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7 SUMMARY OF APPENDIX
We organize our supplementary material as follows:

• In Section 8, we provide a complex explanation of the pro-
posed QNCD through algorithm procedures.

• In Section 9, we provide a comprehensive statistical analysis
of the sources and effects of quantization noise in diffusion
models.

• In Section 10, we furnish additional visualization results
on CIFAR(32×32), ImageNet(256×256),MS-COCO(512×512)
and LSUN(256×256) Datasets.

8 ALGORITHM DETAILS
In the main paper, we describe the two core modules designed
for QNCD, intra quantization noise correction (Intra-QNCD) mod-
ule and inter quantization noise correction (Inter-QNCD) module,
which are depicted in Fig. (2).

Intra-QNCD occurs within the noise prediction process of single-
step sampling. Inter-QNCD occurs at the end of single-step sam-
pling. Here we add more details on how our QNCD incorporates the
sampling process of the diffusion model from algorithm procedures:

8.1 Intra quantization noise correction
In Resblock, the incorporation of embedding introduces imbalance
at the channel level, amplifying outlier features and ultimately lead-
ing to increased quantization noise. Therefore, in the Intra-QNCD
module, we propose the utilization of a channel-specific smoothing
factor 𝑆 . By dividing the activations with their respective 𝑆 values,
channels are balanced out and more adaptable to quantization. The
computation and workflow of static scale 𝑆 is shown in Alg. 1.

First, we obtain the exact embeddings and store themwhen quan-
tizing the noise prediction network 𝜖𝜃 . At the same time, according
to Eq. 7, we compute the static smoothing factor 𝑆 for each Resblock.
Lines 6-10 of the Alg. 1 show the scale separation process. Taking a
single Resblock as an example, we first get the accurate 𝑒𝑚𝑏𝑡 from
the tabular reference and add it to the features. Since embedding
scales the features channel-by-channel dimensionally, it makes the
distribution of the fused features uneven and difficult to quantify,
which is smoothed by our smoothing factor 𝑆 . We then incorporate
the smoothing factor into the weights, thus maintaining the mathe-
matical equivalence of the convolution. For the other Resblocks in
the network, we do the same above.
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Algorithm 1 Intra-QNCD in the noise prediction network 𝜖𝜃 .
Input: Floating-point noise prediction network 𝜖𝜃 .

Parameters: 𝑒𝑚𝑏𝑡 means the embedding at the t steps for the
Resblock.𝑊 means the convolutional weight of the output layer in

Resblock.
1: Collecting Calibration Set.
2: Converting noise prediction network 𝜖𝜃 to quantized one 𝜖𝜃
3: Calculating the tabular reference for embeddings and the

smoothing factor 𝑆
4: ...
5: ...
6: Sampling In a Resblock of the noise prediction network

𝜖𝜃 :
7: Get the accurate 𝑒𝑚𝑏𝑡 from the tabular reference.
8: Incorporate the 𝑒𝑚𝑏𝑡 into feature ℎ𝑡 .
9: Smooth ℎ𝑡 with smoothing factor 𝑆 .
10: Output feature 𝑌 = 𝑄 (ℎ𝑡/𝑆) ∗𝑄 (𝑊 ∗ 𝑆)
11: ...
12: ...

Algorithm 2 Inter-QNCD in the sampling process of diffusion
models.
Input: Floating-point noise prediction network 𝜖𝜃 . Parameters:

Hyperparameters in sampling 𝛼𝑡 , 𝛽𝑡 , 𝜎𝑡 . total timesteps 𝑇 ,
Estimation interval 𝑛.

Output: Final synthesized samples
1: Collecting Calibration Set.
2: Converting noise prediction network 𝜖𝜃 to quantized one 𝜖𝜃
3: Generate a Gaussian Noise 𝑥𝑇 as initialization.
4: for 𝑡 = 𝑇 to 1 do
5: 𝑧 ∈ 𝑁 (0, 𝐼 ) if 𝑡 > 1, else 𝑧 = 0

6: 𝑥𝑡−1= 1√
𝛼𝑡

(
𝑥𝑡 − 𝛽𝑡√

1−𝛼𝑡
𝜖𝜃 (𝑥𝑡 , 𝑡)

)
+ 𝜎𝑡𝑧

7: if 𝑡%𝑛==0 and 𝑡 < 𝑇 − 𝑛 then

8: Perform a diffusion process on 𝑥𝑡−1 :
𝑥𝑡 =

√
𝛼𝑡𝑥𝑡−1 +

√
1 − 𝛼𝑡𝑧1, 𝑧1 ∈ 𝑁 (0, 𝐼 )

9: Perform a denoising process on 𝑥𝑡 :
𝜖𝜃 (𝑥𝑡 , 𝑡) = 𝜖𝜃 (𝑥𝑡 , 𝑡) + 𝑞𝜃 (𝑥𝑡 , 𝑡) ≈ 𝑧1 + 𝑞𝜃 (𝑥𝑡 , 𝑡)

10: 𝑞𝜃 (𝑥𝑡 , 𝑡) ≈ 𝜖𝜃 (𝑥𝑡 , 𝑡) − 𝑧1
11: 𝑞𝜃 (𝑥𝑡 , 𝑡) ≈ 𝑞𝜃 (𝑥𝑡 , 𝑡)
12: else
13: 𝑞𝜃 (𝑥𝑡 , 𝑡) ≈ 𝑞𝜃 (𝑥𝑡+1, 𝑡 + 1) if 𝑡 < 𝑇 − 𝑛 else 0
14: end if
15: Feed 𝑞𝜃 (𝑥𝑡 , 𝑡) into Eq. (4) to remove inter noise: 𝑥𝑡−1 =

1√
𝛼𝑡

(
𝑥𝑡 − 𝛽𝑡√

1−𝛼𝑡
(𝜖𝜃 (𝑥𝑡 , 𝑡) − 𝑞𝜃 (𝑥𝑡 , 𝑡))

)
+ 𝜎𝑡

16: end for
17: Return final sample 𝑥0

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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8.2 Inter quantization noise correction
Alg. 2 shows the complete sampling process, where our inter quan-
tization noise correction module (Inter-QNCD) occurs after the
end of the single-step sampling. It is worth noting that our method
starts working only after the diffusion model has carried out several
normal sampling processes. Also, our Inter-QNCD is stage-by-stage
and is not performed at every step. First, the line 5 and line 6 in
Alg. 2 are the normal sampling process, and they yield the sampling
output 𝑥𝑡−1:

𝑥𝑡−1=
1

√
𝛼𝑡

(
𝑥𝑡 −

𝛽𝑡√
1− 𝛼𝑡

𝜖𝜃 (𝑥𝑡 , 𝑡)
)
+ 𝜎𝑡𝑧, 𝑧 ∈ 𝑁 (0, 𝐼 )

=
1

√
𝛼𝑡

(
𝑥𝑡 −

𝛽𝑡√
1− 𝛼𝑡

(
𝜖𝜃 (𝑥𝑡 , 𝑡) + 𝑞𝜃 (𝑥𝑡 , 𝑡)

) )
+ 𝜎𝑡𝑧.

(1)

And 𝑥𝑡 is obtained by adding a well-determined Gaussian noise 𝑧1
to 𝑥𝑡−1, which simulates the diffusion process:

Based on 𝑥𝑡 , the network outputs the desired filtered noise
𝜖𝜃 (𝑥𝑡 , 𝑡), which consists of two parts, first the target noise 𝑧1, and
the quantization noise 𝑞𝜃 (𝑥𝑡 , 𝑡).

𝑥𝑡 is obtained by a single-step denoising and diffusion process
on 𝑥𝑡 , thus their distributions remain highly similar as well as the
corresponding quantization noise:

𝑥𝑡 =
√
𝛼𝑡𝑥𝑡−1 +

√
1 − 𝛼𝑡𝑧1︸                     ︷︷                     ︸

diffusion process

, 𝑧1, 𝑧 ∈ 𝑁 (0, 𝐼 )

= (𝑥𝑡 −
𝛽𝑡√
1 − 𝛼𝑡

𝜖𝜃 (𝑥𝑡 , 𝑡) +
√
𝛼𝑡 ∗ 𝜎𝑡𝑧︸                                        ︷︷                                        ︸

denoising process

+
√
1 − 𝛼𝑡𝑧1

= 𝑥𝑡 −
𝛽𝑡√
1 − 𝛼𝑡

𝜖𝜃 (𝑥𝑡 , 𝑡) + (√𝛼𝑡𝜎𝑡 +
√
1 − 𝛼𝑡 )𝑧

≈ 𝑥𝑡

(2)

Finally, the quantization noise 𝑞𝜃 (𝑥𝑡 , 𝑡) can be determined, as the
Gaussian noise 𝑧1 is manually designed and 𝜖𝜃 (𝑥𝑡 , 𝑡) is the output
of the noise predicting network, both of which are ascertainable:

𝑞𝜃 (𝑥𝑡 , 𝑡) ≈ 𝑞𝜃 (𝑥𝑡 , 𝑡) ≈ 𝜖𝜃 (𝑥𝑡 , 𝑡) − 𝑧1 . (3)

Besides, the quantization noise is obtained through estimation
and doesn’t align perfectly with the actual noise in terms of pixel
dimension, whereas it is identical at the level of the overall distri-
bution. Thus we get the distribution of the quantization noise at
stage 𝑡 − 1 and correct the output sample in Eq. (4):

𝑥𝑡−1=
1

√
𝛼𝑡

(
𝑥𝑡 −

𝛽𝑡√
1− 𝛼𝑡

(𝜖𝜃 (𝑥𝑡 , 𝑡) − 𝑞𝜃 (𝑥𝑡 , 𝑡))
)

+ 𝜎𝑡𝑧, 𝑧 ∈ 𝑁 (0, 𝐼 )
(4)

9 STATISTICAL ANALYSIS
9.1 Activation Imbalance due to Embedding
As shown in Fig. 10 and Fig. 11, we visualize the data range of the
eight channels of feature activation (total channels are 256). The
following conclusions can be obtained:

• The addition of embedding makes the distance between the
upper and lower endpoints of the activation distribution
larger, which enlarges the range of features and increases
the number of outliers.

• The impact of embedding on features varies across different
channels, exhibiting a more pronounced effect on channels 0,
32, 96, and 160 while demonstrating a relatively diminished
influence on channel 224. This discrepancy arises from
the incorporation of embedding, as 𝑒𝑚𝑏𝑡 scales different
channels to varying extents.
Consequently, in order to address the non-uniform distri-
bution introduced by embedding, it becomes imperative to
tackle this issue on a per-channel basis.

• We present visualizations of the activation range at different
timesteps (t=50 and t=1). It is evident that the phenomenon
of uneven distribution of features, resulting from embedding,
persists across all time steps. This observation aligns with
the findings depicted in Fig. 1, indicating that the impact
of embedding permeates throughout the entire sampling
process and exhibits periodicity.

• The application of our scaling factor effectively mitigates
the impact caused by embedding, thereby reducing the oc-
currence of outliers and promoting a more compact data
distribution. With the incorporation of our scaling factor,
features can be quantized with greater ease.

9.2 Accumulated Quantization Noise
In Fig. 1, we present a visualization of the LPIPS Distance between
the quantized model output and its floating-point counterpart for
all 100 time steps, demonstrating that our method consistently
produces outputs that are closer in proximity.

As direct visualizing the quantization noise is challenging for
extracting information (defined as the absolute difference between
the output of the floating-point model and that of the quantization
model), we substitute it with an illustrative representation of its
distribution

As shown in Fig. 12, the first single-step output samples 𝑥100 con-
tain almost no quantization noise, since 𝑥100 is a standard Gaussian
noise. With continuous sampling, the mean value of the quantiza-
tion noise increases, implying the accumulation of quantization
noise.

Besides, the increasing interquartile spacing indicates a continu-
ous increase of large quantization noise in the pixel dimension. To
address this problem, we discern the distribution of quantization
noise via a reversal strategy, enabling its exclusion in subsequent
sampling steps. As shown in Fig. 12, the mean value of the quanti-
zation noise of our method is much lower than that of the original
quantization method, as well as the range of quantization noise.

Finally, for the final synthesized samples, the mean value of quan-
tization noise is reduced from 0.089 to 0.034, which is consistent
with the increase in output cosine similarity from 93.4% to 95.1% in
Fig. 8.

In the Fig 13, we visualize the changes in output during the
sampling process. It can be seen that there is a substantial gap
between the synthesized images of the quantized model and the
output of the full-precision model, and this gap magnifies as the
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Figure 10: Activation range of feature ℎ𝑡 in Resblock (DDIM model with 𝑡 = 50 on CIFAR). The feature distribution, when
combined with the embedding, exhibits pronounced irregularities, which can be efficiently smoothed using our scale separation
procedure.
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Figure 11: Activation range of feature ℎ𝑡 in Resblock ( DDIM model with t=1 on CIFAR).

sampling iterations continue. At the same time, our QNCD can
effectively correct the quantization noise, making the sampling
direction of the synthesized image closer to that of the full-precision
model, which demonstrates the effectiveness of our method.

10 ADDITIONAL VISUALIZATION RESULTS
In the body paper, we visualized the results of Stable Diffusion on
MS-COCO (512x512) under W4A6 configuration. In this section, we
visualize the results on more datasets with more diffusion models.
The order of the visualized results is as follows: W4A6 (Fig. 14) and

W4A8 (Fig. 15) for ImageNet, W4A8 (Fig. 16) for MS-COCO, W8A8
for CIFAR (Fig. 17), W8A8 for LSUN (Fig. 18) .
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Figure 12: Quantization noise for all 100 time steps (DDIM model on CIFAR). With iterative sampling, quantization noise
accumulates, which can be mitigated by our quantization noise estimation module. (W8A8)
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Figure 13: The output images during the denoising process. We conducte experiments on MS-COCO (512×512) using Stable
Diffusion (Step=50) in W8A8.
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(b) Sample generated with our QNCD (W4A6)

Figure 14: Class-conditional generation on ImageNet 256×256 by LDM-4 (steps=20). The bitwidth for Q-Diffusion and our
method is W4A6. The quality of our synthesized samples is much higher than that of Q-Diffusion. Corresponding FID is
decreased from 43.00 to 23.24.
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Figure 15: Class-conditional generation on ImageNet 256×256 by LDM-4 (steps=20). The bitwidth for Q-Diffusion and our
method is W4A8. Our method can generate high-fidelity images in only 20 steps.
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Figure 16: Text-guided image generation on MS-COCO 512×512 by Stable Diffusion (steps=50). The bitwidth for Q-Diffusion
and our method is W4A8. Both two method can generate high-fidelity images, while the details of images synthesized by our
QNCD are more rational.
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Figure 17: Unconditional generation on CIFAR 32×32 by DDIM (steps=100).
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Figure 18: Unconditional generation on LSUN-Bedrooms 256×256 by LDM-4 (steps=200). Compared with Q-Diffusion, samples
generated by our QNCD are less affected by quantization noise and exhibit a closer resemblance to the results of the floating-
point model.
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