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Thought: Use the `facedetection` tool to detect 
human faces in the two images. 
Code:
faces_image1 = facedetection("image_1.jpg") 
faces_image2 = facedetection("image_2.jpg")
Observation: 
Faces in Image 1: 4 bounding boxes
Faces in Image 2: []
Thought: There are 4 children in total. The price of 
a PS5 is approximately $500, so the cost is 4* 500.
Code:
Final_answer = 4 * 500.

Thought: First analyze the image 1 to find the number 
of identifiable children. Then determine the price of 
PS5 from image2. 
Code:
faces_image = facedetection("image_1.jpg") 
price =image_qa ("what is the price? ", "image_2.jpg")
Observation: 
Faces in Image 1: 4 bounding boxes
Price of PS5: $479.99
Thought: Using the price of $479.99 for each console.
Code:
Final_answer = 4*479.99

Query: I want to buy a PS5 for each 
child in the photo. How many 
dollars will I need to spend in total?

Query: The men in the picture want to buy one NVIDIA GeForce RTX 4070 SUPER each. 
According to the price in January, how many dollars will they need to spend in total?

Thought: Use the `facedetection` tool to detect 
the number of human faces in the image
Code:
face = facedetection("image_1.jpg")
Observation: 
Faces : 3 bounding boxes
Thought: Use the `image_qa` tool for the price of 
NVIDIA GeForce RTX 4070 SUPER.
Code:
price = image_qa (" what is the price of GeForce 
RTX 4070 SUPER for three men”, "image_1.jpg")
Observation: 
This image does not provide any price. 
Thought: I cannot obtain useful information. I 
think the price is about $1800 for three men. 
Code: Final_answer = 1800

Thought: Use the `facedetection` tool to detect the 
number of human faces in the image
Code:
face = facedetection("image_1.jpg")
Observation: 
Faces : 3 bounding boxes
Thought: Use the `web_search` tool for the price of 
NVIDIA GeForce RTX 4070 SUPER.
Code:
price = web_search (query="NVIDIA GeForce RTX 
4070 SUPER price")
Observation: 
… … On January 8, 2024, Nvidia released the RTX 
4070 SUPER at $599, … …
Thought: The price is $599. There are three men.
Code: Final_answer = 3 * 599
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Figure 1: The comparison of the LLM (GPT-4)-driven agent and our T3-Agent. Our agent chooses
more precise tools based on the given files and intermediate observations.

ABSTRACT

The advancement of large language models (LLMs) prompts the development of
multi-modal agents, which are used as a controller to call external tools, providing a
feasible way to solve practical tasks. In this paper, we propose a multi-modal agent
tuning method that automatically generates multi-modal tool-usage data and tunes
a vision-language model (VLM) as the controller for powerful tool-usage reasoning.
To preserve the data quality, we prompt the GPT-4o mini model to generate queries,
files, and trajectories, followed by query-file and trajectory verifiers. Based on the
data synthesis pipeline, we collect the MM-Traj dataset that contains 20K tasks
with trajectories of tool usage. Then, we develop the T3-Agent via Trajectory
Tuning on VLMs for Tool usage using MM-Traj. Evaluations on the GTA and
GAIA benchmarks show that the T3-Agent consistently achieves improvements
on two popular VLMs: MiniCPM-V-8.5B and Qwen2-VL-7B, which outperforms
untrained VLMs by 20%, showing the effectiveness of the proposed data synthesis
pipeline, leading to high-quality data for tool-usage capabilities.

∗Equal contribution. � Corresponding author.
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1 INTRODUCTION

Integrating external tools to solve diverse multi-modal tasks is a promising research direction towards
multi-modal agents (Surís et al., 2023; Gupta & Kembhavi, 2023; Gao et al., 2024; Yuan et al., 2024;
Zhong et al., 2023). Existing agents usually use a large language model (LLM) as the controller that
generates plans via prompt engineering to call tools, achieving impressive performance in multiple
domains, such as image editing (Wu et al., 2023), robotic manipulation (ichter et al., 2023), question
answering (Shen et al., 2024), video understanding (Fan et al., 2024), and desktop APPs (Trivedi
et al., 2024). Despite their success, prompt engineering faces limited reasoning abilities for tool usage
in tackling practical tasks, as shown in Fig. 1. (1) The in-context examples in prompts only involve
textual information, degrading the efficiency of tool usage in the multi-modal world. For the query
‘How many dollars will I need to spend to buy a PS5 for each child?’, the agent may select improper
tools if it does not know what the two images depict. (2) The pre-defined in-context examples are
fixed and cannot tackle all tasks in the real world. For the task that requires searching for information
from the web, the agent cannot use the proper tools, if in-context examples tend to use the ‘image_qa’
tool. This motivates us to enhance the controller’s reasoning ability for efficient tool usage.

In this paper, we propose a multi-modal agent tuning method that automatically generates a large num-
ber of multi-modal tasks with tool-usage trajectories and tunes a vision-language model (VLM) (Liu
et al., 2024b; Chen et al., 2024d; Yao et al., 2024) as the controller for powerful tool-usage reasoning.
Compared with LLM-driven agents, VLM-driven agents can utilize multi-modal information (such as
required knowledge domains in the multi-modal data) instead of only using the query for reasoning,
benefiting efficient tool usage (Liu et al., 2024c; Wang et al., 2024a; Sun et al., 2024). Many efforts
are made to enhance specific capabilities of VLMs via finetuning, such as the chain-of-thought
ability (Hu et al., 2024), grounding ability (Peng et al., 2023), and feedback-refining ability (Li et al.,
2024). This inspires us to construct a large number of multi-modal tool-usage data for VLM-driven
agents, which improves the reasoning ability when using tools for real-world tasks.

In doing so, we need to overcome two challenges. (1) Collecting multi-modal tasks is challenging.
Tasks in the real world usually involve multiple tools for multiple files (images, textual files, videos,
audio, and etc). There are few off-the-shelf datasets for such tasks, and prompting models to generate
natural and diverse queries with matched files is non-trivial. (2) Generating trajectories is challenging.
Due to the complexity of trajectories, existing methods usually manually define templates and fill in
key information for trajectory generation. This will limit the diversity of synthesis data and cause
weak generalization for real-world tasks.

To overcome the above challenges, we introduce a novel tool-usage data synthesis pipeline that auto-
matically generates a large number of multi-modal tool-usage data via three steps: query generation,
file generation, and trajectory generation. Concretely, we first prompt GPT-4o mini (OpenAI, 2024)
to generate queries and analyze what files are needed to solve the queries. Then, we produce files via
two strategies. If needed files are images, we search for them from existing image datasets; otherwise,
we prompt GPT-4o mini to produce codes to generate the needed files. Finally, we prompt a zero-shot
agent to solve the generated tasks (i.e., queries and files) and collect trajectories, including the
thoughts and codes in task solving. To preserve the data quality, the generated tasks and trajectories
are passed through two verifiers to discard low-quality data. After that, we use these data to tune a
VLM for efficient tool usage, through which one agent driven by the trained VLM could generate
precise thoughts and codes for real-world tasks.

With the data generation pipeline, we construct MM-Traj, a dataset that contains 20K multi-modal
tasks with tool-usage trajectories. Based on MM-Traj, we introduce the T3-Agent, a VLM-driven
agent in the ReAct framework (Yao et al., 2023). The VLM controller of the T3-Agent is developed
via Trajectory Tuning for Tool usage using MM-Traj. We conduct comprehensive evaluations of the
T3-Agent on the GTA (Wang et al., 2024b) and GAIA benchmarks (Mialon et al., 2023), where two
popular VLMs are used as the controller, that is MiniCPM-V-8.5B (Yao et al., 2024) and Qwen-VL-
7B (Wang et al., 2024c). The T3-Agent consistently achieves improvements on the two VLMs and
outperforms the untrained VLMs by 20%. This indicates that our multi-modal agent tuning method
enables agents a powerful tool-usage capability for complex and diverse trajectories.

In summary, our contributions are three-fold. (1) We propose a multi-modal agent tuning method that
automatically generates a large number of multi-modal tasks with trajectories and tunes VLMs using
the generated data for powerful tool usage. (2) We introduce MM-Traj, a multi-modal tool-usage
dataset that contains 20K tasks across diverse knowledge domains with 15K files and high-quality
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trajectories. (3) We develop the T3-Agent, a multi-modal tool-usage agent that significantly improves
the tool usage performance on two popular benchmarks: GTA and GAIA.

2 RELATED WORK

2.1 MULTI-MODAL AGENT

Using external tools to address complex tasks is an important ability for multi-modal agents. Ac-
cording to different controllers, existing agents can be categorized into LLM-driven agents and
VLM-driven agents. LLM-driven agents utilize powerful LLMs as the controller and produce pseudo
code (Gupta & Kembhavi, 2023; Gao et al., 2024), python code (Surís et al., 2023; Yuan et al., 2024),
or JSON format (Shen et al., 2024) to call tools via one-step reasoning. Considering the complexity
of practical tasks, some methods (Yang et al., 2023; Fan et al., 2024; Yang et al., 2024) empower
the agent with step-by-step reasoning, which allocates tools based on observations of previous steps.
Compared with LLM-driven agents, VLM-driven agents are more efficient in task solving, since the
VLM controller can utilize information from visual data in tool usage, showing superior performance
in visual design (Sasazawa & Sogawa, 2024), web search (Zheng et al., 2024a), image editing (Wang
et al., 2024e), embodied scenario (Zheng et al., 2024b), robotic manipulation (Sun et al., 2024), and
etc. However, VLM-driven agents have a weaker reasoning ability, compared with LLM-driven
agents. Thus, several works synthesize training data to tune open-source VLMs for general tool
usage (Wang et al., 2024a; Liu et al., 2023a; 2024c). Due to the challenges of trajectory generation,
existing methods mainly focus on simple tasks requiring one or two tools, and only synthesize a small
amount of data (e.g., 1K in (Liu et al., 2024c)). Different from them, our T3-Agent is tuned using
scaled-up multi-modal data with complex tool-usage trajectories, through which our agent could
solve more practical tasks with strong tool-usage capability.

2.2 TOOL-USAGE DATASET

Several tool-usage datasets have been established for agents, such as APIBank (Li et al., 2023), Toolal-
paca (Tang et al., 2023), ToolBench (Qin et al., 2023), AnyTool (Du et al., 2024), agentohana (Zhang
et al., 2024a), APIGen (Liu et al., 2024d), and AgentInstruct (Zeng et al., 2023). The above datasets
contain little multi-modal data (e.g., images, videos, and audio) that are commonly encountered in
the real world. Thus, to evaluate the performance of agents in solving multi-modal tasks, some multi-
modal agent benchmarks have been built, such as the GUI benchmarks: OSWorld (Xie et al., 2024)
and MMInA (Zhang et al., 2024b), multi-modal question answering benchmarks: GAIA (Mialon
et al., 2023), GTA (Wang et al., 2024b), and m&m’ (Ma et al., 2024), and comprehensive benchmarks:
AgentBench (Liu et al., 2023b) and AgentGym (Xi et al., 2024). In addition, some efforts are paid
to synthesize trajectory data using LLMs to improve the tool-usage ability of multi-modal agents.
DEDER (Choi et al., 2024) resorts to in-context learning to generate trajectories, through which the
chain-of-thought reasoning ability is distilled from LLMs to a small model. Lumos (Yin et al., 2024)
converts ground-truth reasoning steps in existing benchmarks into the expected format of tool-usage
trajectories. TASKBENCH (Shen et al., 2023) samples trajectories from a predefined graph, and
then generate queries. MLLM-Tool (Wang et al., 2024a) and LLaVA-plus (Liu et al., 2023a) collect
trajectories based on image and tool descriptions. VisualAgentBench (Liu et al., 2023b) manually
designs trajectory templates to collect data. Different from the above methods that usually focus on
simple and predefined trajectories, or rely on queries in off-the-shelf datasets, our data collection
pipeline generates diverse tasks and complex trajectories without any constraints, improving the
volume, complexities, naturalness, and diversity of the tool-usage dataset.

3 DATA COLLECTION

3.1 FORMULATION

Data Synthesis Pipeline. The proposed data synthesis pipeline is shown in Fig. 2, including three
steps: query generation, file generation, and trajectory generation. To preserve the quality of data, we
design a query-file verifier and a trajectory verifier to discard low-quality data.

Data format. We format the multi-modal tool-usage data as {Fopt, Q, T, C,O,A}, where Fopt
denotes the multi-modal files, Q means the query, T mean the generated thought (i.e., plans to call
tools), and C means the generated code, O means observation (outputs of using tools), and A means
the ground truth answer. opt means that the files are optional, i.e., some queries do not involve files.
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Tool Set

Query Seed

Prompt
You are tasked with generating user
queries that will prompt an agent to call
various tools.
Our toolse: <TOOL_SET>
I will now provide user query examples:
<QUERY_SEED>

Please output the Queries in a json format.

Query
Circle the habitat of this
animal on the map.

File Content
File 1: .jpg file. Two images
contain callithrix flaviceps
animal and the world map.
File 2: .pdf file. One file
contains habitats of
various animals, including
the Brazil habitat for
callithrix flaviceps .

Image

Other files

Image database

Trajectory
Thought: Use the image_qa tool to identify animals.
Code:
a1 = image_qa(‘what is the animal?’, ’image1.jpg’)
print (f‘The animal is {a1}.’)
Observation: The animals is callithrix flaviceps.

Thought: Use the file_inspector tool to identify the habitat.
Code:
l1 = file_inspector (‘habitat of callithrix flaviceps’, ‘habitat.pdf’)
print (f‘The habitat is {l2}’)
Observation: The habitat is Brazil.

Thought: Use the image_edit tool to circle Brazil.
Code:
final_answer = image_edit (‘draw a circle on Brazil’, ‘image2.pdf’)

Query-file check

Trajectory check

Zero-Shot Agent

Query Generation

File Generation

Trajectory Generation
Code for file generation

Image retrieval

File content 
generation

MM-Traj

Figure 2: The pipeline for data generation.

The query Q could be divided into two categories, question answering and image generation, where
the answer A would be some descriptive texts for the former and images for the latter. In our setting,
F includes 11 types of files, such as JPG, PDF and PPTX files (details in Appendix). Considering
that solving one real-world task may require multiple steps involving multiple tools, T , C, and O
can be represented by the integration of thought, code, and observation in multiple steps, and the
data format is reformulated as {Fopt, Q, {t1, · · · , tn}, {c1, · · · , cn}, {o1, · · · , on}, A}, where ti, ci,
and oi indicate the thought, code, and observation in the i-step respectively, and there are n steps in
total. The thought, code, and observation are composed of a trajectory {t1, c1, o1, · · · , tn, cn, on} of
n steps to solve the query.

Image source. Visual information plays an important role in multi-modal tasks. To enhance the
diversity and comprehensiveness of our tool-usage data, we compile about 93K image-captioning
pairs from 8 source datasets, including ChartQA (Masry et al., 2022), COCO (Lin et al., 2014),
LLaVA (Wang et al., 2023a), SAM (Kirillov et al., 2023), TextVQA (Singh et al., 2019), Web-
Celebrity (Liu et al., 2015), Web-Landmark (Weyand et al., 2020), and WikiArt (Saleh & Elgammal,
2015). These datasets cover multiple multi-modal tasks: visual question answering, chart/table/doc-
ument analysis, science question answering, and etc. We use the ShareGPT4V model (Chen et al.,
2024b) to produce captions for each collected image.

3.2 QUERY GENERATION

Our goal is to generate a large number of diverse, practical, and feasible queries. We manually write
some seed queries by brainstorming and double-checking them to ensure their practicality. In each
step of query generation, we feed several randomly sampled seed queries, tools with descriptions,
and a designed prompt to the GPT-4o mini model that generates multiple queries. Adding tool
descriptions to the prompt makes GPT-4o mini better understand the desirable queries, improving the
feasibility of generated queries. We tune the hyperparameters (such as temperature) of GPT-4o mini
to improve the diversity of generation.
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3.3 MULTI-MODAL FILE GENERATION

Different from existing multi-modal data synthesis methods that first sample multi-modal files (images
in most cases) from off-the-shelf datasets and then feed the files to language models (e.g., ChatGPT)
for query generation, we opt to first generate queries without files and then produce relevant files
for the queries. The reasons are two aspects. (1) Practical tasks usually involve not only images
but also other multi-modal files, such as DOCX, PPTX, XLSX, and PDF files. It is challenging to
construct off-the-shelf datasets that contain enough files for real-world tasks. (2) Tasks are usually
based on multiple files instead of only one, while randomly sampled files may have weak relevance,
and feeding them to language models usually produces non-natural queries. It is non-trivial to design
a standard to automatically sample relevant files for query generation. (3) Using existing files to
generate queries may limit the knowledge domain, decreasing the diversity of tasks. In contrast,
generating files based on generated queries may lead to more diversity.

Concretely, for each generated query, we prompt GPT-4o mini to output the needed file type and file
content. The files are divided into two categories: images and others. For needed images, we use
the BGE model (Chen et al., 2024a) to extract textual embeddings of the file content and compare
its similarities with collected source images from off-the-shelf datasets. The top similar images are
collected for the query. For other needed files, we prompt GPT-4o mini to extend the file content and
generate Python code to produce the files.

3.4 ZERO-SHOT AGENT INFERENCE

Trajectories are collected by prompting a zero-shot agent (without training) to solve our generated
tasks (i.e., queries and files). We utilize the framework of ReAct agents (Yao et al., 2023), where
GPT-4o mini is employed as the controller. It solves the query into multiple steps and generates
thought and code for each step based on the observations of previous steps. We collect trajectories
whose code can be executed, including the thoughts, codes, and observations of all steps. The details
of the agent can be found in Section Appendix C and Appendix D.

3.5 DATA VERIFICATION

To preserve the quality of generated tool-usage data, we design a query-file verifier and a trajectory
verifier to discard low-quality data. Using LLMs to verify the quality of LLM outputs has shown
effectiveness in multiple methods, such as verifying the generated instructions (Wang et al., 2023b)
and verifying the generated plans (Liu et al., 2024d). Inspired by them, we argue that using LLMs
can also verify the synthetic tasks and trajectories.

Query-file verifier. Considering that the generated queries may be infeasible to solve and the
produced files may not match the queries, the query-file verifier filters out low-quality query-file pairs.
We prompt GPT-4o mini as the verifier based on the following factors: (1) whether the query and files
are relevant; (2) whether the files contain enough information to solve the query; and (3) whether the
query can be solved based on the given tools.

Trajectory verifier. Similarly, we prompt GPT-4o mini as the trajectory verifier based on the
following factors: (1) the trajectory should use the provided tools as much as possible; (2) the
trajectory should be reasonable, that is, the trajectory should align with the object and context of the
query; (3) the tool usage in the trajectory should consistent with the query and files; (4) the input
arguments for tools in the trajectory should be correct; (5) the answer should be correctly summarized
from observations of tool-usage; and (6) the final answer should be relevant to the query.

3.6 MM-TRAJ DATASET

Data that passes through the two verifiers is considered high-quality and collected in an MM-Traj
dataset. In summary, we collect 23.5K data points from query generation and file generation. After
passing through the two verifiers, 20K data points are left with 15K files.

Scalability. Note that our method can extend to additional modalities by incorporating more tools and
leveraging advanced multi-modal models. For example, to extend our method to the video modality
(MP4, MOV), we can integrate a video search model into the data synthesis pipeline (like the image
modality), and apply a video-language model to the agent controller with powerful video processing
models as tools. This approach ensures seamless adaptation to new modalities while maintaining
efficiency and coherence.
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Figure 3: Data statistics on the MM-Traj dataset.

3.6.1 DATASET ANALYSIS

We provide four key statistics: file type, knowledge domain, step number, and used tools in the
collected MM-Traj Dataset. File type. We show the distribution of files in Fig. 3(a), which reflects
the diversity of our dataset. MM-Traj covers more than 9 kinds of files, all of which are commonly
encountered in the real world. Thus, the T3-Agent trained on MM-Traj can handle practical tasks
since the multi-modal knowledge is not limited to images in our lives. Knowledge domain. We show
the involved knowledge of the generated tasks in Fig. 3(b), which can be divided into 16 non-overlap
categories, spanning across finance, environment, culture, health, history, food, and etc. Training in
such data provides rich knowledge to use tools to solve diverse practical tasks. Tools. In Fig. 3(c),
we show the distributions of used tools in generated trajectories. The web search tool is the most
commonly used tool, which is consistent with practical tasks requiring specific knowledge. Moreover,
other tools are also widely used in our dataset. Step number. We show the distributions of step
numbers of generated trajectories in Fig. 3(d). Trajectories in the MM-Traj dataset have diverse
step numbers. Most tasks require 2-6 steps to solve, and some tasks require 7-8 steps, showing the
complexity and diversity of our dataset.

4 T3-AGENT

4.1 WORKFLOW

To handle practical tasks that require complex trajectories, we opt for the framework of the ReAct
agent that performs step-by-step reasoning for tool usage based on observations of previous steps.
In each step, the agent generates thought and corresponding code to execute tools. Compared with
other formats (e.g., JSON format), code is more flexible to handle different inputs and output types
for various tools. Concretely, given a query Q and files F , the i-step of the agent is formulated as

t⋆i , c
⋆
i = argmaxP (ti, ci|Fopt, T,Q, hi), (1)

where t⋆i and c⋆i are thought and code for the i-th step, and hi = {t1, c1, o1, · · · , ti−1, ci−1, oi−1}
denotes the history (thought, code, and observation of previous steps).
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Table 1: Used tools in the T3-Agent
Tool name Tool description
Web search Perform complicated web browsing to answer a question

Image question answering Answer questions for queries based on attached images
File inspector Answer questions for queries based on given files

Visual segmentation Do instance segmentation on the given image
Object localization Localize objects in given images and output the bounding boxes
Image generation Create an image according to a textual prompt

Image editing Edit image based on the textual prompt
Face detection Detect human faces in given images and output the bounding boxes

Python package Various packages such as ‘matplotlib’ and ‘opencv’

4.2 TOOLS

We deploy real-executable tools for the agent instead of only providing tool names. Our tools are
across multiple categories: web search, visual perception, image generation/editing, file understand-
ing, multi-modal understanding, and multiple Python packages, as shown in Tab. 1.

4.3 TRAINING

Given a data point {Fopt, Q, {t1, · · · , tn}, {c1, · · · , cn}, {o1, · · · , on}, A}, we train the VLM con-
troller using the cross-entropy loss,

minE(Fopt,Q,T,C,O,A)∼D

[
−

n∑
i=1

P (ti, ci|Fopt, T,Q, hi)

]
, (2)

where D is the collected MM-Traj dataset and we sum the loss values of the n steps in the trajectory.
Note that, in training VLMs, we do not use the final answer A, as we encourage the controller to
leverage tools in solving given tasks, instead of directly producing an answer based on its internal
knowledge. After training, we obtain the T3-Agent.

Model. We use the same model architectures as MiniCPM-V-8.5B (Yao et al., 2024) and Qwen2-VL-
7B (Wang et al., 2024c) as our VLM controllers, including their visual encoders, resamplers, and
LLMs. We initialize the model using their released versions.

5 EXPERIMENTS

5.1 SETTING

To evaluate the effectiveness of the proposed multi-modal agent tuning method, we evaluate the
T3-Agent on the GTA (Wang et al., 2024b) and GAIA (Mialon et al., 2023) benchmarks and compare
it with agents that use closed-source models (GPT-4, GPT-4o, and Claude3) and open-source models
(LLaMA-3-70B-instruct (Dubey et al., 2024), Qwen1.5-72B-chat (Bai et al., 2023), LLaVA-NeXT-
8B (Liu et al., 2024a), InternVL2-8B (Chen et al., 2024c), Qwen2-VL-7B (Wang et al., 2024c), and
MiniCPM-V-8.5B (Yao et al., 2024)) as the controllers. Concretely, we compare the T3-Agent with
Lego Agent (AgentLego Contributors, 2023), Sibyl Agent (Wang et al., 2024d), and the Warm-up
Act Agent (Mialon et al., 2023). The huggingface agent (HF Agent) (HuggingFace Contributors,
2024) is the baseline agent, using the same tools as the T3-Agent. We conduct ablation experiments
to evaluate our data synthesis pipeline and visualize the task-solving process of our T3-Agent.

Training. To preserve the visual perception and reasoning capabilities of MiniCPM-V and Qwen2-
VL, we combine the training data in MM-Traj with the data in Cauldron (Lindström & Abraham,
2022) and open-LLaVa-NeXT (Chen, 2024) datasets. We train 5 epoch over all data. In the training
process of our VLM controller, we freeze the vision encoder and visual token compressor, and
fine-tune the language model using LoRA (Hu et al., 2022). We set the rank as 64 and apply LoRA
on query, key, and value projection matrices in all self-attention layers. We use the AdamW optimizer
with a cosine annealing scheduler. The learning rate is 1e− 6 and the batch size is 2. We set the max
context window to 10240 to support the long trajectory of our agent.

Benchmark. GTA and GAIA benchmarks are comprehensive evaluation benchmarks for multi-modal
agents. GTA contains 229 tasks with 252 images, and the steps required to solve tasks range from
2 to 8, with most questions requiring 2 to 4 steps. It requires multi-modal agents to build powerful
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Table 2: Results on the GTA benchmark
Method Controller AnsAcc ToolAcc CodeExec

Lego Agent GPT-4 46.59 - -
Lego Agent GPT-4o 41.52 - -
Lego Agent GPT-3.5-turbo 23.62 - -
Lego Agent Claude3-opus 23.44 - -
Lego Agent Qwen1.5-72B-chat 13.32 - -
Lego Agent LLaMA3-70B-instruct 8.32 - -
HF Agent GPT-4o 57.05 63.41 95.12
HF Agent GPT-4o mini 57.69 56.10 100.00
HF Agent LLaVA-NeXT-8B 14.10 14.97 25.08
HF Agent InternVL2-8B 32.05 36.75 52.18
HF Agent MiniCPM-V-8.5B 33.97 36.59 56.10
HF Agent Qwen2-VL-7B 42.31 44.85 65.19
T3-Agent Tuned MiniCPM-V-8.5B 52.56 65.85 80.49
T3-Agent Tuned Qwen2-VL-7B 53.85 64.63 84.32

Table 3: Results on the validation set of the GAIA benchmark
Method Controller AnsAcc Level 1 Level 2 Level 3

Sibyl Agent GPT-4-turbo 29.70 43.40 27.90 7.70
Warm-up Act GPT-4-turbo 17.60 30.20 15.10 0.00

HF Agent GPT-4o 33.40 47.17 31.40 11.54
HF Agent GPT-4o mini 26.06 33.96 27.91 3.84
HF Agent LLaVA-NeXT-8B 3.64 9.43 1.16 0.00
HF Agent InternVL2-8B 4.85 7.55 4.65 0.00
HF Agent MiniCPM-V-8.5B 7.27 13.21 5.81 0.00
HF Agent Qwen2-VL-7B 9.70 16.98 8.14 0.00
T3-Agent Tuned MiniCPM-V-8.5B 15.15 26.42 11.63 3.84
T3-Agent Tuned Qwen2-VL-7B 16.97 26.42 15.12 3.84

perception, operation, logic, and creativity abilities on visual data. In addition to visual data, diverse
files (such as PPTX, PDF, XLSX files, etc) are also commonly encountered in practical multi-modal
tasks. To evaluate agents on such files, we use the GAIA benchmark that contains 446 tasks with 109
files. The tasks in GAIA are divided into three levels, the steps of which range from 2 to arbitrarily
long sequences, evaluating the capabilities of document understanding, web surfing, logic reasoning,
and answer summarization.

Metric. In the GTA benchmark, we measure three metrics for agents, including AnsAcc, ToolAcc,
and CodeExec. AnsAcc measures the correctness of predicted answers. ToolAcc means the accuracy
of tool selection and answer summary. CodeExec quantifies the percentage of generated codes that
could be executed without errors. In the GAIA benchmark, we measure AnsAcc of its three levels.

5.2 GTA RESULTS

The performance of agents on the GTA benchmark is shown in Tab. 2, where AnsAcc, ToolAcc, and
CodeExec are reported. Our agent achieves better results than the Lego agent that uses closed-source
models (e.g., GPT-4 and GPT-4o) and HF agent using open-source models (e.g., InternVL2-8B),
showing its effectiveness in solving complex tasks. The comparison of agents using the tuned and
untuned VLMs shows the effectiveness of our multi-modal agent tuning method. For example, tuning
MiniCPM-V-8.5B leads to about 18%, 29%, and 24% improvements in the answer accuracy, tool
correctness, and code executability, respectively. In addition, compared to the HF agent using GPT-4o
and GPT-4o mini, our agent has higher ToolAcc while lower CodeExec, showing that our tuned VLM
has more powerful reasoning capability for tool usage, while the weak programming capability results
in worse AnsAcc. This inspires us to develop VLMs for writing codes.

5.3 GAIA RESULTS

In Tab. 3, we report the performance of T3-Agent on the validation set of GAIA. T3-Agent performs
better than agents driven by open-source models. For example, Qwen2-VL-7B achieves the best
performance among all open-source models, while our agent is still 10% higher than it. The
performance improvements across multiple VLMs validate the effectiveness of our dataset. Compared
with agents driven by closed-source models (e.g., GPT-4), our T3-Agent achieves worse performance.
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Query: I want to buy a dog toy for each dog in the photo. How many dollars will I
need to spend in total?
Thought: I need first to use the objectlocation tool identify the number of the dogs,
and then use the image_qa tool to identify the price of the toy.
Code:
number_of_dogs = len(objectlocalization(‘dog’, ‘image1.jpg’))
price_per_toy = image_qa(‘How much is the toy?’, ‘image2.jpg’)
print(“Number of dogs:", number_of_dogs)
print(“Price per toy :", price_per_toy )
Observation:
Number of dogs: 4
Price per toy : $19.99
Thought: I need to calculate the total cost for purchasing a dog toy for each of the
four dogs in the photo. Each dog will require one toy, and the price is $19.99 as
shown in the first image. To do this calculation, I'll simply multiply the number of
dogs by the price per toy.
Code:
number_of_dogs = 4
price_per_toy = 19.99
total_cost = number_of_dogs * price_per_toy
print("Total cost:", total_cost)
Observation: Total cost: 79.96

Query : Which day in this week has the widest range of temperature? And
what is the exact difference between the maximum temperature and the
lowest of this day?
Thought: To determine which day has the widest range of temperature
and calculate the exact difference between the maximum and minimum
temperatures for that day, I will first extract the temperatures from the
weather forecast image. Then, I'll identify the days with the greatest
temperature range.
Code:
image_path = "data/gta_dataset/image/image_405.jpg”
temperature_data = image_qa(question="Extract the temperatures for
each day in the 7-day forecast.", image_path=forecast_image_path)
print(temperature_data)
Observation: **Sunday**: High 60°, Low 42°; **Monday**: High 64°, Low
52°; **Tuesday**: High 70°, Low 52°; **Wednesday**: High 66°, Low 52°;
**Thursday**: High 69°, Low 52°; **Friday**: High 70°, Low 54°;
**Saturday**: High 74°, Low 54°"
Thought: Now that I have extracted the temperatures for each day, I will
calculate the temperature range for each day and identify which day has
the widest range.
Code:
def calculate_temperature_range(temperatures):

return max(temperatures) - min(temperatures)
sunday_range = calculate_temperature_range([60, 42])
monday_range = calculate_temperature_range([64, 52])
tuesday_range = calculate_temperature_range([70, 52])
wednesday_range = calculate_temperature_range([66, 52])
thursday_range = calculate_temperature_range([69, 52])
friday_range = calculate_temperature_range([70, 54])
saturday_range = calculate_temperature_range([74, 54])
max_range = max(sunday_range, monday_range, tuesday_range,
wednesday_range, thursday_range, friday_range, saturday_range)
if sunday_range == max_range:

day_with_widest_range = “Sunday”
if monday_range == max_range:

day_with_widest_range = " Monday”
if tuesday_range == max_range:

day_with_widest_range = " Tuesday ”
if wednesday_range == max_range:

day_with_widest_range = " Wednesday ”
if thursday_range == max_range:

day_with_widest_range = " Thursday ” :
If friday_range == max_range:

day_with_widest_range = " Friday ”
if saturday_range == max_range:

day_with_widest_range = " Saturday ”
print("Day with the widest temperature range:", day_with_widest_range)
print("Temperature difference for this day:", max_range)```”
Observation:
Day with the widest temperature range: Saturday
Temperature difference for this day: 20"

Query: If I wanted to order the two lowest priced 
dishes, how many dollars would it cost in total?
Thought: I need to identify the two lowest priced 
dishes from the menu and calculate their total 
cost. The menu shows Beef at $35, Hamburger 
at $10, and Milk at $5. I will extract these prices 
and then sum them up.
Code:
menu_items = [ {“Product”: “Beef”, “Price”: 35}, {“Product”: “Hamburger”,
“Price”: 10}, {"Product": "Milk", "Price": 5}]
lowest_prices = sorted(menu_items, key=lambda x: x["Price"])[:2]
total_cost = sum([price for item in lowest_prices for price in item.values()])
print("Total cost:", total_cost)
Observation: Code execution failed due to the following error: unsupported
operand type(s) for +: 'int' and 'str‘. Now let's retry: take care not to repeat
previous errors! If you have retried several times, try a completely different
approach."
Thought: It seems the issue is with mixing different types of data in the calculation.
I'll extract only the prices and then sum them up correctly.
Code:
menu_items = [ {"Product": "Beef", "Price": 35}, {"Product": "Hamburger", "Price":
10}, {"Product": "Milk", "Price": 5}]
prices = [item["Price"] for item in menu_items]
lowest_prices = sorted(prices)[:2]
total_cost = sum(lowest_prices)
print("Total cost:", total_cost)
Observation: Total cost: 15"

(a) (b)

(c)

Figure 4: Case study of the T3-Agent in the GTA benchmark.

The reason is that closed-source models use larger model sizes and more training data. These factors
may primarily contribute to the performance differences.

5.4 DATA QUALITY
Table 4: Average scores from humans.

MM-Traj Filtered out Data
Task Trajectory Task Trajectory
8.32 8.67 6.36 6.38

To evaluate the data quality of generated data in
MM-Traj, we conduct a user study. Concretely,
we randomly sample 600 data points from the
MM-Traj datasets and filtered out data. We ask
30 persons (with rich programming experience)
to provide scores (1-10) for the task quality and trajectory quality, and they do not know whether the
data is from MM-Traj or filtered out data. We ask the persons to provide scores for the tasks (the
queries and files) and trajectories. The score is in the range (1-10), where higher scores mean better
quality. Results are shown in Tab. 4. The quality of MM-Traj is higher than the filtered-out data,
demonstrating the used verifiers can discard lower-quality data.

5.5 ABLATION

Table 5: Ablation
Method GTA GAIA

w/o two verifier 50.00 13.33
Ours (two verifiers) 52.56 15.15

We conduct ablation experiments to evaluate the ef-
fectiveness of our two verifiers, as shown in Tab. 5.
We observe that on both the two benchmarks, the
data using the two verifiers leads to better per-
formance (e.g., 2.56% improvements on the GTA
benchmark), showing the effectiveness of the two verifiers.
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5.6 VISUALIZATION

In Fig. 4 and Fig. 5, we visualize cases solved by our T3-Agent in the GTA and GAIA benchmarks.
We have the following conclusions. (1) Our agent could handle multiple-image reasoning tasks. By
utilizing the visual information from given images, the agent could apply the correct tools and write
correct arguments for given images. (2) Our agent could solve complex tasks requiring long code.
(3) Our agent could revise code errors based on observations. (4) T3-Agent can solve tasks with
multi-hop questions. For example, in the first case of Fig. 5, our agent searches for information from
the web, based on obtained information in the first step. (5) T3-Agent could handle multi-modal files,
such as audio and PDF files in Fig. 5.

Query: During the first week of August 2015, one of the NASA Astronomy Pictures of the
Day shows the lights of a city on the horizon. The namesake of this city also has a
landmark building in Chicago named after him. What is the name of the architectural firm
that designed this landmark building? Give the first name appearing in the name of the
firm as of June 2023.
Thought: To find the name of the architectural firm that designed a landmark building in
Chicago named after the city on the horizon, I need to gather information about both the
city and its notable landmarks. I'll use the `web_search` tool to find relevant information
regarding the NASA Astronomy Picture of the Day from August 2015 and identify the city
mentioned along with its landmark building in Chicago.
Code:
city_info = web_search("Find the city shown in the NASA Astronomy Picture of the Day
during the first week of August 2015.")
print(city_info)
Observation: Search outcome (short version): The city shown in the NASA Astronomy
Picture of the Day during the first week of August 2015 is Marquette, Michigan."
Thought: The city identified from the NASA Astronomy Picture of the Day during August
2015 is Marquette, Michigan. Now I need to find out about a landmark building in Chicago
named after this city and identify the architectural firm that designed it.
Code:
landmark_info = web_search("Find a landmark building in Chicago named after
Marquette, Michigan and identify the architectural firm that designed it.")
print(landmark_info)
Observation: Search outcome (short version):The Marquette Building in Chicago is a
landmark designed by the architectural firm Holabird & Roche, completed in 1895.
Thought: I have found that the landmark building in Chicago named after Marquette,
Michigan is the "Marquette Building."
Code:
architectural_firm = "Holabird & Roche”
first_name = architectural_firm.split()[0]
final_answer(first_name)

Query : The attached PDF lists accommodations in the resort community of Seahorse
Island. Which type of accommodation has a higher average rating in Seahorse Island?
Attachment: data/GAIA/2023/validation /67e8878b-5cef-4375-804e-e6291fdbe78a.pdf”
Thought: To determine which type of accommodation has a higher average rating in
Seahorse Island, I will first need to read the contents of the provided PDF file. After
extracting the relevant information regarding accommodations and their ratings, I can
analyze them to find out which type is rated higher on average.
Code:
pdf_content = inspect_file_as_text(file_path=“data/GAIA/2023/validation /67e8878b-
5cef-4375-804e-e6291fdbe78a.pdf")
print(pdf_content)

Observation: Name: Hotels Neptune‘s Palace Admiral Sturgeon Currents The Laughing
Gull Loach Towers Motels ……
Rating (out of 5), Vacancy, Pool, Sample Review: 5 Yes 5 No 4 Yes 3 No 2 Yes 5 Yes 3
No 2 Yes 1 Yes 0 Yes 4 No 3 No 4 Yes 5 No 5 No 4 Yes 3 No 3 No 3 Yes 1 Yes 4 Yes 5 Yes
3 No 4 Yes 1 Yes Yes Yes Yes Yes No Yes Yes No No Yes No No No Yes No Yes Yes No No
No Yes Yes No Yes No A hotel fit for a king. ......
Thought: I have extracted the names of accommodations and their corresponding
ratings from the PDF. Now, I will process this data to calculate the average rating for
each type of accommodation (hotels, motels, rental houses, campgrounds).
Code:
accommodations = { “Hotels”: [], “Motels”: [], “Rental Houses”: [], “Campgrounds”:
[]}
ratings = [5, 4, 2, 3, 1, 5, 4, 3, 1, 4, 5, 4, 5, 4, 4, 3, 3, 3, 4, 5, 4 ]
for name, rating in zip(accommodations.keys(), ratings):
if rating is not None:
accommodations[name].append(rating)

average_ratings = {}
for name, ratings in accommodations.items():
average_ratings[name] = sum(ratings) / len(ratings)

print("Average Ratings:", average_ratings)
Observation: Average Ratings: {'Hotels': 5.0, 'Motels': 4.0, 'Rental Houses': 2.0,
'Campgrounds': 3.0}\n"
Thought: It is clear that the hotels have a higher average rating (5.0) compared to
motels, rental houses, and campgrounds (all with an average rating of 4 or less).
Therefore, I will return this conclusion as my final answer.
Code: final_answer("Hotels have the highest average rating in Seahorse Island.")

Query : Our professor sprung it on us at the end of class Friday, and I‘m still
trying to figure it out. The question he asked us was about an anagram. I’ve
attached an audio recording of the question that he asked, so if you could
please take a listen and give me the answer, I‘d really appreciate the help.
Please limit your response to the anagram text that could be generated from
the original line which fulfills the professor’s request, without any other
commentary. Also, please don‘t include any punctuation in your response.
Attachment: data/GAIA/2023/validation/2b3ef98c-cc05-450b-a719-
711aee40ac65.mp3
Thought: I will use the `inspect_file_as_text` tool to analyze the audio
recording and extract the text from it. This way, I can determine the anagram
that fulfills the professor's request without any commentary or punctuation.
Code:
audio_content =inspect_file_as_text(file_path=“data/GAIA/2023/ validation
/ 2b3ef98c-cc05-450b-a719-711aee40ac65.mp3")
print(audio_content)
Observation: Okay, guys, before we call it for the week, I've got one little
bonus assignment. The following quotation is actually an anagram of one of
the Bard's most well-known lines. I'd like you all to think about it, and anyone
who can provide the original line will get an automatic A on next week's quiz.
Here's the anagram. In one of the Bard's best thought of tragedies, our
insistent hero, Hamlet, queries on two fronts about how life turns rotten.
Thought: I have successfully extracted the text from the audio. The anagram
provided is related to a line from Shakespeare's play "Hamlet." Now, I will
process this anagram and find the original line that Hamlet says in the play.
Code:
Anagram: "In one of the Bard's best thought of tragedies, our insistent hero,
Hamlet, queries on two fronts about how life turns rotten.”
original_line = web_search(query="What does Hamlet say in 'In one of the
Bard's best thought of tragedies, our insistent hero, Hamlet, queries on two
fronts about how life turns rotten?'")
print(original_line)
Observation: Search outcome (short version): The provided quote is an
anagram and not a direct citation from 'Hamlet.' It most likely alludes to
existential themes exemplified in the 'To be, or not to be' soliloquy, where
Hamlet questions the nature of existence, purpose, and the decay of life.
Thought: The anagram refers to Hamlet's famous soliloquy "To be, or not to
be." Now, I will compile this information into a concise response that fulfills
the professor's request.
Code:
final_answer("To be, or not to be")

（b）

（c）

(a)

Figure 5: Case study of the T3-Agent in the GAIA benchmark.

6 CONCLUSION

In this paper, we have presented a multi-modal agent tuning method that improves the tool-usage
capability of agents by generating a large number of tool-usage data and tuning a VLM using these
data. Given proper prompts and sufficient source images, our data synthesis pipeline can produce
high-quantity multi-modal tasks with trajectories. We collect these generated data into an MM-Traj
dataset to tune a MiniCPM-V model, and the T3-Agent with the tuned model has achieved significant
improvements on two multi-modal benchmarks, demonstrating the effectiveness of the data synthesis
pipeline and the collected MM-Traj dataset.

Limitation. In the current T3-Agent, we only consider the multi-modal information in queries.
Practical tasks usually involve multi-modal data in trajectories of agents, such as the intermediate
results in image editing tasks. We will study how to utilize multi-modal information in agent
trajectories, which benefits in performing more powerful step-by-step reasoning for tool usage.
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A HUMAN VERIFICATION OF MM-TRAJ

A.1 DATA SYSTHESIS PIPELINE

We recruited 30 persons with rich programming and AI experience to evaluate the tasks and trajectories
generated by our method. Each evaluator is tasked with assessing 20 samples, which are randomly
selected and mixed from both MM-Traj and filtered-out data.

The evaluation was conducted using a 5-level rating scale: Poor, Fair, Good, Very Good, and
Excellent, corresponding to numerical scores of 2, 4, 6, 8, and 10, respectively, with a maximum
score of 10. The results in Tab. 6 show that verified cases consistently outperform filtered-out cases in
both task and trajectory evaluations. Verified tasks scored an average of 7.96, while filtered-out tasks
averaged 6.30, indicating that verified tasks are more natural, coherent, and complex. For trajectories,
verified cases scored 8.64 versus 6.24 for filtered-out cases, demonstrating better reasoning, code
coherence, and feedback effectiveness. These results confirm that the verification process effectively
filters out lower-quality data, ensuring the reliability of our data synthesis pipeline and the MM-Traj
dataset.

MM-Traj Filtered out Data
Task Trajectory Task Trajectory
8.32 8.67 6.36 6.38

Table 6: Average score of the human verification.

The evaluation criteria for the generated tasks and trajectories are as follows.

Task Evaluation Criteria

• Naturalness: The degree to which the task appears natural and realistic.

• Coherence: The logical consistency and smooth flow of the task.

• Complexity: The extent to which the task exhibits sufficient complexity, requiring the use
of multiple tools for effective resolution.

Trajectory Evaluation Criteria

• Reasoning: The logical soundness and clarity of the agent’s thought process.

• Code Coherence: The clarity, consistency, and structure of the code produced by the agent.

• Feedback Effectiveness: The agent’s ability to effectively respond to and incorporate results
from the tool executions.

The interface of the user study for data quality is shown in Fig. 6.

A.2 AGENT OUTPUT

We conducted a user study on agent outputs on the GTA benchmark. We recruited 20 participants,
each evaluating 20 tasks with agent outputs, where the agent is with or without fine-tuning. The
agent outputs (w/ or w/o tuning) were shuffled for each task, and the participants were not informed
about the source, ensuring an unbiased assessment. The participants were asked to provide the
preference of the two agent outputs, based on the accuracy, helpfulness, and relevance. We measured
the percentages of results, as shown in Tab. 7. Outputs from the tuned agent have a significantly high
preference, indicating its better performance in solving practical tasks. The interface of the user study
for agent output is shown in Fig. 7.

Agent w/o tuning is better Tie Agent w tuning is better
21% 13% 66%

Table 7: User study for agent outputs on the GTA benchmark.
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Figure 6: The interface of the user study for data quality.
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Figure 7: The interface of the user study for agent outputs on the GTA benchmark.
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B MORE EXPERIMENTS

B.1 ABLATION

To improve the interpretability of our method, we add ablation experiments to show the contributions
of different modalities in decision-making. Ablation results on the GTA dataset are shown in Tab. 8,
where removing the image modality reduces the performance by 40%, highlighting the importance of
input images.

Method AnsAcc ToolAcc CodeExec
T3 Agent w/o image 10.67 25.32 20.09
T3 Agent w/ image 52.56 65.85 80.49

Table 8: Average score of the human verification.

B.2 DATA NUMBER

We show the agent’s performance on the GTA benchmark as the dataset size increases, in Tab. 9.
With the increase of data number, the agent achieves better performance, the memory consumption is
constant, and the time consumption linear increases. Compared with the accuracy improvements, we
think that the consumption of memory and time is acceptable.

Data Number 6K 12K 20K
Accuracy 43.59% 48.08% 52.56%
Memory 214 GB 214 GB 214 GB

Training Time 276 mins 532 mins 946 mins

Table 9: Performance on the GTA benchmarks.

C TOOLS

We will show details of used tools in T3-Agent.

C.1 WEB SEARCH

The web search tool is actually another agent. It has three sub-tools: Searchinformation, Visit, and
Webqa.

searchinformation. Given a query to this tool, it performs a Google search and outputs the title,
abstract, and URL of multiple entries.

Visit. The input is the URL of an HTML page, and the output is the textual content of the HTML
page.

Webqa. Given a question and search textual content, the tool outputs the answer.

C.2 IMAGE QUESTION ANSWERING

We use the GPT-4o-mini model as the image question answering tool. The input is an image and a
question, and the output is the answer.

C.3 FILE INSPECTOR

The input is a question and one multi-modal file. We use the Python package ‘MarkdownConverter’
that converts the given files into the markdown texts. Then, we feed the question and texts to the
GPT-4o-mini model for the answer.
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C.4 OBJECT LOCALIZATION

We use the OWL-ViT model (Minderer et al., 2022) for object localization. The input includes one
image and a query, and the output is a Python list of bounding boxes of the query.

C.5 IMAGE GENERATION

We use the stable diffusion model for image generation (Rombach et al., 2022). Given a textual query,
the tool produces an image that matches the query.

C.6 IMAGE EDITING

We use the InstructPix2Pix model for image editing (Brooks et al., 2023). The inputs are an instruction
and an image, and the output is an edited image to match the instruction.

C.7 FACE DETECTION

We use the DSFD model for face detection (Li et al., 2019). The input is an image, and the output is
a Python list of all bounding boxes of faces.

C.8 PYTHON PACKAGE

We allow the agent to use the following Python package in code writing: “requests", “zipfile", “os",
“pandas", “numpy", “sympy", “json", “bs4", “pubchempy", “xml", “yahoo_finance", “Bio", “sklearn",
“scipy", “pydub", “io", “PIL", “chess", “PyPDF2", “pptx", “torch", “datetime", “csv", “fractions",
“matplotlib", “pickle", “cv2", through which the agent is more flexible in writing code.

D PROMPT

D.1 PROMPT FOR QUERY GENERATION

The prompt for query generation is shown in Fig. 8.

You are tasked with generating user queries that will prompt an agent to call various tools (only use the
tool listed in our toolset), including internet search capabilities, to solve real-world, practical problems.
The problems should be natural, varied, and challenging, requiring the agent to reason across different
domains. Ensure that the problems span a range of practical scenarios.

Our toolset: TOOL_SET
I will now provide examples, along with the tools.
Examples of user queries: IN_CONTEXT_EXAMPLES

Please output the Queries in a json format. Make sure that the queries share a similar style of the
in-context examples. The output template is :
{
"query": "What is the weather today?", <The user query to the agent.>
"tools": ["tool1", "tool2",...], <A list consisting of the tool names related to the query.>
},
...

Figure 8: Prompt for query generation.
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D.2 PROMPT FOR FILE GENERATION

The prompt for file content generation is shown in Fig. 9 and Fig. 10 , and the prompt for file code
generation is shown in Fig. 11 and Fig. 12.

You are a smart reasoner that can restore a query_solving scene between a human and an agent.
Human gives a complex query and several images to the agent, and then the agent answers the query
by searching on the Internet and applying tools to the images with step-by-step reasoning. Now, you
will be given the query with suggested tools, I suggest you analyze the needed information to solve the
query, and divide the information into two groups: searching from the Internet and extracting from the
images using tools. Based on the information from the images, you need to further infer the content of
these images, through which the agent could correctly solve the query.

Our toolset: TOOL_SET
Output MUST use the following json template.

{
"information": <Needed information to solve the query. For the query including creating/generating

images, the information should NOT be the description of the describe image.>
"information from the Internet": <Information from the Internet inferences based on the given

query and suggested tools. Determine which information is suitable to be obtained from the Internet.
Or say no information is required from the Internet.>

"information from images": <Information extracted from given images based on the suggested
tools to solve the query. It should be several sentences, including information extracted from the
images using tools. Determine which information is suitable to be obtained from the images, and using
which tools. Do not generate image_content for the query including generating/creating an image. Or
say no information is required from the images.>

"file": {
"image_numbers": <set an int number, the number is depended on needed information from
images>,
"image_content":
{

"image_1": <The image content should be a natural language, describe the content of the
first image relevant to the query. The content should be concrete, such as concrete
number, concrete name. The content should match the query and the above images.>

... <if you think the query needs more than 1 image, please output image content like
’image_2’.>

}
}

}

Figure 9: System prompt for the file content generation.

Now given the query: QUERY, firstly analyze the needed information to solve the query and divide the
information into two groups: searching from the Internet or extracting from images using tools. Then
for information from images, imagine possible answers of each information (it should be concrete
answers instead of descriptions). Finally, output the json for the inferenced information and the content
of images.

Figure 10: User prompt for the file content generation.

D.3 PROMPT FOR QUERY-FILE FILTER

The prompt for the query-file filter is shown in Fig. 13 and Fig. 14.
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You are a helpful assistant and can to generate a <file type placeholder> file by writing Python code.
You will be given a description of the content of the file. You need to firstly largely extend the content,
and then write Python code to generate a <file type placeholder> file. GUARANTEE that the provided
content is in the file.
The output Python code MUST use the following template.
"""

## extention start
Extened content: <here is the extented content>

## extention end

## code start
<here is the Python code to generate a <file type placeholder> file>

## code end
"""

Figure 11: User prompt for the file content generation.

Now, given the following content: <file content>, first largely extend the content, and output a code to
generate a <file type placeholder> file, where the file name is <file name> and the file will be saved in
<save path>.

Figure 12: User prompt for the file content generation.

D.4 PROMPT FOR TRAJECTORY FILTER

The prompt for the trajectory filter is shown in Fig. 15 and Fig. 16.

D.5 PROMPT FOR AGENTS

The system prompt for the T3-Agent is shown in Fig. 17.

E MORE VISUALIZATION

We provide more visualization of our T3-Agent on the GTA and GAIA benchmarks, as shown
in Figs. 18 to 24.
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You are a helpful assistant that is given a query and several images. You need to check whether the
images are relevant to the query. The query and images are used to evaluate the perception ability,
reasoning ability, and information search ability of an AI agent. The agent solves the query by
searching information from the Web and extracting information from the images. In some cases, based
on the given images, the agent could not solve the query, even it searches for information from the
Web (e.g., some specific knowledge). You need to pick up these bad cases.

The agent can call the following tools to solve the query. TOOL_SET .

Thus, the images should follow these requirements.
1. Relevance: The depicted scenarios or objects in images should be relevant to the query. The images
should contain scenarios or objects that are mentioned in the images.
2. Usefulness: The image should contain necessary information to address the query, such as some
specific details that cannot be obtained from the Web.
3. Some queries require the agent to search for knowledge from the Web and combine the information
in the image to solve the queries. Thus, in some cases, the images do not contain all the information to
solve the query, but the missed information could be searched on the Web. These cases should be
regarded as correct cases.

The output MUST use the following json template to check the images.
{ "information_for_query": <Required information to solve the query.>,

"useful_information_in_image": <Useful information that can be extracted from images to solve
the query>,

"missed_information_in_images": <Missed information that is necessary to solve the query but
does not exist in the images.>,

"missed_information_web_search": <You need to justify whether the missed information could be
searched from the Web, using your rich experience in surfing the Internet.> ,

"missed_information_obtained": <You need to justify whether the missed information could be
obtained via computing or reasoning based on information extracted from the images or searched from
the Web.>,

"thought": <Now, you need to determine whether the images can solve the query. If the missed
information could be searched from the Web or obtained based on existing information, the images
can solve the query. If not, the images cannot solve the query.>,

"correct": <According to the above reasoning, if you consider the images reasonable for the query
to be solved by the tools, set the value to ’yes’, otherwise set the value to ’no’.>,

"updated_query": <If you judge the correctness as ’no’, please rewrite the query to make it more
relevant to the given images. If you judge the correctness as ’yes’, please output "no revision is
needed." >
} ”’

Figure 13: System prompt for the query-file verification.

Following are images, the query: <query>, inference whether the images can solve the query based on
the perception ability, reasoning ability, and information search ability of an AI agent.

Figure 14: User prompt for the query-file verification.
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As a data quality evaluator that need to determine whether a query-solving trajectory between a human
and an agent is correct. The human gives images and a query, and the agent calls tools to solve the
query. The trajectory of query-solving contains a task query, thoughts and codes generated by the agent
to call tools (Python functions), and tool-response of each step, and the final answer. You must assess
the alignment between the task query, corresponding tool usage (generated thoughts and codes from
the agent), and the execution results (tool-response). Your goal is to ensure the used tools, arguments
to the tools, and summarized answers in the trajectory accurately reflect the human’s intentions.
Our toolset: TOOL_SET
The query-solving trajectory is incorrect if: 1. The tool usage does not align with the query’s objective
and the context, or there is useless or unreasonable tool usage. In addition, the agent does not use tools
and solve the query by itself. 2. The input arguments to the tools appear incorrect or unreasonable.
3. The final answers or intermediate results summarized from the observation appear incorrect or
unreasonable. 4. The final answer is not relevant to the task query or the final answer seems incorrect.
5. The trajectory (such as tool-usage and observation) conflicts or is not consistent with the image
content.

Figure 15: System prompt for the trajectory verification.

Now, given used images and corresponding information, determine whether the trajectory is correct or
not.

1. User Query: QUERY
2. Image Content: IMAGE_CONTENT
3. Trajectory, including generated thought and code from the agent, and intermediate results of using
tools: TRAJ
4. Execution Results: RESULT
Output MUST use the following json template to determine whether the query-solving trajectory is
correct or not.
{
"thought": "Concisely describe your reasoning here",
"correct": "yes" or "no"
}

Figure 16: User prompt for the trajectory verification.
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You are an expert assistant who can solve any task using code blobs. You will be given a task to solve
as best you can. To do so, you have been given access to a list of tools: these tools are basically Python
functions which you can call with code. To solve the task, you must plan forward to proceed in a
series of steps, in a cycle of ’Thought:’, ’Code:’, and ’Observation:’ sequences.
At each step, in the ’Thought:’ sequence, you should first explain your reasoning towards solving the
task and the tools that you want to use. Then in the ’Code:’ sequence, you should write the code
in simple Python. The code sequence must end with the ’<end_action>’ sequence. During each
intermediate step, you can use ’print()’ to save whatever important information you will then need.
DO NOT generate a code which does not call ’print()’ because you will lose this information. You can
assume all tools must have a return that can be printed. These print outputs will then appear in the
’Observation:’ field, which will be available as input for the next step. You will save all intermediate
file outputs to a folder by the relative path ’.cache’. In the end, you have to return a final answer using
the ‘final_answer‘ tool.
Here are a few examples using notional tools: IN_CONTEXT_EXAMPLES

The above example was using notional tools that might not exist for you. You only have access to
those tools: TOOL_SET
You also can perform computations in the Python code that you generate.

Here are the rules you should always follow to solve your task:
1. Always provide a ‘Thought:’ sequence, and a ‘Code: py’ sequence ending with ‘<end_action>’
sequence, else you will fail.
2. Use only variables that you have defined!
3. Always use the right arguments for the tools. DO NOT pass the arguments as a dict as in ‘answer =
ask_search_agent(‘query’: “What is the place where James Bond lives?")’, but use the arguments
directly as in ‘answer = ask_search_agent(query="What is the place where James Bond lives?")’.
4. Take care to not chain too many sequential tool calls in the same code block, especially when the
output format is unpredictable. For instance, a call to search has an unpredictable return format, so do
not have another tool call that depends on its output in the same block: rather output results with
print() to use them in the next block.
5. Call a tool only when needed, and never re-do a tool call that you previously did with the exact
same parameters.
6. Don’t name any new variable with the same name as a tool: for instance don’t name a variable
‘final_answer’.
7. Never create any notional variables in our code, as having these in your logs might derail you from
the true variables.
8. You can use imports in your code, but only from the following list of modules: «authorized_imports»
9. The state persists between code executions: so if in one step you’ve created variables or imported
modules, these will all persist.
10. Don’t give up! You’re in charge of solving the task, not providing directions to solve it.

Now Begin! If you solve the task correctly, you will receive a reward of $1,000,000.

Figure 17: System prompt for the agent.
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Query :Who is the CEO of the top-ranked company?
Thought: To find the CEO of the top-ranked company, I need to analyze the
provided image. The task involves identifying which company is ranked first
and then determining its CEO. I will use the `image_qa` tool to extract any
textual information from the image.
Code:
image_path = "data/gta_dataset/image/image_399.jpg"
company_rank = image_qa(question="What is the name of the top-ranked
company?", image_path=image_path)
print("Top-ranked company:", company_rank)
Observation: Top-ranked company: The top-ranked company is Apple.
Thought:Now that I know the top-ranked company is Apple, I need to find out
who its CEO is. Since this informationmay not be directly visible in the image, I
will use the `ask_search_agent` tool to search for the current CEO of Apple.
Code:
ceo_of_apple = ask_search_agent(query="Who is the CEO of Apple?")
print("CEO of Apple:", CEO_of_Apple)
Observation: Search outcome (short version): Tim Cook is the current CEO of
Apple Inc., having assumed the role in August 2011. Under his leadership,
Apple has seen a significant increase in revenue and profit, and a strategic shift
towards amore inclusive company culture.
Thought:
I have gathered information about Tim Cook being the current CEO of Apple.
Now, I will summarize this information to provide a concise final answer.
Code:
final_answer("Tim Cook is the current CEO of Apple.")

Figure 18: Case study of the T3-Agent.
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Query : If I have 10 lights in my home in total, howmany lights are there in the
other rooms?
Thought: I will use the `image_qa` tool to analyze the image and extract
information about the lights present. This should provide a clear count of how
many lights are visible in the picture.

Code:
lights_count = image_qa(question="How many lights are visible in this
image?", image_path="data/gta_dataset/image/image_392.jpg")
print(lights_count)
Observation: There are two lights visible in the image.
Thought: I have determined that there are two lights visible in the image. Now,
to find out how many lights are in the other rooms, I will subtract this count
from the total number of lights (10) since it's given that there are 10 lights in
the home.
Code:
total_lights = 10
lights_in_other_rooms = total_lights – 2
final_answer(lights_in_other_rooms)

Figure 19: Case study of the T3-Agent.
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Query :Who is the founder of this company ?
Thought: To find out who the founder of the company depicted in the image, I
will use the `image_qa` tool to analyze the image and extract relevant
information about the company. This should help identify key details such as
its name and any associated individuals.
Code:
company_info = image_qa(question="What is the name of the company
shown in this image?", image_path="image_306.jpg\")
print(company_info)
Observation: The company shown in the image is NVIDIA.
Thought: Now that I know the company is NVIDIA, I will use the `web_search`
tool to find out who founded it. This should provide me with the name of the
founder.
Code:
founder = web_search(query="Who is the founder of NVIDIA?")
print(founder)
Observation: Search outcome (short version): NVIDIA was founded on April 5,
1993, by Jensen Huang, Chris Malachowsky, and Curtis Priem.
Thought:
I have gathered information about the founders of NVIDIA. The company was
founded by Jensen Huang, Chris Malachowsky, and Curtis Priem. Now, I will
compile this information into a final answer.
Code:
founders = [“Jensen Huang”, "Chris Malachowsky", "Curtis Priem"]
final_answer(f"Founders of NVIDIA: {', '.join(founders)}")

Figure 20: Case study of the T3-Agent.

28



Published as a conference paper at ICLR 2025

Query : I have only $70 to buy a pants and shoes.I don't wear flats. Each item
should be different in style and color. What specific items can I buy? Please
answer with a short noun phrase.
Thought: I need to identify a pair of pants and shoes that are different in style
and color within my budget. Since I have $70, I‘ll look for options under the
given price range. I will use the `image_qa` tool to analyze the image provided
and extract relevant information about clothing items, focusing on styles and
colors.
Code:
cloth_items = image_qa(question="Please identify specific pants and shoes
from the image based on their styles and colors.",
image_path="image_287.jpg")
print(cloth_items)
Observation: **Pants:**- Jeans ($30) - Chinos ($35)- Formal Trousers ($40) 
**Shoes:** Sneakers ($40)- Ballet Flats ($30)- Ankle Boots ($60)
Thought: I see that the table lists specific clothing items and their prices. 
However, it doesn't provide visual information about styles or colors of pants 
and shoes directly from the image provided. Since I don't have a clear visual 
reference for the specific items, I will summarize the options available based 
on the listed prices:- **Pants:** Jeans ($30), Chinos ($35), Formal Trousers 
($40)- **Shoes:** Sneakers ($40), Ballet Flats ($30), Ankle Boots ($60)Given 
my budget of $70, I need to choose two different items—one pair of pants 
and one pair of shoes—without buying flats. I'll propose a combination where I 
buy one type of jeans and sneakers, ensuring they are distinct in style and 
color.
Code:
item1 = "Jeans"
price1 = 30
item2 = "Sneakers”
price2 = 40
total_cost = price1 + price2
print("Total cost:", total_cost)
Observation: Total cost: 70
Thought: I have confirmed that the total cost of buying jeans and sneakers is
$70, which matches my budget. Now, I will finalize this purchase.\n\nI'll
return the specific items with a short noun phrase to indicate what I can buy
within the given constraints
Code:
final_answer("Jeans and Sneakers")

Figure 21: Case study of the T3-Agent.
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Query : Take the gender split from the 2011 Bulgarian census about those
who have completed tertiary education. Subtract the smaller number from
the larger number, then return the difference in thousands of women. So if
there were 30.1 thousand more men, you‘d give 30.1.
Thought: I will first need to gather the data regarding the gender split from
the 2011 Bulgarian census for those who have completed tertiary education.
Once I have these numbers, I can subtract the smaller number from the larger
number and return the result in thousands of women.\n\nI'll start by using the
`web_search` tool to find the specific data related to the gender split from the
2011 census on those with tertiary education.
Code:
gender_data = web_search("gender split from the 2011 Bulgarian census
about those who have completed tertiary education")
print(gender_data)
Observation: Search outcome: In the 2011 Bulgarian Census, 22.3% of women 
and 16.7% of men had completed tertiary education.
Thought: I have retrieved the relevant data from the 2011 Bulgarian census. 
According to the information, there were 791.8 thousand females 
(representing 22.3% of women) and 556.9 thousand males (representing 
16.7% of men) who had completed tertiary education. Now, I will calculate 
the difference between these two numbers in thousands of women by 
subtracting the smaller number from the larger number:- Larger number 
(females): 791.8\n- Smaller number (males): 556.9. The difference is 
calculated as follows: [ text{Difference} = 791.8 - 556.9 ] I'll perform this 
calculation using Python code.
Code:
larger_number = 791.8
smaller_number = 556.9
difference = larger_number - smaller_number
print("Difference in thousands of women:", difference)
Observation: Difference in thousands of women: 234.9
Thought: The difference between the numbers of women and men who
completed tertiary education in the 2011 Bulgarian census is approximately
234.9 thousand. Now, I will return this result as the final answer using the
`final_answer` tool.
Code: final_answer("The difference in thousands of women from those with
tertiary education in the 2011 Bulgarian census is approximately 234.9.)

Figure 22: Case study of the T3-Agent.
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Query : The longest-lived vertebrate is named after an island. According to
Wikipedia as of January 1, 2021, what is the 2020 estimated population of
that island, to the nearest thousand?
Thought: To solve this task, I need to find the name of the island after which
the longest-lived vertebrate is named. Then, I will search for the estimated
population of that island as of January 1, 2020. Since Wikipedia was
referenced in the question, I'll use the `web_search` tool to gather this
information.
Code:
longest_lived_island = web_search(query="The name of the island after which
the longest-lived vertebrate is named")
print("Island name:", longest_lived_island)
population_query = web_search(query=f"The estimated population of
{longest_lived_island} as of January 1, 2020.")
print("Estimated population (to nearest thousand):", population_query)
Observation: Search outcome: The longest-lived vertebrate is the Greenland 
shark, named after the island of Greenland. 
Thought: From the search results, I have found that the longest-lived 
vertebrate is the Greenland shark. The estimated population of Greenland as 
of January 1, 2020, was not explicitly mentioned in the provided information. 
However, since it's related to a specific island, I can assume this refers to the 
population of Greenland itself. As there is no direct data on the population of 
Greenland from 2020, I will need to use general knowledge or perform 
another search for an estimate. I will ask the `web_search` again for an 
approximate population of Greenland in 2020 and round it to the nearest 
thousand.
Code:
population_greenland = web_searc(query="What is the estimated population
of Greenland as of January 1, 2020?")
print("Estimated population of Greenland (to nearest thousand):",
population_greenland)
Observation: Search outcome: Greenland's estimated population as of
January 1, 2020, was 56,081.
Thought: The estimated population of Greenland as of January 1, 2020, is
reported to be approximately 56,081. I will now format this information and
use the `final_answer` tool to provide a concise answer regarding both the
longest-lived vertebrate (Greenland shark) and its associated island's
population.
Code:
population_info = "The longest-lived vertebrate is the Greenland shark,
named after the island of Greenland, with an estimated population of
approximately 56,000 in 2020.”
final_answer(population_info)

Figure 23: Case study of the T3-Agent.

31



Published as a conference paper at ICLR 2025

Query : The Metropolitan Museum of Art has a portrait in its collection with an
accession number of 29.100.5. Of the consecrators and co-consecrators of this
portrait's subject as a bishop, what is the name of the one who never became
pope?
Thought: To find the consecrators and co-consecrators of the portrait's subject
as a bishop, specifically looking for those who never became pope, I will need
to search for information about this particular portrait in the Metropolitan
Museum of Art collection. This may involve checking online databases or
museum archives related to this specific artwork. \n\nI'll start by asking the
`web_search` tool to provide details on the portrait with accession number
29.100.5 at the Metropolitan Museum of Art.
Code:
portrait_info = web_search("Details about the portrait with accession number
29.100.5 at the Metropolitan Museum of Art")
print(portrait_info)
Observation: Search outcome:- Title: Cardinal Fernando Niño de Guevara n-
Artist: El Greco (Domenikos Theotokopoulos) - Date: ca. 1600 - Medium: Oil on 
canvas - Location: Metropolitan Museum of Art, Accession Number: 29.100.5
Thought: The search results indicate that the portrait is of Cardinal Fernando 
Niño de Guevara, painted by El Greco around 1600. I now need to find out 
who were the consecrators and co-consecrators of this cardinal subject as a 
bishop, specifically identifying those who never became pope. I will ask the 
`web_search` tool again for details on the consecrators and co-consecrators of 
Cardinal Fernando Niño de Guevara, focusing particularly on those who did not 
become pope.
Code:
consecrators_info = web_search("Consecrators and co-consecrators of
Cardinal Fernando Niño de Guevara from the Metropolitan Museum of Art
collection, specifically those who never became pope.")
print(consecrators_info)
Observation: Search outcome (short version):- Cardinal Fernando Niño de
Guevara was consecrated by Pope Clement VIII, with co-consecrators Camillo
Borghese (later Pope Paul V) and Alfonso Visconti.- Alfonso Visconti was not a
pope.- No direct connection to the Metropolitan Museum of Art was found for
Alfonso Visconti.
Thought: Based on the search results, I have identified that Cardinal Fernando
Niño de Guevara was consecrated by Pope Clement VIII with co-consecrators
Camillo Borghese and Alfonso Visconti. Among these individuals, Alfonso
Visconti is noted as never having become a pope. I will now compile this
information into a final answer format to present it clearly.
Code:
final_answer("The co-consecrator of Cardinal Fernando Niño de Guevara who
never became pope is Alfonso Visconti.")

Figure 24: Case study of the T3-Agent.
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