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Abstract

When tuning the architecture and hyperparameters of large machine learning models for
on-device deployment, it is desirable to understand the optimal trade-offs between on-device
latency and model accuracy. In this work, we leverage recent methodological advances in
Bayesian optimization over high-dimensional search spaces and multi-objective Bayesian
optimization to efficiently explore these trade-offs for a production-scale on-device natural
language understanding model at Facebook.

1. Introduction

Neural architecture search (NAS) aims to provide an automated framework that identifies
the optimal architecture for a deep neural network machine learning model given an eval-
uation criterion such as the model’s predictive performance. The continuing trend towards
deploying models on end user devices such as mobile phones has led to increased interest
in optimizing multiple competing evaluation criteria to achieve an optimal balance between
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predictive performance and computational complexity (e.g. total number of flops), memory
footprint, and latency of the model. To address the NAS problem, the research commu-
nity has developed a wide range of search algorithms, leveraging reinforcement learning
(RL) (Zoph and Le, 2017; Tan et al., 2019), evolutionary search (ES) (Real et al., 2019; Liu
et al., 2018), and weight-sharing (Cai et al., 2020; Yu et al., 2020; Wang et al., 2021), among
others. However, RL and ES can incur prohibitively high computational costs because they
require training and evaluating a large number of architectures. While weight sharing can
achieve better sample complexity, it typically requires deeply integrating the optimization
framework into the training and evaluation workflows, making it difficult to generalize to
different production use-cases.

In this work, we aim to bridge this gap and provide a NAS methodology that requires
zero code change to a user’s training flow and can thus easily leverage existing large-
scale training infrastructure while providing highly sample-efficient optimization of mul-
tiple competing objectives. We employ Bayesian optimization (BO), a popular method for
black-box optimization of computationally expensive functions that achieves high sample-
efficiency (Frazier, 2018). BO has been successfully used for tuning machine learning hyper-
parameters for some time (Snoek et al., 2012; Turner et al., 2021), but only recently emerged
as a promising approach for NAS (White et al., 2019; Falkner et al., 2018; Kandasamy et al.,
2018; Shi et al., 2019; Parsa et al., 2020).

2. Use-case: On-Device Natural Language Understanding

We focus on tuning the architecture and hyperparameters of an on-device natural language
understanding (NLU) model that is commonly used by conversational agents found in most
mobile devices and smart speakers. The primary objective of the NLU model is to under-
stand the user’s semantic expression, and then to convert that expression into a structured
decoupled representation that can be understood by downstream programs. As an example,
a user may ask the conversational assistant “what is the weather in San Francisco?”. In
order for the assistant to reply back with an appropriate answer, e.g., “The weather in San
Francisco is Sunny, with a high of 80 degrees”, it needs to first understand the user’s ques-
tion. This is the primary objective of the NLU model, which converts the user’s semantic
expression into a representation that can be understood by downstream tasks. We adapt a
structured semantic representation of utterance to accomplish this task. In this setting, the
NLU model takes the aforementioned query as input and generates the following structured
semantic representation, [IN: GET WEATHER [SL: LOCATION San Francisco ] ], where
IN and SL represent the intent and slot, respectively. The downstream program can then
easily identify that the user is interested in the current weather in San Francisco.

The NLU model shown in Fig. 1 is an encoder-decoder non-autoregressive (NAR) ar-
chitecture (Babu et al., 2021) based on the span pointer formulation (Shrivastava et al.,
2021). The span pointer parser is a recently proposed semantic formulation that has shown
to achieve state-of-the-art results on several task-oriented semantic parsing datasets (Shri-
vastava et al., 2021). An example of the span form representation is shown in Table 1.

The NLU model adapts a LightConv architecture consisting of a depth-wise convolution
with weight sharing and a transformer-like multi-attention architecture to avoid recurrence.
An input utterance of n tokens (e.g., “what is the weather in San Francisco?” has a total
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Figure 1: Non-Autoregressive Model Architecture of the NLU Semantic Parsing.

Utterance what is the weather in San Francisco
Index 1 2 3 4 5 6 7

Canonical Form [IN: GET WEATHER [SL: LOCATION San Francisco ] ]
Span Form [IN: GET WEATHER [SL: LOCATION 6 7 ] ]

Table 1: Comparison of the canonical and span forms of the decoupled frame representa-
tion. Given the utterance “what is the weather in San Francisco”, our span form produces
endpoints instead of text, reformulating the task from text generation to index prediction.

of 7 tokens) first go through the embedding and encoder layer to generate the contextual
information. Then, a convolutional neural network (CNN) based length predictor takes this
information and predicts the length of the final output token, labeled as m. For example,
[IN: GET WEATHER [SL: LOCATION San Francisco ] ] requires 8 output tokens for
representation. On the decoder side, masked tokens with a length m are initialized and
propagated through the decoder layer to generate the final output tokens.

As the NLU model serves as the first stage in conversational assistants, it is crucial
that it achieves high accuracy as the user experience largely depends on whether the users’
semantic expression can be correctly translated. Conversational assistants operate over the
user’s language, potentially in privacy-sensitive situations such as when sending a message.
For this reason, they generally run on the user’s device (“on-device”), which comes at the
cost of limited computational resources. While we generally expect a complex NLU model
with a large number of parameters to achieve better accuracy, we also want short on-device
inference time (latency) so as to provide a pleasant, responsive user experience. As complex
NLU models with high accuracy also tend to have high latency, we are interested in exploring
the trade-offs between these two objectives so that we can pick a model that offers an overall
positive user experience by balancing quality and delivery speed of the suggestions.
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3. Background

3.1 Multi-Objective Optimization

In multi-objective optimization (MOO), the goal is to maximize1 a vector-valued objective
f(x) ∈ RM over a bounded set X ⊂ Rd. Typically, there is no single best solution. Rather,
the goal is to identify the Pareto frontier: the set of optimal objective trade-offs such that
improving one objective means degrading another. A point f(x) is Pareto-optimal if it is
not Pareto-dominated by any other point. With knowledge of the Pareto-optimal trade-offs,
a decision-maker can choose an objective trade-off according to their preferences. Typically,
the goal in MOO is to identify a finite, approximate Pareto frontier within some fixed budget.
The quality of a Pareto frontier is commonly assessed according to the hypervolume that is
dominated by the Pareto frontier and bounded from below by a reference point that bounds
the region of interest in objective-space and is usually supplied by the decision-maker.

3.2 Bayesian Optimization

Bayesian optimization (BO) is a sample-efficient methodology for optimizing expensive-to-
evaluate black-box functions. BO leverages a probabilistic surrogate model, typically a
Gaussian Process (GP) (Rasmussen, 2004). GPs are flexible non-parametric models that
are specified by a mean function µ : Rd → R and a (positive semi-definite) covariance
function k : Rd×Rd → R. In this work, we choose the mean function µ to be constant and
the covariance function k to be the popular Matérn-5/2 kernel. In addition to the mean
constant, we also learn a signal variance s2, a noise variance σ2, and separate lengthscales
`i for each input dimension. We learn the hyperparameters by optimizing the log-marginal
likelihood, which has an analytic form (Rasmussen, 2004).

In addition, BO relies on an acquisition function that uses the GP model to provide a
utility value for evaluating candidate points on the true black-box functions. In the MOO
setting, common acquisition functions include the expected improvement (EI) with respect
to a scalarized objective (Knowles, 2006), expected hypervolume improvement (EHVI) (Em-
merich et al., 2006; Daulton et al., 2020), and information gain with respect to the Pareto
frontier (Hernandez-Lobato et al., 2016; Suzuki et al., 2020).

4. Multi-Objective Bayesian NAS

We aim to explore the set of Pareto-optimal tradeoffs between model accuracy and latency
over a search space containing parameters specifying the model architecture from Fig. 1.

4.1 Architecture Search Space

The model architecture hyper-parameters are given in Table 2 in Sec. B. For each of the
main components (encoder, decoder, and the length predictor) in the NLU model, kernel list
determines the number of layers and the corresponding LightConv kernel size. As an ex-
ample, a list of [3, 5, 7] refers to 3 layers and that the first/second/third layer’s LightConv
kernel length is 3/5/7, respectively. Other important hyperparameters are (1) embed dim
and ffn dim that determine the input and the transformer’s feed-forward network (FFN)

1. We assume maximization without loss of generality.
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width, respectively, and (2) attention heads for the number of heads in the attention mod-
ule. We encode each layer width as an integer parameter and use an additional parameter
to control the number of layers included. This leads to a total of 24 parameters.

4.2 Fully Bayesian Inference with SAAS priors

Our 24-dimensional search space poses a challenge for standard GP models as described in
Sec. 3.2. In Fig. 2 we show the leave-one-out cross-validation for two different model fitted
to the two objectives for 100 different input configurations. We consider objective values
relative to the performance of a base model (see Sec. 5 for more details). We compare
a standard GP model with a maximum a posteriori (MAP) approach to the recently in-
troduced sparse axis-aligned subspace (SAAS) prior (Eriksson and Jankowiak, 2021). The
SAAS models places sparse priors on the inverse lengthscales in addition to a global shrink-
age prior. When combined with the No-U-Turn sampler (NUTS) for inference, this leads to
a model that picks out the most relevant lengthscales, making the model suitable for high-
dimensional BO (see Sec. C for more details). As seen in Fig. 2, the SAAS prior provides
a much better model fit for both objectives, making it a suitable modeling choice.
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Figure 2: Leave-one-out cross-validation comparison for SAAS and MAP using 100 training
configurations. Using the SAAS prior provides good fits for both objectives while MAP
estimation is unable to provide accurate model fits.

4.3 Noisy Expected Hypervolume Improvement

We use the recently proposed parallel Noisy Expected Hypervolume Improvement acqui-
sition function (qNEHVI) (Daulton et al., 2021), which has been shown to perform well
with high levels of parallelism and under noisy observations. As we use fully Bayesian in-
ference, we integrate the acquisition function over the posterior distribution p(ψ|D) of the
GP hyperparameters ψ given the observed data D:

αqNEHVI-MCMC(Xcand) =

∫
ψ
αqNEHVI(Xcand|ψ)p(ψ|D)dψ (1)

where Xcand denotes set of q new candidates Xcand = {x1, ...,xq}. Since the integral in (1)
is intractable, we approximate the integral using NMCMC Monte Carlo (MC) samples (see
Sec. D for additional details).
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5. Experimental results

The goal is to maximize the accuracy of the model described in Sec. 2 on a held-out evalu-
ation set while also minimize the on-device p99 latency (the 99th percentile of the latency
distribution). Latency here defined as the time between when the input utterance becomes
available and the model generates the final structured semantic representation. To produce
a stable estimate of the p99 latency, a tested model is evaluated repeatedly many times
on the same device. We select a reference point to bound the area of interest based on an
existing model with hyperparameters selected using domain knowledge. We optimize the
objectives relative to this reference point, which results in a reference point of (1, 1).

We consider a computational budget of 240 evaluations and launch function evalua-
tions asynchronously with parallelism of q = 16. For BO, we use 32 initial points from a
scrambled Sobol sequence. To do inference in the SAAS model we rely on the open-source
implementation of NUTS in Pyro (Bingham et al., 2019). We use qNEHVI as implemented
in BoTorch (Balandat et al., 2020). The results from using BO as well as Sobol search are
shown in Fig. 3. Sobol was only able to find a single configuration that outperformed the
reference point. On the other hand, our BO method was able to explore the trade-offs and
improve the p99 latency by more than 25% while also improving model accuracy.
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Figure 3: (Left) Sobol search is only able to find two points that improve upon the reference
point. (Right) BO is able to successfully explore the trade-off between latency and accuracy.

6. Conclusion

We introduced a new BO method for sample-efficient multi-objective NAS. Our approach
combines the SAAS prior for high-dimensional BO (Eriksson and Jankowiak, 2021) with
the qNEHVI acquisition function (Daulton et al., 2021). When applied to a production-
scale on-device natural language understanding model, our method was able to successfully
explore the trade-off between model accuracy and on-device latency.
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Appendix A. Example json

We rely on PyText, which is a deep-learning based language modeling framework built
on PyTorch, and is the primary framework for a variety of production NLP models at
Facebook, including semantic parsing. PyText provides a flexible way to generate the deep
learning model through a json configuration file, thus providing an easy way to integrate
with BO without major code refactoring. In this simplified example, a 4-layer encoder,
1-layer decoder transformer-like model is generated. The encoder’s embedding and feed-
forward dimension are 128 and 192, respectively. At single-layer decoder end, the decoder’s
lightweight convolution’s kernel size is 12, uses GLU for activation, and the attention module
is a multi-headed configuration with the number of heads equals to two. This flexible
expression allows the back-end NAS engine to be seamlessly integrated with the model
training framework.

{
"encoder": {

"encoder_embed_dim": 128,
"encoder_ffn_embed_dim": 192,
"encoder_kernel_list": [3, 5, 5, 7]

},
"decoder": {

"decoder_embed_dim": 156,
"decoder_output_dim": 128,
"decoder_glu": true,
"self_attention_heads": 2,
"decoder_kernel_size_list": [12]

}
// config continues

}

Listing 1: Example of transformer-like model json configuration. This type of json con-
figuration is the default in the PyText framework, and consequently any PyText machine
learning engineer will be familiar with this format.

Appendix B. Search space

A summary of the tunable parameters is given in Table 2. The kernel sizes are represented
by one integer parameter for each layer and then one additional integer parameter that
controls the length. In particular, we always optimize the acquisition function over all
widths as well as the number of layers, but only include the first num layers width in the
resulting model. We emphasize that the representation of the kernel sizes could be further
improved by taking into account the hierarchical structure, e.g., we do not need a parameter
for the width of the 6th layer if we condition on the encoder length being 5. This results
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in 7 parameters for the encoder, 3 for the decoder, and 3 for the convolution. In addition,
there are 10 additional integer parameters and 1 boolean parameter, resulting in a total of
24 parameters.

Parameter Default Search Space Description

Encoder

kernel list [3, 3, 5, 9, 7] [3, 3, 3, 3], ... list of length 4-6, drawn from [3, 5, 7, 9]
embed dim 128 128, 136, ..., 192 input dimension
self attention 2 1, 2, 4 number of self-attention head
ffn dim 40 32, 40, ..., 192 feed-forward network (FFN) width
normalized True True, False apply normalization before the FFN

Decoder

kernel list [13, 9] [7, 7], [7, 9], ... list of length 1-2, drawn from [7, 9, 11, 13, 15]
self attention 1 1, 2, 4 number of self-attention head
attention heads 2 1, 2, 4 number of cross-attention head
ffn dim 144 128, 144, ..., 512 FFN width

Length Predictor

kernel list [3, 7] [3], [3, 5], ... list of length 1-2, drawn from [3, 5, 7]
dim 192 32, 40, ..., 192 convolution width
num head 4 1, 2, 4 number of attention head

Embedding

char embed dim 8 8, 12, ..., 24 character embedding dimension
proj dim 12 8, 12, ..., 24 last layer projection dimension

Table 2: List of the tunable parameters (i.e., search space) of the NLU model

Appendix C. GP fitting

Before fitting the GP model we standardize the output values for each objective to have
zero mean and unit variance. We also linearly scale the inputs to lie in the domain [0, 1]d.
Recall from Sec. 3.2 that we use a separate lengthscale `i for each input dimension. Fol-
lowing Eriksson and Jankowiak (2021), we use a global shrinkage τ ∼ HC(0.1) and priors
1/`i ∼ HC(τ), whereHC is the half-Cauchy distribution. As all latent variables in the SAAS
model are continuous, we can use the No-U-Turn sampler (NUTS) for inference, integrat-
ing out f analytically in the log-marginal likelihood formulation. The global shrinkage is
controlled via τ and its values will naturally concentrate around zero because of the HC
prior. As the inverse lengthscales are also governed by a HC prior, they will also concentrate
around zero and the resulting model will, in absence of strong contrary evidence from the
data, have large lengthscales and thus “turn off” the majority of dimensions.

In addition to the lengthscale priors we use a Γ(0.9, 10) prior for the noise variance,
a Γ(2.0, 0.15) prior for the signal variance, and a U [−1, 1] prior for the constant mean.
For NUTS, we use 512 warmup steps before collecting a total of 256 samples. Finally, we
apply thinning and keep only every 16th sample, leaving us with a total of 32 hyperparam-
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eter samples to average over when computing the acquisition function for any given set of
candidate points.

Appendix D. Noisy Expected Hypervolume Improvement

Snoek et al. (2012) proposed a similar fully Bayesian treatment of EI, but to our knowledge,
no previous work on multi-objective optimization has considered integrating an EHVI-based
acquisition function over the posterior distribution of the GP hyperparameters. Since the
integral in (1) is intractable, we approximate it using NMCMC Monte Carlo (MC) samples:

α̂qNEHVI-MCMC(Xcand) =
1

NMCMC

NMCMC∑
n=1

αqNEHVI(Xcand|ψn)

αqNEHVI also includes an intractable integral and therefore is itself approximated with N
MC samples. We integrate over the posterior distribution of the objectives at pending
points to account for the previously selected candidates that are currently being evaluated.
The cached box decomposition approach (CBD) used in qNEHVI can be used to efficiently
compute α̂qNEHVI-MCMC by cachingNMCMCN box decompositions. See Daulton et al. (2021)
for details on efficient computation using CBD.

Appendix E. Hypervolume improvement

Fig. 4 illustrates that BO achieves a much larger hypervolume compared to Sobol with
respect to the reference point (1, 1). BO immediately makes progress after the initial 32
Sobol points and consistently makes progress as the GP model becomes more accurate.
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Figure 4: We see that BO improves the hypervolume quickly after the initial Sobol batch
and makes continuous improvement until the evaluation budget is exhausted.
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