing for deep long-tailed recognition.

4.3. Open Long-Tailed Recognition

The ability to detect out-of-distribution samples from

the open world, namely open-set recognition [47], pro-

vides a unique dimension for evaluating the robustness of

deep learning models. Open-set long-tailed recognition,

or OLTR [32], combines the open-set problems with deep

long-tailed learning to offer even more challenging tasks for

model generalization. Following the setting of OLTR [32],

we enable CC-SAM to distinguish the close-set and open-

set samples by applying a simple, non-learnable prototype-

based metric. Results are presented in Table 4. We find

that CC-SAM achieves the top F-measure performance and

outperforms LUNA [5] on Places-LT, a SOTA with a so-

phisticated open-set detection method based on hierarchical

metrics. The experiments demonstrate the remarkable gen-
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Dataset Method Backbone Many Medium Few Overall

ImageNet-LT

CE ResNeXt-50 65.9 37.5 7.7 44.4

Decouple-τ -norm [20] ResNet-50 56.6 44.2 27.4 46.7

Balanced Softmax [40] ResNeXt-50 64.1 48.2 33.4 52.3

LADE [17] ResNeXt-50 64.4 47.7 34.3 52.3

RSG [50] ResNeXt-50 63.2 48.2 32.2 51.8

DisAlign [58] ResNet-50 61.3 52.2 31.4 52.9

ResNeXt-50 62.7 52.1 31.4 53.4

ResLT [9] ResNeXt-50 63.0 53.3 35.5 52.9

BGP [49] ResNet-50 - - - 51.5

MiSLAS [62] ResNet-50 - - - 52.7

LDAM-DRW + SAM [38] ResNet-50 62.0 52.1 34.8 53.1

GCL [26] ResNet-50 - - - 54.9

CC-SAM ResNet-50 61.4 49.5 37.1 52.4

ResNeXt-50 63.1 53.4 41.1 55.4

Places-LT

CE ResNet-152 45.7 27.3 8.2 30.2

Decouple-τ -norm [20] ResNet-152 37.8 40.7 31.8 37.9

Balanced Softmax [40] ResNet-152 42.0 39.3 30.5 38.6

LADE [17] ResNet-152 42.8 39.0 31.2 38.8

RSG [50] ResNet-152 41.9 41.4 32.0 39.3

DisAlign [58] ResNet-152 40.4 42.4 30.1 39.3

ResLT [9] ResNet-152 39.8 43.6 31.4 39.8

MiSLAS [62] ResNet-152 - - - 40.2

GCL [26] ResNet-152 - - - 40.6

CC-SAM ResNet-152 41.2 42.1 36.4 40.6

iNaturalist 2018

CE ResNet-50 72.2 63.0 57.2 61.7

Decouple-τ -norm [20] ResNet-50 65.6 65.3 65.9 65.6

Balanced Softmax [40] ResNet-50 - - - 70.6

LADE [17] ResNet-50 - - - 70.0

RSG [50] ResNet-50 - - - 70.3

DisAlign [58] ResNet-50 - - - 70.6

ResLT [9] ResNet-50 - - - 70.2

BGP [49] ResNet-50 70.0 69.9 69.6 70.5

MiSLAS [62] ResNet-50 - - - 71.6

LDAM-DRW + SAM [38] ResNet-50 64.1 70.5 71.2 70.1

GCL [26] ResNet-50 - - - 72.0
CC-SAM ResNet-50 65.4 70.9 72.2 70.9

Table 3. Top-1 Accuracy on Places-LT, ImageNet-LT and iNaturalist 2018. As for Places-LT, we take a pre-trained ResNet-152 as the

backbone for a fair comparison.

eralization of CC-SAM due to its capacity to learn highly

robust representations.

4.4. Ablation Study

Since CC-SAM consists of multiple components, here

we provide an ablation study to demonstrate their effective-

ness. The result of experiments conducted on Places-LT are

shown in Table 2. In particular, CC-SAM degrades to cRT

without any of our proposed operations, which we take as

a baseline. It is observed that CC-SAM benefits from the

design choices of each individual stage, and the integration

of both stages shows the best performance.

We also study the class-conditional perturbation by dif-

ferentiating the impacts of choosing the right direction

∇wLc
S(w)/||∇wLc

S(w)||2 and the right magnitude ρ∗c in

Eqn 9, shown as ”stage 1 + dir” and ”stage 1 + mag” in Ta-

ble 2 respectively. For the former, we choose a perturbation

scale of 1. For the latter, we perturb the model parameters

by a random direction sampled from a zero-mean Gaussian.

It turns out the perturbation direction contributes more, and
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ImageNet-LT Places-LT

Method Many Medium Few F-measure Many Medium Few F-measure

CE 40.1 10.4 0.4 0.295 45.9 22.4 0.4 0.366

Lifted Loss [36] 34.8 29.3 17.4 0.374 41.0 35.2 23.8 0.459

Focal Loss [28] 35.7 29.3 15.6 0.371 41.0 34.8 22.3 0.453

Range Loss [59] 34.7 29.4 17.2 0.373 41.0 35.3 23.1 0.457

OpenMax [3] 35.8 30.0 17.6 0.368 41.1 35.4 23.2 0.458

OLTR [32] 41.9 33.9 17.4 0.474 44.6 36.8 25.2 0.464

IEM [65] 46.1 42.3 20.1 0.525 48.8 42.4 28.9 0.486

LUNA [5] 48.2 44.7 23.6 0.579 48.1 41.6 29.0 0.491

CC-SAM 61.4 49.5 37.1 0.552 41.2 41.8 36.4 0.510

Table 4. Open long-tail performance of top-1 accuracy on ImageNet-LT and Places-LT. F-measure is a balanced treatment of precision and

recall. The backbone of CC-SAM is ResNet-50 for ImageNet-LT, while other compared methods are equipped with ResNet-10.

applying both attains the best improvement. For more abla-

tion studies, please refer to Appendix A.1.

5. Related Work and Discussion
5.1. Deep Long-Tailed Recognition

A latest survey [60] systematically studies up-to-date

DLTR algorithms published at the top-tier conferences and

introduces a new taxonomy, dividing DLTR methodolo-

gies into three categories: class re-balancing, information

augmentation, and module improvement. For class re-

balancing, a branch of sampling strategies [20, 40, 52, 54]

have been proposed to re-balance the training distribution.

Meanwhile, some studies design dedicated loss functions

[7,10,28,45] to dynamically re-weight the gradients for op-

timization. As one representative of information augmenta-

tion, RSG [50] enriches the feature space of tail classes via

dynamical prototypes and a maximized vector loss. Decou-

pled training [20,58,62] propose to learn effective represen-

tation and robust classifier according to different sampling

strategies in two stages.

Our method follows the decoupled training paradigm.

Moreover, to combat label distribution shift, our method

seeks out flat minima by perturbing the model parameters at

a class-conditional scale, which is unseen in existing DLTR

literature.

5.2. Flattening for Deep Learning Models

Sharpness as a generalization measure of deep learning

models has been extensively explored in previous litera-

ture [1,13,16,19]. Keskar et al. [21] empirically found that

a large batch SGD optimizer might lead to sharp minima

and poor generalization. Inspired by this, He et al. [16]

implicitly averaged along the SGD trajectory to find the

asymmetric valleys, namely asymmetric flat minima. Due

to the power of flattening, it has also been applied to many

learning tasks to achieve better generalization. Rangwani

et al. [37] introduced a domain adversarial training frame-

work by adding an auxiliary loss to smooth the local minima

for domain adaptation. Shi et al. [44] demonstrated that a

flattened model was resilient to catastrophic forgetting in

class-incremental few-shot learning.

In this work, we investigate flattening in the context of

DLTR. To our best knowledge, there are only a few works

which succeed in applying flattening to improve generaliza-

tion in DLTR/OLTR. GBP [49] is built upon the observation

of high correlation between logits and gradient norm, and

proposes a gradient penalty loss as regularization. However,

it lacks rigorous theoretical interpretation by employing a

very loose (vacuous) PAC-Bayesian bound and meanwhile

under-performs compared to our approach (Table 1, 3). Liu

et al. [30] develops a variant of SAM that re-weights the

perturbation at instance level to combat data imbalance,

without specifying an optimal perturbation or giving any

theoretical justification; thus, we regard it as a simplistic

and incomplete version of our method. Besides, Rangwani

et al. [38] observes that re-weighting techniques in DLTR

lead to saddle points for tail classes, and directly leverages

SAM to alleviate this problem. In contrast, CC-SAM fur-

ther advances [38] by providing a theoretically motivated

class-conditional SAM design for better generalization and

robustness to label distribution shift.
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