
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

SUPPLEMENTARY MATERIAL: MEANINGFUL IMAGE CONTENT IS WORTH ONE
TOKEN

A IMPLEMENTATION DETAILS

Generative Decoder Our generative decoder is implemented as a DiT-XL/2 Peebles & Xie (2023)
and trained for one million steps with a learning rate of 10→4 using the AdamW Loshchilov & Hutter
(2019) optimizer, a linear warm-up of 2000 steps and a global batch size of 512 on 8 H100 GPUs.
Our implementation uses RoPE Su et al. (2023); Crowson et al. (2024), RMSNorm Zhang & Sennrich
(2019) and SwiGLU Shazeer (2020) activation functions, as we find that these modifications improve
the stability and performance of our generative decoder. We concatenate the SSL embedding to the
decoder patch tokens and apply full self-attention over all tokens.

MLP Mixer We adopt a standard MLP-Mixer Tolstikhin et al. (2021) architecture, where all
conditioning information: CLIP text embeddings for text-to-image (T2I) generation and class tokens
for class-conditional image generation is concatenated with the noisy image token and passed through
the model. Our implementation follows the configuration provided by the lucidrains

1 GitHub
repository, with a hidden dimension of 1280, a depth of 28 layers, an expansion factor of 4 for the
channel MLP, and 2 for the token MLP.

B ADDITIONAL RESULTS

GT [cls] [reg]

Figure S3: [cls] vs [reg] qualita-
tive comparison.

Qualitative examples per token type. As discussed in the
main paper, DINOv2 Oquab et al. (2024) offers two different
types of tokens (besides patch tokens). First, the standard
[cls] token and additionally a set of register tokens Darcet
et al. (2024). In Figure S3 we provide a qualitative compar-
ison of the differences in outcome between these two token
types. We keep the SSL backbone frozen and only train
our generative decoder. We can observe that the [reg]
token contains more knowledge about appearance, location,
and object orientation compared to the [cls] token. How-
ever, none of the approaches gives proper pixel-wise recon-
structions, again highlighting the need to integrate further
information from the SSL encoder.

Performance vs test-time compute. Figure S2a shows
the number of function evaluations (NFE) vs reconstruction
FID (rFID) on the ImageNet Deng et al. (2009) validation dataset. Performance improves with
increasing number of function evaluations (NFE), but saturates around 15–20. We hypothesize that
the strong conditioning signal from the generative decoder reduces the need for additional refinement
steps. Additionally, Figure S2b shows the generation performance depending on the number of
sampling steps. We see a continuous improvement with more NFE.

Table 5: Ablation of token type. Conditioning on DI-
NOv2’s Oquab et al. (2024) register tokens improves
pixel-wise metrics, indicating stronger local informa-
tion.

Token rFID → PSNR ↑ SSIM ↑ LPIPS →
[reg] 14.90 12.85 29.07 0.52

[cls] 14.13 12.59 28.41 0.54

Token type DINOv2 Oquab et al. (2024)
provides access to both a [cls] token and
a set of register tokens. We compare their
usefulness as latent representations for our
generative decoder in Table 5. Using a
frozen [cls] token results in strong re-
construction FID, indicating good semantic
alignment, but yields low pixel-level scores
such as PSNR and SSIM. In contrast, the
register token captures more fine-grained
visual details, improving pixel-wise reconstruction quality. This suggests that while the [cls] token
emphasizes semantic content, the register token retains more low-level and regional information.

1https://github.com/lucidrains/mlp-mixer-pytorch
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Image A ↓↔↔↔↔↔↔↔↔↔↔↔↔↔↔ Interpolation ↔↔↔↔↔↔↔↔↔↔↔↔↔↔↗ Image B

Figure S1: More single token latent space interpolation results. We observe smooth transitions
not only in semantic content but also in object spatial configuration, and especially in object rotation
(see dog).

(a) reconstruction (b) generation

Figure S2: Effect of inference steps for reconstruction and generation.

More qualitative samples We provide additional qualitative results to further illustrate the capabili-
ties of our model: text-conditional generations are shown in Figure S8, and uncurated class-conditional
ImageNet generations in Figure S10.

C LIMITATIONS

While our single-token representation enables highly efficient generation and significant compute
savings, it may limit expressiveness in capturing fine-grained details, particularly for complex or
high-resolution scenes. Extending our approach to support richer multi-token representations while
preserving efficiency is an interesting direction for future work. While our experiments demonstrate
that the single-token embedding preserves certain low-level spatial structures, achieving fine-grained
control over object location and scene composition remains an open challenge.

Figure S4: CFG effects on CLIP score and FID on the COCO Lin et al. (2014) validation set. As
commonly observed, CLIP score increases with larger CFG scales, while FID improves only within a
moderate range before rising again.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure S5: Comparing SSL priors over training steps. Our approach generalizes to different
self-supervised methods. While the unregularized model without prior knowledge shows remarkable
pixel-wise reconstruction, the latent space is not suitable for generation (see Table 4).

5K 10K 30K 80K

Figure S6: Uncurated class-conditional ImageNet generation results over training iterations (5k, 10k,
30k, and 80k). Note that our model produces good results as early as 30k training steps.

Reconstruction-Generation trade-off Another limitation of our method lies in the trade-off im-
posed by cosine similarity regularization. While stronger regularization enhances the smoothness and
structure of the latent space, which is crucial for stable generative modeling, it can also suppress low-
level detail, leading to degraded pixel-wise reconstructions. This trade-off may limit the applicability
of our approach in scenarios where very high visual reconstruction fidelity is critical.

Unleashing T2I for ImageNet-Pretrained Autoencoder We investigate the capabilities of our
Image-trained encoder-decoder framework. Figure S9 shows qualitative text-to-image samples.
Despite being trained exclusively on ImageNet, the latent space does not overfit and shows strong
generalization, generating diverse and high-quality images that extend well beyond the ImageNet
manifold. Although the model generates plausible images, we find it struggles with compositional
prompts that require placing multiple objects within a scene (e.g., a cat and a dog side-by-side). This
limitation is expected, since the object-centric bias of ImageNet offers little exposure to multi-object
scenes. However, finetuning our encoder on more diverse data alleviates this issue and enables the
generation of multi-object content.
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Reconstruction Generation

GT Random Ours Random Ours

Figure S7: Qualitative comparison between a randomly-initialized encoder and ours. Generation
refers to class-conditional samples with the same class as the corresponding GT image. While random
initialization achieves stronger pixel-level reconstruction, it lacks the structured priors of pre-trained
self-supervised encoders, resulting in poor generative performance. In contrast, our method balances
reconstruction and generation.

A cat in the snow
with blue eyes

A fierce lion, colorful, low-
poly, poly-hd, polygon mesh

A cute puppy
swimming in the water

A living room, bright modern
Scandinavian style

Figure S8: Additional text-to-image generation results with a CFG scale of 7.5 and RepTok encoder-
decoder trained on the COYO dataset.

A cup of coffee
on a wooden table

A staircase ascending
into clouds

A desert landscape with
rolling sand dunes

A child's drawing of a
grassland with wild flowers

Figure S9: T2I generation results (CFG scale 3.5), using RepTok solely trained on ImageNet data
with a latent space transformer. The autoencoder also transfers effectively to T2I tasks, producing
visually compelling results.
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Figure S10: Uncurated class-conditional generation results of RepTok with CFG scale of 3.5.
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