
Latency-Aware Neural Architecture Search 
with Multi-Objective Bayesian Optimization 
Latency-Aware Neural Architecture Search (NAS) 
Problem: Deploying models on end user devices such as mobile 
phones requires low-latency and accurate predictive models 

Goal: Provide an automated framework for identifying neural 
architectures that are optimal with respect to accuracy and on-device 
prediction latency  

References
[1] A. Shrivasava et al. “Span Pointer Networks for Non-Autoregressive Task-Oriented Semantic Parsing.” 
arXiv preprint arXiv:2104.07275, 2021. 
[2] Eriksson, David, and Martin Jankowiak. "High-Dimensional Bayesian Optimization with Sparse Axis-Aligned 
Subspaces." Conference on Uncertainty in Artificial Intelligence (UAI), 2021. 
[3] Daulton, Samuel, Maximilian Balandat, and Eytan Bakshy. "Parallel Bayesian Optimization of Multiple Noisy 
Objectives with Expected Hypervolume Improvement." arXiv preprint arXiv:2105.08195, 2021.

David Eriksson 
Pierce I-Jen Chuang 
Samuel Daulton 
Peng Xia

Use Case: On-Device Natural Language 
Understanding (NLU)

Multi-Objective Bayesian Optimization

• NLU is commonly used by conversational agents in most mobile devices 
and smart speakers 

• Primarily objective: 
• Understand the user’s semantic expression 
• Convert the expression to a structured decoupled span form 

representation that can be understood by downstream task

Akshat Shrivastava 
Arun Babu 
Shicong Zhao 
Ahmed Aly

Ganesh Venkatesh 
Maximilian Balandat 

Canonical vs span forms of the decoupled frame representation. Given the utterance “what is the weather in 
San Francisco”, our span form produces endpoints instead of text, reformulating the task from text generation to 
index prediction

Non-Autoregressive Model Architecture of the NLU Semantic Parsing
(Left) Sobol search is only able to find two points that improve upon the reference point. (Right) BO is able to successfully 
explore the trade-ff between latency and accuracy

List of the tunable parameters (i.e., search space) of the NLU model

Search Space
• Search space 

includes kernel size, 
number/width of 
layers, number of 
attention head, etc 

• A total of 24 
parameters to be 
searched

Leave-one-out cross-validation comparison for SAAS [2] and MAP using 100 training configurations. Using the 
SAAS prior provides good fits for both objectives while MAP estimation is unable to provide accurate model fits

BO improves the hypervolmme quickly after the initial 
Sobol batch and makes continuous improvement until 
the evaluation budget is exhausted

• Non-Autoregressive 
Transformer-like 
architecture 

• Encoder generates 
the contextual 
information  

• CNN-based length 
predictor predicts the 
length of the final 
output token 

• Decoder to generate 
the info output tokens 
in one-shot

Model Architecture

Overview of the NAS framework.

NAS Methodology
• Pre-defined search space (i.e., # of layers, kernel shape) 
• Search engine with a user-specified search strategy (i.e., multi-

objective Bayesian Optimization)  
• Selected architecture is trained/evaluated and deployed to obtain 

actual inference latency 
• Inference latency is benchmarked on a tier-1 Android device 

with arm64 kernel through PyTorch lite interpreter 
• Inference latency is defined as the time when the input data 

becomes available to the time the model generates the final 
outputs 

• Accuracy/latency results are fed back to the search engine 
• Depending on the objective, the search engine then selects the 

next candidate for evaluation 
• Process is repeated until either the maximum number of 

iteration is reached or the final objective converges

• We use Gaussian process surrogate models with sparse axis-aligned 
subspace priors [2] to model the two objectives over the high-
dimensional search space

• To select new candidate architectures, we use an integrated variant of 
the qNEHVI acquisition function [3], where we integrate qNEHVI over 
the posterior distribution of the GP hyperparameters. 

• We find that multi-objective bayesian optimization vastly outperforms 
(quasi-) random search.


