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This appendix is divided into three parts: Appendix A.1: Proofs of theoretical results; Appendix A.2:
More details on the experimental setup, additional quantitative experiments, and more qualitative
comparisons with related work; and Appendix A.3: A datasheet for ENEM (2020) dataset.

A.1 Proofs of theoretical results

The theoretical details of our work are included in this appendix. We prove the strong duality stated
in Theorem 2 in Appendix A.1.1. Algorithm 1 is derived in Appendix A.1.2. The inner iterations
of Algorithm 1 are further developed in Appendices A.1.3–A.1.4. The convergence rate result in
Theorem 3 is proved in Appendix A.1.5, and an extension of it (to general f -divergences) is discussed
in Appendix A.1.6. The performance of FairProjection for the population problem (5) is stated in
Theorem 3 in A.1.7 and proved there too. Explicit formulas for the G matrix induced by the fairness
metrics in Table 2 are given in Appendices A.1.8 and A.1.9.

A.1.1 Proof of Theorem 2: strong duality

We use the following minimax theorem, which is a generalization of Sion’s minimax theorem.

Theorem 1 ([ET99b, Chapter VI, Prop. 2.2]). Let V and Z be two reflexive Banach spaces, and fix
two convex, closed, and non-empty subsetsA ⊂ V and B ⊂ Z. Let L : A×B → R be a function such
that for each u ∈ A the function p 7→ L(u, p) is concave and upper semicontinuous, and for each
p ∈ B the function u 7→ L(u, p) is convex and lower semicontinuous. Suppose that there exist points
u0 ∈ A and p0 ∈ B such that limp∈B,∥p∥→∞ L(u0, p) = −∞ and limu∈A,∥u∥→∞ L(u, p0) = ∞.
Then, L has at least one saddle-point (u, p), and

L(u, p) = min
u∈A

sup
p∈B

L(u, p) = max
p∈B

inf
u∈A

L(u, p). (A.1)

In particular, in (A.1), there exists a minimizer in A of the outer minimization, and a maximizer in B
of the outer maximization.

Denote hi ≜ h(Xi), pi ≜ hbase(Xi), ai ≜ a(Xi), and Gi ≜ G(Xi), and let the matrix GN ≜(
G1/
√
N, · · · ,GN/

√
N, IK

)
∈ RK×(NC+K) be as in the theorem statement. We may rewrite the
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optimization (6) as

minimize
(hi,ai,b)∈∆C×RC×RK ,i∈[N ]

1

N

∑
i∈[N ]

Df (hi∥pi) + τ1 ·
(
∥ai∥22 + ∥b∥22

)
subject to

1

N

∑
i∈[N ]

Gihi + τ2 · (Giai − b) ≤ 0.

(A.2)

We define f at 0 by the right limit f(0) ≜ f(0+). Assume for now that f(0+) < ∞, and we will
explain at the end of this proof how to treat the case f(0+) =∞. For the optimization problem (A.2),
the Lagrangian L : ∆N

C × RNC × RK × RK
+ → R is given by

L
(
(hi)i∈[N ] , (ai)i∈[N ] , b,λλλ

)
≜

1

N

∑
i∈[N ]

Df (hi∥pi) + τ1
(
∥ai∥22 + ∥b∥22

)
+ λλλT (Gihi + τ2 (Giai − b)) .

(A.3)

With v(x;λλλ) ≜ −G(x)Tλλλ as in the theorem statement, and denoting vi ≜ v(Xi;λλλ) = −GT
i λλλ, we

may rewrite the Lagrangian as

L
(
(hi)i∈[N ] , (ai)i∈[N ] , b,λλλ

)
=

1

N

∑
i∈[N ]

Df (hi∥pi)− vT
i hi + τ1∥ai∥22 − τ2vT

i ai

+ τ1∥b∥22 − τ2λλλT b.
(A.4)

The optimization problem (A.2) can be written as

inf
(hi,ai,b)∈∆C×RC×RK ,i∈[N ]

sup
λλλ∈RK

+

L
(
(hi)i∈[N ] , (ai)i∈[N ] , b,λλλ

)
. (A.5)

We check that the Lagrangian L satisfies the conditions in Theorem 1. First, any Euclidean space
RM (for M ∈ N) is a reflexive Banach space since it is finite-dimensional. In addition, the convex
nonempty sets ∆N

C × RNC × RK and RK
+ are closed in their respective ambient Euclidean spaces.

By continuity and convexity of f , and linearity of L in λλλ, we have that L satisfies all the convexity,
concavity, and semicontinuity conditions in Theorem 1. Further, fixing any hi ∈∆C , i ∈ [N ], and
letting ai = 0, i ∈ [N ], and b = 1

τ2

(
1+ 1

N

∑
i∈[N ] Gihi

)
, we would get that

L
(
(hi)i∈[N ] , (ai)i∈[N ] , b,λλλ

)
= −λλλT1+ 1

N

∑
i∈[N ]

Df (hi∥pi)+τ1∥b∥22 → −∞ as ∥λλλ∥2 →∞.

(A.6)
In addition, choosing λλλ = 0, we have the Lagrangian

L
(
(hi)i∈[N ] , (ai)i∈[N ] , b,λλλ

)
=

1

N

∑
i∈[N ]

Df (hi∥pi) + τ1∥ai∥22 + τ1∥b∥22 →∞ (A.7)

as ∥b∥2 +
∑

i∈[N ] ∥hi∥2 + ∥ai∥2 →∞. Thus, we may apply the minimax result in Theorem 1 to
obtain the existence of a saddle-point of L and that

min
(hi,ai,b)∈∆C×RC×RK ,i∈[N ]

sup
λλλ∈RK

+

L
(
(hi)i∈[N ] , (ai)i∈[N ] , b,λλλ

)
= max

λλλ∈RK
+

inf
(hi,ai,b)∈∆C×RC×RK ,i∈[N ]

L
(
(hi)i∈[N ] , (ai)i∈[N ] , b,λλλ

)
.

(A.8)
In particular, there exists a minimizer (hopt,N

i ,aopt,N
i , bopt,N ) ∈∆C × RC × RK , i ∈ [N ], of the

outer minimization in the left-hand side in (A.8), and a maximizerλλλ⋆ ∈ RK
+ of the outer maximization

in the right-hand side of (A.8). By strict convexity of the objective function in (A.2) (and convexity of
the feasibility set), we obtain that the minimizer (hopt,N

i ,aopt,N
i , bopt,N ) ∈∆C×RC×RK , i ∈ [N ],

is unique. We show next that the optimizer λλλ⋆ is unique too, which we will denote by λλλ⋆ζ,N as in
the theorem statement. We also show that, for each fixed λλλ ∈ RK

+ , there is a unique minimizer
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(hλλλ
i ,a

λλλ
i , b

λλλ) ∈∆C × RC × RK , i ∈ [N ], of the inner minimization in the right-hand side of (A.8);

by strict convexity of f , this would imply that hopt,N
i = h

λλλ⋆
ζ,N

i .

Now, fix λλλ ∈ RK
+ , and consider the inner minimization in (A.8). We have that

inf
(hi,ai,b)∈∆C×RC×RK ,i∈[N ]

L
(
(hi)i∈[N ] , (ai)i∈[N ] , b,λλλ

)
= inf
(hi,ai,b)∈∆C×RC×RK ,i∈[N ]

1

N

∑
i∈[N ]

Df (hi∥pi)− vT
i hi + τ1∥ai∥22 − τ2vT

i ai + τ1∥b∥22 − τ2λλλT b

(A.9)

=
1

N

∑
i∈[N ]

inf
hi∈∆C

Df (hi∥pi)− vT
i hi + inf

ai∈RC
τ1∥ai∥22 − τ2vT

i ai + inf
b∈RK

τ1∥b∥22 − τ2λλλT b

(A.10)

=
1

N

∑
i∈[N ]

−Dconj
f (vi,pi)−

1

2
ζ∥vi∥22 −

1

2
ζ∥λλλ∥22 (A.11)

= −ζ
2

∥∥∥GT
Nλλλ
∥∥∥2
2
− 1

N

∑
i∈[N ]

Dconj
f (vi,pi) (A.12)

where ζ ≜ τ22 /(2τ1). Here, the minimizers are aλλλ
i ≜ τ2

2τ1
vi and bλλλi ≜ τ2

2τ1
λλλ, and hλλλ

i is the
unique probability vector in ∆C for which Dconj

f (vi,pi) = Df (h
λλλ
i ∥pi)− vT

i h
λλλ
i ; the existence and

uniqueness of hλλλ
i is guaranteed since q 7→ Df (q∥pi)− vT

i q is lower semicontinuous and strictly
convex, and ∆C is compact. Rewriting it in the form (A.12), the function

λλλ 7→ inf
(hi,ai,b)∈∆C×RC×RK ,i∈[N ]

L
(
(hi)i∈[N ] , (ai)i∈[N ] , b,λλλ

)
(A.13)

can be seen to be strictly concave. Indeed, the function λλλ 7→
∥∥∥GT

Nλλλ
∥∥∥2
2

is strictly convex. Also, each

function λλλ 7→ Dconj
f (vi,pi) is convex as it is a pointwise supremum of linear functions: recalling

that vi = −GT
i λλλ, we have the formula

Dconj
f (vi,pi) = sup

q∈∆C

−qTGT
i λλλ−Df (q ∥pi). (A.14)

Hence, the outer maximizer λλλ⋆ in (A.8) is indeed unique, which we denote by λλλ⋆ζ,N . Note that λλλ⋆ζ,N
is the unique solution to the minimization (8), i.e.,

λλλ⋆ζ,N = argmin
λλλ∈RK

+

1

N

∑
i∈[N ]

Dconj
f (vi,pi) +

ζ

2

∥∥∥GT
Nλλλ
∥∥∥2
2
, (A.15)

as stated by the theorem.

Since hopt,N = hλλλ⋆
ζ,N , the following formula for hλλλ (for a general λλλ ∈ RK

+ ) yields the desired
functional form (7) for hopt,N in terms of λλλ⋆ζ,N .

Lemma 1 ([AAW+20a, Lemma 4]). Let f : [0,∞)→ R ∪ {∞} be a strictly convex function that
is continuously differentiable over (0,∞) and satisfying f(0) = f(0+), f(1) = 0, and f ′(0+) =
−∞. Let ϕ denote the inverse of f ′. Fix p ∈ ∆+

C and v ∈ RC . Then, the unique minimizer of
q 7→ Df (q∥p) − vTq over q ∈ ∆C is given by q⋆c = pc · ϕ(γ + vc), c ∈ [C], where γ ∈ R is the
unique number satisfying Ec∼p[ϕ(γ + vc)] = 1.

From Lemma 1, and using v(x;λλλ⋆ζ,N ) = −G(x)Tλλλ⋆ζ,N and ϕ = (f ′)−1, we get that there exists a
uniquely defined function γ : X× RK → R for which

Ec∼hbase(x)

[
ϕ
(
γ(x;λλλ⋆ζ,N ) + vc(x;λλλ

⋆
ζ,N )

)]
= 1 (A.16)

for every x ∈ X. For this γ, we know from Lemma 1 that

h
λλλ⋆

ζ,N
c (x) = hbasec (x) · ϕ

(
γ(x;λλλ⋆ζ,N ) + vc(x;λλλ

⋆
ζ,N )

)
(A.17)
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for every c ∈ [C] and x ∈ X. Since hopt,N = hλλλ⋆
ζ,N , we obtain formula (7) for hopt,N in terms of

λλλ⋆ζ,N , and the proof of Theorem 2 is complete in the case f(0+) <∞.

Finally, we note how the case f(0+) = ∞ is treated, so assume f(0) = f(0+) = ∞. The only
difference in this case is that the Lagrangian L might attain the value∞, whereas we need it to be
R-valued to apply the minimax result in Theorem 1. Nevertheless, the only way L can be infinite is if
some classifier hi has an entry equal to 0, in which case the objective function in (6) (or (A.2)) will
also be infinite, so such a classifier can be thrown out without affecting the optimization problem.
More precisely, we still have strict convexity and lower semicontinuity of the objective function
in (A.2). Thus, there is a unique minimizer hopt,N of (A.2). For this optimizer, there must be an
ε1 > 0 such that hopt,N (x) ≥ ε11 for every x ∈ X. Thus, the optimization problem (A.2) remains
unchanged if ∆C is restricted to classifiers bounded away from 0 by ε1. Moreover, by the same
reasoning, the optimization problem (A.14) for finding Dconj

f also remains unchanged if ∆C is
replaced by the set of classifiers bounded away from 0 by some ε2 > 0 that is independent of the
Xi. Hence, choosing ε = min(ε1, ε2) > 0, and replacing ∆C by ∆̃C ≜ {q ∈∆C ; q ≥ ε1} in the
above proof, we attain the same results for the case f(0+) =∞.

Remark 1. In addition to our fairness problem formulation (6) being different from that in
[AAW+20a], we note that our proof techniques are distinct. Indeed, the proofs in [AAW+20a]
develop several techniques since they are based only on Sion’s minimax theorem, precisely because
a generalized minimax result such as Theorem 1 is inapplicable in the setup of [AAW+20a]. The
reason behind this inapplicability is that the ambient Banach space C(X ,RC) is not reflexive when
X is infinite, e.g., when X = Rd as is assumed in [AAW+20a], whereas it is reflexive in our case as
we consider a finite set of samples X ⊂ X .

A.1.2 Algorithm 1: derivation of the ADMM iterations

ADMM is applicable to problems taking the form

minimize
(V ,λλλ)∈RV ×RK

F (V ) + ψ(λλλ)

subject to AV +Bλλλ = m,
(A.18)

where F : RV → R ∪ {∞} and ψ : RK → R ∪ {∞} are closed proper convex functions, and
A ∈ RU×V , B ∈ RU×K , and m ∈ RU are fixed.

We rewrite the convex problem (8) into the ADMM form (A.18) as follows. With the samples
X1, · · · , XN

i.i.d.∼ PX fixed, we denote the following fixed vectors and matrices: for each i ∈ [N ], set

pi ≜ hbase(Xi) ∈∆+
C = {q ∈∆C ; q > 0}, (A.19)

Gi ≜ G(Xi) ∈ RK×C . (A.20)

We introduce a variable V ≜ (vi)i∈[N ] ∈ RNC (with components vi ∈ RC), and consider the
objective functions

F (V ) ≜
1

N

∑
i∈[N ]

Dconj
f (vi,pi) +

ζ

2
∥V ∥22 , (A.21)

ψ(λλλ) ≜ IRK
+
(λλλ) +

ζ

2
∥λλλ∥22 . (A.22)

Then, setting2

A =
1√
N

INC , B =
1√
N

(Gi)
T
i∈[N ], and m = 0NC , (A.23)

our finite-sample problem (8) takes the ADMM form (A.18).

In addition, this reparametrization allows us to parallelize the ADMM iterations, which we briefly
review next. One starts with forming the augmented Lagrangian for problem (A.18), Lρ : RV ×

2The prefactor 1/
√
N is unnecessary since m = 0, but we introduce it to simplify the ensuing expressions.
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RK × RU → R ∪ {∞}, where ρ > 0 is a fixed penalty parameter and U ∈ RU denotes a dual
variable, by

Lρ(V ,λλλ,U) ≜ F (V ) + ψ(λλλ) +UT (AV +Bλλλ−m) +
ρ

2
∥AV +Bλλλ−m∥22 . (A.24)

The ADMM iterations then repeatedly update the triplet after the t-th iteration (V (t),λλλ(t),U (t)) into
a triplet (V (t+1),λλλ(t+1),U (t+1)) that is given by

V (t+1) ∈ argmin
V ∈RV

Lρ(V ,λλλ
(t),U (t)), (A.25)

λλλ(t+1) ∈ argmin
λλλ∈RV

Lρ(V
(t+1),λλλ,U (t)), (A.26)

U (t+1) = U (t) + ρ ·
(
AV (t+1) +Bλλλ(t+1)

)
. (A.27)

We next instantiate the ADMM iterations to our problem, and we note that we will consider the scaled
dual variable W =

√
NU .

In our case, the augmented Lagrangian splits into non-interacting components along the vi. This
splitting allows parallelizability of the V -update step, which is the most computationally intensive
step. Consider a conforming decomposition U = (ui)i∈[N ] for ui ∈ RC , and let W =

√
NU .

With some algebra, one can show that the ADMM iterations for the ADMM problem specified
by (A.21)–(A.23) are expressible by3

v
(t+1)
i = argmin

v∈RC

Dconj
f (v,pi) +R

(t)
i (v), i ∈ [N ], (A.28)

λλλ(t+1) = argmin
λλλ∈RK

+

λλλTQλλλ+ q(t)Tλλλ, (A.29)

w
(t+1)
i = w

(t)
i + ρ ·

(
v
(t+1)
i +GT

i λλλ
(t+1)

)
, i ∈ [N ], (A.30)

whereR(t)
i : RC → R is the quadratic form

R(t)
i (v) ≜

ρ+ ζ

2
∥v∥22 +

(
w

(t)
i + ρGT

i λλλ
(t)
)T

v, (A.31)

and the fixed matrix Q ∈ RK×K and vectors q(t) ∈ RK are given by

Q ≜
ζ

2
IK +

ρ

2N

∑
i∈[N ]

GiG
T
i , (A.32)

q(t) ≜
1

N

∑
i∈[N ]

Gi ·
(
w

(t)
i + v

(t+1)
i

)
. (A.33)

Note that both the first (A.28) and last (A.30) steps can be carried out for each sample i ∈ [N ] in
parallel.

A.1.3 The inner iterations: minimizing the convex conjugate of f -divergence

Only updating the primal-variable vi in Algorithm 1, i.e., solving

min
v∈RC

Dconj
f (v,p) + ξ∥v∥22 + aTv (A.34)

for fixed (p, ξ,a) ∈ ∆+
C × (0,∞) × RC , is a nonstandard task. We propose in this section two

approaches to execute this step, which aim at re-expressing the required minimization as either a
fixed-point or a root-finding problem. In more detail, if one has access to an explicit formula for the

3Note also that in these specific ADMM iterations, unlike in the general ADMM iterations, we write
“= argmin” as opposed to “∈ argmin” since strict convexity and coercivity guarantee that a unique minimizer

exists (see [CST17] for a case where argmin is empty). Also, we write here q(t)T instead of
(
q(t)

)T

for
readability.
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gradient of Dconj
f , then one can transform (A.34) into a fixed-point equation. This case applies for the

KL-divergence, for which ∇Dconj
KL is the softmax function (Appendix A.1.3.1). Furthermore, for the

convergence of the fixed-point iterations, we derive an improved Lipschitz constant for the softmax
function in Appendix A.1.4. On the other hand, if one does not have a tractable formula for ∇Dconj

f ,
we propose the reduction provided in Lemma 1, whose proof is provided in Appendix A.1.3.2. We
specialize the reduction provided by Lemma 1 to the cross-entropy case in Appendix A.1.3.3. Finally,
we include in Appendix A.1.3.4 a general formula for∇Dconj

f that can be used for the vi-update step
for a general f -divergence, and we also utilize it in Appendices A.1.5–A.1.7 to prove the convergence
rate of Algorithm 1 stated in Theorems 3–3.

A.1.3.1 Primal update for KL-divergence

Consider the case when the f -divergence of choice is the KL-divergence, i.e., f(t) = t log t. Then, the
convex conjugateDconj

f is given by the log-sum-exp function [DV75], namely, for (p,v) ∈∆+
C×RC

we have

Dconj
f (v,p) = log

∑
c∈[C]

pce
vc . (A.35)

Thus, the first step in a given ADMM iteration, as in (A.28) (see also the beginning of the for-loop in
Algorithm 1), amounts to solving

min
v∈RC

log
∑
c∈[C]

pce
vc + ξ∥v∥22 + aTv (A.36)

for ξ ≜ ρ+ζ
2 > 0 and some fixed vectors (p,a) ∈ ∆+

C × RC ; see (A.19), (A.28) and (A.31) for
explicit expressions. The problem (A.36) is strictly convex. Further, we may recast this problem, via
introducing the variable z ∈ RC by zc ≜ vc + log pc, as

min
z∈RC

log
∑
c∈[C]

ezc + ξ∥z∥22 + bTz, (A.37)

where bc = ac − 2ξ log pc is fixed. To solve this latter problem, it suffices to find a zero of the
gradient, which is given by

∇z

log
∑
c∈[C]

ezc + ξ∥z∥22 + bTz

 = σ(z) + 2ξz + b (A.38)

where σ : RC →∆+
C denotes the softmax function σ(z) ≜

(
ezc′∑

c∈[C] e
zc

)
c′∈[C]

. Thus, we arrive at

the fixed-point problem θ(z) = z for the function

θ(z) ≜ − 1

2ξ
(σ(z) + b) . (A.39)

We solve θ(z) = z using a fixed-point-iteration method, i.e., with some initial z0, we iteratively
compute the compositions θ(m)(z0) for m ∈ N. This procedure is summarized in Algorithm A.1.

The exponentially-fast convergence of Algorithm A.1 is guaranteed in view of Lipschitzness of θ
as defined in (A.39). Indeed, it is known that the softmax function is 1-Lipschitz (see, e.g., [GP17,
Prop. 4]); we improve this Lipschitz constant to 1/2 in Appendix A.1.4. This improvement yields
a better guarantee on the convergence speed of FairProjection. Indeed, as a lower value of the
ADMM penalty ρ correlates with a faster convergence, lowering the Lipschitz constant of the softmax
function allows us to speed up FairProjection by choosing ρ > 1

2 − ζ instead of ρ > 1− ζ.
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Algorithm A.1 : argmin
v∈RC

Dconj
KL (v,p) + ξ∥v∥22 + aTv

Input: ξ > 0, p ∈∆+
C , a,v ∈ RC .

zc ← vc + log pc c ∈ [C]
bc ← ac − 2ξ log pc c ∈ [C]
repeat
z ← − 1

2ξ (σ(z) + b)

until convergence

Output: vc ≜ zc − log pc c ∈ [C]

A.1.3.2 Proof of Lemma 1: primal update for general f -divergences

The lemma follows by the following sequence of steps:

min
v∈RC

Dconj
f (v,p) + ξ∥v∥22 + aTv

(I)
= min

v∈RC
max
q∈∆C

qTv −Df (q ∥p) + aTv + ξ∥v∥22 (A.40)

(II)
= max

q∈∆C

min
v∈RC

qTv −Df (q ∥p) + aTv + ξ∥v∥22 (A.41)

(III)
= max

q∈∆C

−Df (q ∥p)−
1

4ξ
∥a+ q∥22 (A.42)

= − min
q∈∆C

Df (q ∥p) +
1

4ξ
∥a+ q∥22 (A.43)

= − min
q∈RC

+

sup
θ∈R

Df (q ∥p) +
1

4ξ
∥a+ q∥22 + θ ·

(
1Tq − 1

)
(A.44)

(IV)
= − sup

θ∈R
min
q∈RC

+

Df (q ∥p) +
1

4ξ
∥a+ q∥22 + θ ·

(
1Tq − 1

)
(A.45)

(V)
= − sup

θ∈R
−θ +

∑
c∈[C]

min
qc≥0

pcf

(
qc
pc

)
+

1

4ξ
(ac + qc)

2 + θqc,

(A.46)

where (I) holds by definition of Dconj
f (see (3)), (II) by Sion’s minimax theorem, (III) since the inner

minimization occurs at v = − 1
2ξ (q + a), (IV) by generalized minimax theorems [see, e.g., Chap-

ter VI, Proposition 2.2 in ET99a] (restated as Theorem 1 herein for convenience), and (V) by
separability.

A.1.3.3 Primal update for cross-entropy

In the cross-entropy (CE) case, i.e., f(t) = − log t, instead of using an explicit formula for Dconj
f

(which would yield unwieldy expressions), we utilize the reduction shown in Lemma 1. Thus, we
have the equality

min
v∈RC

Dconj
f (v,p)+ξ∥v∥22+aTv = − sup

θ∈R
−θ+

∑
c∈[C]

min
qc≥0

pcf

(
qc
pc

)
+

1

4ξ
(ac+qc)

2+θqc. (A.47)

As per (A.47), we focus next on solving the inner single-variable minimization

min
q≥0
−p log q + 1

4ξ
(a+ q)2 + θq. (A.48)

It is easily seen that the solution to this minimization is the unique point making the objective’s
derivative vanish, i.e., it is q⋆ ∈ (0,∞) for which

− p

q⋆
+
q⋆

2ξ
+ θ +

a

2ξ
= 0. (A.49)
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Algorithm A.2 : argmin
v∈RC

Dconj
CE (v,p) + ξ∥v∥22 + aTv

Input: ξ > 0, z ∈ R, p ∈∆+
C , a ∈ RC .

repeat

g(z)← −1 +
∑
c∈[C]

√(
z +

ac
2

)2
+ 2pcξ −

(
z +

ac
2

)
g′(z)← −C +

∑
c∈[C]

2z + ac√(
z + ac

2

)2
+ 2pcξ

z ← z − g(z)

g′(z)

until convergence

Output: vc ≜
1

2ξ

(
z − ac

2
−
√(

z +
ac
2

)2
+ 2pcξ

)

This is easily solvable as a quadratic, yielding

q⋆ =

√(
θξ +

a

2

)2
+ 2pξ −

(
θξ +

a

2

)
. (A.50)

Therefore, solving (A.47) amounts to finding the constant θ ∈ R that yields a probability vector
q ∈∆C , where

qc ≜

√(
θξ +

ac
2

)2
+ 2pcξ −

(
θξ +

ac
2

)
. (A.51)

Consider the function

g(z) ≜ −1 +
∑
c∈[C]

√(
z +

ac
2

)2
+ 2pcξ −

(
z +

ac
2

)
, (A.52)

so we simply are looking for a root of g (then set θ = z/ξ and v = − 1
2ξ (q + a)). This can be

efficiently accomplished via Newton’s method. Namely, we compute

g′(z) = −C +
∑
c∈[C]

2z + ac√(
z + ac

2

)2
+ 2pcξ

, (A.53)

then, starting from z(0), we form the sequence

z(t+1) ≜ z(t) −
g
(
z(t)
)

g′
(
z(t)
) . (A.54)

This procedure is summarized in Algorithm A.2.

A.1.3.4 On the gradient of the convex conjugate of f -divergence

The following general result on the differentiability of Dconj
f can be used to carry out the vi-update

step for a general f -divergence, and it will also be useful in Appendices A.1.5–A.1.7 for proving the
convergence rate of Algorithm 1 as stated in Theorems 3–3.
Lemma 2. Suppose f : (0,∞) → R is strictly convex. For any fixed p ∈ ∆+

C , the function
v 7→ Dconj

f (v,p) is differentiable, and its gradient is given by

∇vD
conj
f (v,p) = qconj

f (v,p) ∈∆C , (A.55)

where
qconj
f (v,p) ≜ argmin

q∈∆C

Df (q ∥p)− vTq. (A.56)
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Proof. From [Roc09, Proposition 11.3], since q 7→ Df (q ∥p) is a lower semicontinuous proper
convex function, the subgradient of its convex conjugate v 7→ Dconj

f (v,p) is given by

∂vD
conj
f (v,p) = argmin

q∈∆C

Df (q ∥p)− vTq. (A.57)

Recall also that a function is differentiable at a point if and only if its subgradient there consists of a
singleton [BFG87]. Thus, it only remains to show that the right-hand side in (A.57) is a singleton.
For this, we note that q 7→ Df (q ∥p)− vTq is lower semicontinuous and strictly convex, and ∆C

is compact.

A.1.4 1/2-Lipschitzness of the Softmax Function

As stated in Section 4 and Appendix A.1.3.1, the convergence speed of the inner iteration (the vi

update step) of FairProjection can be guaranteed to be faster if the Lipschitz constant of the
softmax function is lowered from 1 (which is proved in [GP17, Prop. 4]). By Lipschitzness here, we
mean ℓ2-norm Lipschitzness. We prove the following proposition in this appendix.

Proposition 1. For any n ∈ N, the softmax function σ(z) ≜
(

ezj∑n
i=1 ezi

)
j∈[n]

is 1
2 -Lipschitz.

We will need the following result.
Lemma 3 (Theorem 2.1.6 in [Nes04]). A twice continuously differentiable function f : Rn → R is
convex and has an L-Lipschitz continuous gradient if and only if its Hessian is positive semidefinite
with maximal eigenvalue at most L.

Since the softmax function is the gradient of the log-sum-exp function, and since the spectral norm is
upper bounded by the Frobenius norm, it suffices to upper bound the Frobenius norm of the Jacobian
of σ by 1/2. Suppose that σ is operating on n symbols. Consider the sum of powers functions
sk(x) ≜

∑
i∈[n] x

k
i for x ∈ Rn. For any v ∈ Rn, denoting x = σ(v), the square of the Frobenius

norm of the Jacobian of σ at v is given by

w(x) ≜ s2(x)
2 + s2(x)− 2s3(x). (A.58)

We show that w(x) ≤ 1
4 for any n ∈ N and x ∈∆n.

The approach we take is via reduction to the case n ≤ 3, which one can directly verify. Namely,
assuming, without loss of generality, that x1 ≤ x2 ≤ · · · ≤ xn, we show that if x1 + x2 ≤ 1/2 then
w(y) ≥ w(x) where y ∈∆n−1 is given by y = (x1 + x2, x3, · · · , xn). Note that if n ≥ 4 then we
must have x1 + x2 ≤ 1/2, because x1 + x2 ≤ x3 + x4 and x1 + x2 + x3 + x4 ≤ 1. Thus, we will
have reduced the problem from an n ≥ 4 to n− 1, which iteratively reduces the problem to n ≤ 3.
Fix n ≥ 4.

Denote z = (x3, · · · , xn). A direct computation yields that

w(y)− w(x) = 2x1x2 · (2s2(z) + g(x1, x2)) (A.59)

with the quadratic
g(a, b) ≜ 2a2 + 2b2 + 2ab− 3a− 3b+ 1. (A.60)

By assumption, xi ≥ max(x1, x2) for each i ≥ 3, so 2s2(z) ≥ (n− 2)x21 + (n− 2)x22 ≥ x21 + x22.
Then,

w(y)− w(x) ≥ 2x1x2 · h(x1, x2) (A.61)
with

h(a, b) ≜ 3a2 + 3b2 + 2ab− 3a− 3b+ 1. (A.62)
Now, we show that h is nonnegative for every a, b ≥ 0 with a+ b ≤ 1/2. With c = a+ b, we may
write

h(a, b) = 3c2 − (3 + 4a)c+ 4a2 + 1. (A.63)
This quadratic in c has its vertex at cmin = (3 + 4a)/6. As a ≥ 0, cmin ≥ 1/2. As a+ b ≤ 1/2, we
see that the minimum of h is attained for c = 1/2. Substituting b = 1/2− a, we obtain

h(a, b) =

(
2a− 1

2

)2

, (A.64)

which is nonnegative, as desired.

9



A.1.5 Convergence rate of Algorithm 1: proof of Theorem 3

We recall a general result on the R-linear convergence rate for ADMM, which corresponds to case 1 in
scenario 1 in [DY16]; see Tables 1 and 2 therein. Recall that a sequence {z(t)}t∈N is said to converge
R-linearly to z⋆ if there is a constant η ∈ (0, 1) and a sequence {β(t)}t∈N such that ∥z(t)−z⋆∥ ≤ β(t)

and supt
(
β(t+1)/β(t)

)
≤ η. In particular, one has exponentially small errors:

∥z(t) − z⋆∥ ≤ β(0) · ηt. (A.65)

The following theorem is used in our proof of Theorem 3.
Theorem 2 ([DY16]). Suppose that problem (A.18) has a saddle point, F is strongly convex and
differentiable with Lipschitz-continuous gradient, A has full row-rank, and B has full column-rank.
Then, the ADMM iterations (A.25)–(A.27) converge R-linearly to a global optimizer.

In Appendix A.1.2, we show that the dual (8) of our fairness optimization problem (6) can be written
in the ADMM general form (A.18) with the choices

F (V ) =
1

N

∑
i∈[N ]

Dconj
f (vi,pi) +

ζ

2
∥V ∥22 (A.66)

and
A =

1√
N

INC , B =
1√
N

(Gi)
T
i∈[N ]. (A.67)

Recall from Theorem 2 (see also the proof in Appendix A.1.1) that our problem (8) has a saddle
point. Further, the function F : RNC → R is ζ-strongly convex and differentiable. Indeed, each
v 7→ Dconj

f (v,pi) is convex, and the term ζ
2∥V ∥

2
2 is ζ-strongly convex, so F is ζ-strongly convex

too. In addition, by the formula for∇Dconj
f in Lemma 2, the gradient of F is

∇F (V ) =
1

N
qconj
f (V ) + ζV , (A.68)

where
qconj
f (V ) ≜

(
qconj
f (vi,pi)

)
i∈[N ]

, (A.69)

with qconj
f (vi) as defined in (A.56).

In the KL-divergence case, i.e., f(t) = t log t, the gradient of Dconj
f is given by the softmax function

(see Appendix A.1.3.1)

qconj
f (v,p) = σ (v + log p) =

(
pce

vc∑
c′∈[C] pc′e

vc′

)
c∈[C]

. (A.70)

Therefore, we have that

∇F (V ) =
1

N
(σ (vi + log pi))i∈[N ] + ζV . (A.71)

By Proposition 1, the softmax function σ is 1
2 -Lipschitz. Hence,∇F is

(
1

2N + ζ
)
-Lipschitz.

Therefore, the general ADMM convergence rate in Theorem 2 yields that there is a constant r > 0
such that ∥∥∥λλλ(t)ζ,N − λλλ

⋆
ζ,N

∥∥∥
2
≤ β · e−rt (A.72)

where β ≜
∥∥∥λλλ(0)ζ,N − λλλ⋆ζ,N

∥∥∥
2
. (Although Theorem 2 guarantees exponentially-fast convergence of

λλλ
(t)
ζ,N to a global optimizer, recall that λλλ⋆ζ,N is the unique optimizer of (8), as Theorem 2 shows.)

Finally, it remains to bound the distance between hopt,N and the output classifier h(t) after the t-th
iteration of Algorithm 1. Note that ϕ(u) = (f ′)−1(u) = eu−1, so γ may be obtained explicitly, and
equation (7) becomes

hopt,Nc′ (x) =
hbasec′ (x) · evc′ (x;λλλ

⋆
ζ,N )∑

c∈[C] h
base
c (x) · evc(x;λλλ

⋆
ζ,N )

. (A.73)
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Thus, using λλλ(t) ≜ λλλ
(t)
ζ,N in place of λλλ⋆ζ,N , we obtain that the t-th classifier obtained by Algorithm 1 is

h
(t)
c′ (x) =

hbasec′ (x) · evc′ (x;λλλ(t))∑
c∈[C] h

base
c (x) · evc(x;λλλ(t))

. (A.74)

Therefore, we have the ratios

h
(t)
c′ (x)

hopt,Nc′ (x)
=

∑
c∈[C] h

base
c (x)evc(x;λλλ

⋆
ζ,N )∑

c∈[C] h
base
c (x)evc(x;λλλ(t))

· exp
(
vc′(x;λλλ

(t))− vc′(x;λλλ⋆ζ,N )
)
. (A.75)

By definition of v, v(x;λλλ) = −G(x)Tλλλ. Thus, we obtain from (A.72) and boundedness of G that∥∥∥v(x;λλλ(t))− v(x;λλλ⋆ζ,N )
∥∥∥
∞

= e−Ω(t), (A.76)

where the implicit constant is independent of x. Applying (A.76) in (A.75), and noting that
e±e−Ω(t)

= 1± e−Ω(t) as t→∞, we conclude that∣∣∣∣∣ h
(t)
c′ (x)

hopt,Nc′ (x)
− 1

∣∣∣∣∣ = e−Ω(t), c′ ∈ [C], (A.77)

uniformly in x. We may rewrite (A.77) as

h(t)(x) = hopt,N (x) ·
(
1± e−Ω(t)

)
, (A.78)

which is the desired convergence rate in the theorem statement, and the proof is complete.

A.1.6 Extension of Theorem 3

Though Theorem 3 is shown for the KL-divergence, the proof directly extends to general f -
divergences satisfying Assumption 1. In fact, Lipschitz continuity of the gradient of Dconj

KL is
the only specific property that we apply to derive the KL-divergence case. For a general f -divergence,
Lipschitz continuity of ∇Dconj

f may be derived as follows. Combining Lemmas 1–2 reveals the for-
mula ∇vD

conj
f (v,p) = (pc · ϕ (γ(v) + vc))c∈[C], where ϕ = (f ′)−1 and γ(v) is uniquely defined

by Ec∼p [ϕ(γ(v) + vc)] = 1, with p ∈∆+
C fixed. Since ϕ′ = 1/(f ′′ ◦ ϕ), we have that ϕ is locally

Lipschitz. From the proof of Theorem 5 in [AAW+20a], we know that v 7→ γ(v) is locally Lipschitz.
Thus, v 7→ ∇vD

conj
f (v,p) is locally Lipschitz. Further, λλλ 7→ ∇vD

conj
f (v(x;λλλ),p) is then also

locally Lipschitz. Note that we may restrict λλλ a priori to be within some finite ball (see Lemma 4).
Thus, if, e.g., X is compactly-supported, we would obtain the desired Lipschitzness properties of the
gradient of Dconj

f , and the proof of Theorem 3 carries through for Df in place of DKL.

A.1.7 Convergence rate to the population problem

The following result shows, roughly, that the parameter λλλ
(logN)

N−1/2,N
obtainable from

FairProjection performs well for the population problem for information projection (5).
Theorem 3. Suppose Assumption 1 holds, let X = Rd, and consider the KL-divergence case. Then,
choosing ζ = Θ

(
N−1/2

)
and t = Ω(logN) we obtain for any δ ∈ (0, 1) that (see (5))

Pr

{
EX

[
Dconj

KL

(
v
(
X;λλλ

(t)
ζ,N

)
,hbase(X)

)]
> D⋆ +O

(
1√
N

)}
≤ δ. (A.79)

The proof is divided in this appendix into several lemmas. We note first that, in the course of the
proof of Theorems 1 and 2 in [AAW+20b], it was shown that at least one minimizer λλλ⋆ of (5)
exists. Further, any such minimizer satisfies the following bound. Denote the constraint function by
µµµ(h) ≜ EPX

[Gh]. Throughout this proof, we set X ≜ Rd.
Lemma 4. Suppose Assumption 1 holds, and fix a strictly feasible classifier h ∈ H, i.e., µµµ(h) < 0.
Every minimizer λλλ⋆ ∈ RK

+ of (5) must satisfy the inequality

∥λλλ⋆∥1 ≤ λmax ≜
Df

(
h ∥hbase | PX

)
min
k∈[K]

− µk(h)
. (A.80)
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We note that for the fairness metrics specified in Table 2, one valid choice of a strictly feasible h
(i.e., one for which µµµ(h) < 0) is the uniform classifier h(x) ≡ 1

C1. In any case, we have that
λmax <∞ since both h and hbase are assumed to belong toH and f is continuous over (0,∞); e.g.,
one bound on λmax is λmax ≤ maxm≤t≤M f(t)/mink∈[K]−µk(h) where m = infc,x hc(x) and
M = 1/ infx,c h

base
c (x). We will also need the following constants for the convergence analysis:

gmean ≜ E
[
∥G(X)∥22

]
, (A.81)

gmax ≜ sup
x∈X
∥G(x)∥22 . (A.82)

Clearly, gmean ≤ gmax. By the boundedness of G in the second item in Assumption 1, gmax is finite.
Remark 2. Although the results in this paper are stated to hold under Assumption 1, we note that those
conditions do not essentially impose any restriction on carrying our FairProjection algorithm.
Indeed, we focus in this paper on the CE and KL cases, for which f satisfies the imposed conditions.
We also note that only boundedness of G is required for Theorem 2, which is true for the fairness
metrics in Table 2 in non-degenerate cases (e.g., no empty groups). The condition on hbase being
bounded away from zero can be made to hold by perturbing it if necessary with negligible noise. The
condition on hbase being continuous is automatically satisfied if its domain is a finite set (as is the
case for Theorem 2). Finally, the strict feasibility condition is verified by the uniform classifier.

Now, consider a form of ℓ2 regularization of (5):

min
λλλ∈RK

+

E
[
Dconj

f

(
v(X;λλλ),hbase(X)

)
+
ζ

2

∥∥∥G̃(X)Tλλλ
∥∥∥2
2

]
(A.83)

where G̃(x) ≜ (G(x), IK) ∈ RK×(K+C). We show now that there is a unique minimizer λλλ⋆ζ
of (A.83).
Lemma 5. Under Assumption 1, there exists a unique minimizerλλλ⋆ζ of the regularized problem (A.83).

Proof. Denote the function A : RK
+ → R by

A(λλλ) ≜ E
[
Dconj

f

(
v(X;λλλ),hbase(X)

)
+
ζ

2

∥∥∥G̃(X)Tλλλ
∥∥∥2
2

]
. (A.84)

That the range of A falls within R follows by Assumption 1, since then the function x 7→
Dconj

f (v(x;λλλ),hbase(x)) is PX -integrable. We will show that A is lower semicontinuous and
ζ-strongly convex.

By Lemma 2, v 7→ Dconj
f (v,p) is differentiable for any fixed p ∈ ∆+

C , implying that it is also
continuous. Thus, λλλ 7→ Dconj

f (v(x;λλλ),hbase(x)) is continuous for each x ∈ X . Hence, by Fatou’s
lemma and boundedness of G, A is lower semicontinuous.

Next, to show strong convexity, we note that λλλ 7→ Dconj
f (v(x;λλλ),hbase(x)) is convex for each

x ∈ X . Indeed, this function is the supremum of affine functions. Further, the regularization term is
ζ-strongly convex, as its Hessian is given by

ζ ·
(
E
[
G̃(X)G̃(X)T

]
+ I

)
, (A.85)

which is positive definite with minimal eigenvalue at least ζ.

Now, for each fixed θ > 0, consider the compact set Λθ ≜ {λλλ ∈ RK
+ ; ∥λλλ∥22 ≤ θ}. By what

we have shown thus far, there is a unique minimizer λλλθ of A over Λθ. By strong convexity, if A
has a global minimizer then it is unique. We will show that λλλθ is a global minimizer of A, where
θ = 2(A(0)−D⋆)/ζ . Suppose that 0 is not a global minimzer. Fix λλλ ∈ RK

+ such that A(0) > A(λλλ).
Then,

A(0) > A(λλλ) ≥ D⋆ +
ζ

2

(
E
[∥∥G(X)Tλλλ

∥∥2
2

]
+ ∥λλλ∥22

)
≥ D⋆ +

ζ

2
∥λλλ∥22 . (A.86)

Thus, ∥λλλ∥22 < θ. This implies that λλλθ is a global minimizer of A, hence it is the unique global
minimizer of A. The proof of the lemma is thus complete.
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The following bound shows that λλλ⋆ζ is within O(ζ) of achieving D⋆ (see (5)).

Lemma 6. Suppose Assumption 1 holds, fix ζ ≥ 0, and denote the unique solution and the optimal
objective value of (A.83) by λλλ⋆ζ and D⋆

ζ , respectively. We have the bounds

E
[
Dconj

f

(
v(X;λλλ⋆ζ),h

base(X)
)]
≤ D⋆

ζ ≤ D⋆ + θreg · ζ, (A.87)

where we define the constant θreg ≜ λ2max · (1 + gmean)/2.

Proof. The first bound is trivial. Using Lemma 4, we may fix a λλλ⋆ ∈ RK
+ with ∥λλλ⋆∥1 ≤ λmax such

that λλλ⋆ achieves D⋆. By definition of D⋆
ζ ,

D⋆
ζ ≤ E

[
Dconj

f

(
v(X;λλλ⋆),hbase(X)

)
+
ζ

2

∥∥∥G̃(X)Tλλλ⋆
∥∥∥2
2

]
≤ D⋆ + θreg · ζ,

where the last inequality follows since for the 2-matrix norm, ∥Mλλλ∥2 ≤ ∥M∥2∥λλλ∥2 and ∥MT ∥2 =
∥M∥2.

Next, we derive a sample-complexity bound for the finite-sample problem (8) via generalizing the
proofs of Theorem 3 in [AAW+20b] and Theorem 13.2 in [HR19].
Lemma 7. Suppose Assumption 1 holds, and let λmax and gmax be as defined in Lemma 4 and
equation (A.82). For any δ ∈ (0, 1), with λλλ⋆ζ,N denoting the unique solution to (8), it holds with
probability at least 1− δ that

EX

[
Dconj

f

(
v(X;λλλ⋆ζ,N ),hbase(X)

)]
≤ D⋆

ζ +
2gmax · (1 + ζ · λmax)

2

δζN
. (A.88)

Proof. Let Λ ≜ {λλλ ∈ RK
+ ; ∥λλλ∥1 ≤ λmax}, and consider the function ℓ : Λ×X → R defined by

ℓ(λλλ, x) ≜ Dconj
f

(
v(x;λλλ),hbase(x)

)
+
ζ

2

∥∥∥G̃(x)Tλλλ
∥∥∥2
2
. (A.89)

Note that the regularized problem (A.83) can be written as

D⋆
ζ ≜ min

λλλ∈RK
+

E [ℓ(λλλ,X)] , (A.90)

and the finite-sample version of it (8) can also be written as

D⋆
ζ,N ≜ min

λλλ∈RK
+

1

N

∑
i∈[N ]

ℓ(λλλ,Xi). (A.91)

We show first that, for each fixed x ∈ X , the function λλλ 7→ ℓ(λλλ, x) is ζ-strongly convex over Λ. The
gradient of the regularization term is ζG̃(x)Tλλλ, and its Hessian is given by

∇2
λλλ

ζ

2

∥∥∥G̃(x)Tλλλ
∥∥∥2
2
= ζG(x)G(x)T + ζIK . (A.92)

Further, the function λλλ 7→ Dconj
f (v(x;λλλ),hbase(x)) is convex as it is a pointwise supremum of linear

functions. Indeed, for any p ∈∆C , recalling that v(x;λλλ) = −G(x)Tλλλ, we have the formula

Dconj
f (v(x;λλλ),p) = sup

q∈∆C

−qTG(x)Tλλλ−Df (q ∥p). (A.93)

Next, we show Lipschitzness of λλλ 7→ ℓ(λλλ, x). For any fixed v ∈ RC and p ∈ ∆+
C , we have the

gradient (see Lemma 2)
∇vD

conj
f (v,p) = qconj(v) ∈∆C , (A.94)

where
qconj(v) ≜ argmin

q∈∆C

Df (q ∥p)− vTq. (A.95)
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Thus, we have the gradient

∇λλλD
conj
f

(
v(x;λλλ),hbase(x)

)
= −G(x)qconj (v(x;λλλ)) . (A.96)

Hence, the gradient of λλλ 7→ ℓ(λλλ, x) is

∇λλλℓ(λλλ, x) = −G(x)qconj (v(x;λλλ)) + ζG̃(x)Tλλλ, (A.97)
which therefore satisfies the bound

∥∇λλλℓ(λλλ, x)∥2 ≤ ∥G(x)∥2 (1 + ζ · λmax) . (A.98)
Therefore, each λλλ 7→ ℓ(λλλ, x) is A-Lipschitz with

A = (1 + ζ · λmax) · sup
x∈X
∥G(x)∥2. (A.99)

Thus, by Theorem 13.1 in [HR19], with probability 1− δ we have the bound

EX

[
ℓ
(
λλλ⋆ζ,N , X

)]
≤ D⋆

ζ +
2A2

δζN
. (A.100)

With probability one, we have the bound

EX

[
Dconj

f

(
v
(
X;λλλ⋆ζ,N

)
,hbase(X)

)]
≤ EX

[
ℓ
(
λλλ⋆ζ,N , X

)]
. (A.101)

This completes the proof of the lemma.

Now, we are ready to finish the proof of Theorem 3 by specializing the above lemmas to the KL-
divergence case. So, we set f(t) = t log t for the rest of the proof. By Lemmas 6–7, we have with
probability 1− δ

EX

[
Dconj

f

(
v(X;λλλ⋆ζ,N ),hbase(X)

)]
≤ D⋆ + θreg · ζ +

2gmax · (1 + ζ · λmax)
2

δζN
. (A.102)

Thus, by Lipschitzness (Proposition 1) and (A.72)

EX

[
Dconj

f

(
v(X;λλλ

(t)
ζ,N ),hbase(X)

)]
≤ D⋆+

1

2

√
gmeanβe

−rt+θreg ·ζ+
2gmax · (1 + ζ · λmax)

2

δζN
.

(A.103)
Here, we are choosing the constant β independently of N (as the optimal values of λλλ are bounded),
and r of order

√
ζ

1
2N +ζ

(as can be guaranteed from Corollary 3.1 and Theorem 3.4 in [DY16]).

Choose ζ = Θ(N−1/2). Collecting the constants in (A.103), we obtain that

EX

[
Dconj

f

(
v(X;λλλ

(t)
ζ,N ),hbase(X)

)]
≤ D⋆ +

1

2

√
gmeanβe

−rt +
ℓ

δ
√
N

(A.104)

for some constant ℓ that is completely determined by θreg, gmax, and λmax. This bound can be further
upper bounded by D⋆ +O(N−1/2) by choosing t ≥ 1

2r logN = Θ(logN), thereby completing the
proof of the theorem.

A.1.8 Linearized multi-class group fairness criteria

We include, for completeness, how the group-fairness metrics in Table 2 linearize, i.e., written in the
form:

µµµ(h) ≜ EPX
[G(X)h(X)] ≤ 0. (A.105)

We assume that we have in hand a well-calibrated classifier that approximates PY,S|X , i.e., that
predicts both group membership S and the true label Y from input variables X . This classifier can be
directly marginalized into the following models:

• a label classifier hbase : X →∆C that predicts true label from input variables,
hbase(x) ≜ (PY |X=x(1), · · · , PY |X=x(C)) for x ∈ X , (A.106)

• a group membership classifier s : X × Y → ∆A that uses input and output variables to
predict group membership,

s(x, y) ≜ (PS|X,Y (1 | x, y), · · · , PS|X,Y (A | x, y)) for (x, y) ∈ X × Y, (A.107)

We let e1, · · · , eC denote the standard basis vectors of RC . We suppose that the support of the group
attribute S is S ≜ [A].
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Statistical parity. This fairness metric measures whether the predicted outcome Ŷ is independent
of the group attribute S. For statistical parity, the G(x) matrix has rows:(

(−1)δ
∑C

c=1 sa(x, c)h
base
c (x)

PS(a)
−
(
α+ (−1)δ

))
ec′ .

There are K = 2AC rows since (δ, a, c′) ∈ {0, 1} × [A] × [C]. See Appendix A.1.9 for a full
derivation.

Equalized odds. This fairness metric requires the predicted outcome Ŷ and the group attribute S to
be independent conditioned on the true label Y . When the classification task is binary, the equalized
odds becomes the equality of false positive rate and false negative rate over all groups. For equalized
odds, the G(x) matrix has rows:(

(−1)δ sa
′(x, c)hbasec (x)

PS|Y=c(a′)
−
(
α+ (−1)δ

)
hbasec (x)

)
ec′ .

There are K = 2AC2 rows.

Overall accuracy equality. This fairness metric requires the accuracy of the predictive model to be
the same across all group groups. The G(x) matrix has rows:

(−1)δ sa(x, ·)⊙ hbase(x)

PS(a)
−
(
α+ (−1)δ

)
· hbase(x),

where ⊙ represents the element-wise product. There are K = 2A rows.

A.1.9 A detailed derivation of linearization of statistical parity

We derive the linearized formula for Statistical Parity given in Appendix A.1.8. Recall that a prediction
Ŷ satisfies statistical parity (SP) if it is independent of the group attribute S, i.e., PŶ |S=a(c

′) = PŶ (c
′)

for every (a, c′) ∈ [A] × [C]. A relaxed notion of SP is ‘approximate independence’ of Ŷ and
S: |PŶ |S=a(c

′)/PŶ (c
′) − 1| ≤ α for some small α ≥ 0 and all (a, c′) ∈ [A] × [C]. Using

PŶ |S = PŶ ,S/PS and rearranging, the above inequality is equivalent to

±PŶ ,S(c
′, a)/PS(a)− (α± 1)PŶ (c

′) ≤ 0.

We expand via conditioning Ŷ on X , and S on (X,Y ). Recall that hc′(x) = PŶ |X=x(c
′) and

sa(x, c) = PS|X=x,Y=c(a) by definition, and that we have a Markov chain (Y, S)–X–Ŷ ; hence,
PŶ (c

′) = E[hc′(X)] and PŶ ,S(c
′, a) = E[

∑
c∈[C] sa(X, c)h

base
c (X)hc′(X)]. Thus, we can write

approximate SP as

E

±PS(a)
−1
∑
c∈[C]

sa(X, c)h
base
c (X)− (α± 1)

hc′(X)

 ≤ 0.

We denote h(x) = (h1(x), h2(x), · · · , hC(x))T , and for (δ, a, c′) ∈ {0, 1} × [A]× [C], denote

g(δ,a,c′)(x) :=

(−1)δPS(a)
−1
∑
c∈[C]

sa(x, c)h
base
c (x)− (α+ (−1)δ)

 ec′ ,

where {ec′}c′∈[C] is the standard basis of RC . Then, for each pair (δ, a, c′) ∈ {0, 1} × [A] × [C],
we have a linear constraint E[g(δ,a,c′)(X)Th(X)] ≤ 0. Since there are K = 2AC possible triplets
(δ, a, c′), we convert the SP constraint into K linear constraints.
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A.2 Additional experiments and more details on the experimental setup

A.2.1 Numerical Benchmark Details

A.2.1.1 Datasets

The HSLS dataset is collected from 23,000+ participants across 944 high schools in the USA, and it
includes thousands of features such as student demographic information, school information, and
students’ academic performance across several years. We preprocessed the dataset (e.g., dropping
rows with a significant number of missing entries, performing k-NN imputation, normalization), and
the number of samples reduced to 14,509.

The ENEM dataset, collected from the 2020 Brazilian high school national exam and made available
by the Brazilian Government [INE20], is comprised of student demographic information, socio-
economic questionnaire answers (e.g., parents education level, if they own a computer) and exam
scores. We preprocess the dataset by removing missing values, repeated exam takers, and students
taking the exam before graduation (“treineiros”) and obtain ∼1.4 million samples with 138 features.

A.2.1.2 Hyperparameters

For logistic regression and gradient boosting, we use the default parameters given by Scikit-learn. For
random forest, we set the number of trees and the minimum number of samples per leaf to 10. For all
classifiers, we fixed the random state to 42. When running FairProjection (cf. Algorithm 1), we
set the hyperparameters ζ = 1/

√
N (see Theorem 3) and ρ = 2 (see Appendix A.1.3.1), where N is

the number of samples.

A.2.1.3 Benchmark Methods

For binary classification, we compare with six different benchmark methods:

• EqOdds [HPS16]: We use AIF360 implementation of EqOddsPostprocessing and we use
50% of the test set as a validation set, i.e., 70% training set, 15% validation set, 15% test set.

• CalEqOdds [PRW+17]: We use AIF360 implementation of CalibratedEqOddsPostpro-
cessing and we use 50% of the test set as a validation set, i.e., 70% training set, 15%
validation set, 15% test set.

• Reduction [ABD+18]: We use AIF360 implementation of Exponentiat-
edGradientReduction, and we use 10 different epsilon values as follows:
[0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2]. We used EqualizedOdds constraint for
MEO experiments and DemographicParity for statistical parity experiments.

• Rejection [KKZ12]: We use AIF360 implementation of RejectOptionClassification. We
use the default parameters except metric_ub and metric_lb, namely, low_class_thresh =
0.01, high_class_thresh = 0.99, num_class_thresh = 100, num_ROC_margin = 50.
We set the values metric_ub = ϵ and metric_lb = −ϵ to obtain trade-off curves. Epsilon
values we used are: [0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2].

• LevEqOpp [CDH+19]: We used the code provided in the Github repo, originally pro-
grammed in R. We converted it into Python, and verified that the Python version achieved
similar accuracy/fairness performance to their R version on UCI Adult dataset. We follow
the same hyperparameters setup in [CDH+19].

The following four methods, despite being mentioned in Table 1, are not included in the experiments:

• FACT [KCT20]: We used the code provided on the Github repo. We did not include the
results in the main text as we found that:

(i) This method is not directly comparable because they find post-processing parameters
on the entire test set and apply them on the test set. This is different from all other
methods we are comparing including our method, which use training set or a separate
validation set to fit the post-processing mechanism. For this reason, FACT often has a
point that lies above all other curves on the accuracy-fairness plot. However, this is not
a fair comparison. We include the results of FACT in the COMPAS plots for the sake
of demonstration.
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(ii) We found the results produced by this method inconsistent. Partial reason is due
to the problem of finding mixing rates—probability of flipping Ŷ = 1 to 0 (i.e.,
P (Ỹ = 0|Ŷ = 1)) and vice-versa—which have to be between 0 and 1. But there are
cases where these values lie outside [0, 1], which leads to erroneous and inconsistent
results.

For the results we present in the COMPAS plots, we used 20 epsilon values from 1 to
10−4, equidistant in log space. We used 10 different train/test splits as we do in all other
experiments. If certain splits does not produce a feasible solution, we drop those results. If
none of the 10 splits produce a feasible solution, we drop the epsilon value. At the end, we
had 19 epsilon values.

• Identifying [JN20]: Their optimization formulation is a special case of our formulation when
f -divergence is KL divergence, but their algorithm requires retraining a classifier multiple
times to solve the optimization problem, which results in a much slower runtime compared
to ours (see Lines 1037–1046 in Appendix B.4). Nevertheless, we will add experiments for
binary classification using [JN20] in the final version.

• FST [WRC20, WRC21]: Codes are not available publicly.
• Overlapping [YCK20]: We did not include this method for binary classification experiments

as it reduces to the Reductions [ABD+18] approach for the binary class, binary protected
group case. We could not benchmark for multi-class experiments with the code available
online as it was assuming binary class (even though multiple protected groups).

For multi-class comparison, we compare with Adversarial [ZLM18]. In theory, the adversarial
debiasing method is applicable to multi-class labels and groups, but its AIF360 implementation works
only for binary labels and binary groups. We adapted their implementation to work on multi-class
labels by changing the last layer of the classifier model from one-neuron sigmoid activation to
multi-neuron soft-max activation. We varied adversary_loss_weight to obtain a trade-off curve,
values taken from [0.001, 0.01, 0.1, 0.2, 0.35, 0.5, 0.75]. For all other parameters, we used the default
values: num_epochs = 50, batch_size = 128, classifier_num_hidden_units = 200.

There are some methods that are relevant to our work but we could not benchmark in our experiments
due to the lack of publicly available codes, including [WRC21], [MW18], [JSW22].

A.2.2 Additional experiments on runtime of FairProjection

We preform an ablation study on the runtime to illustrate that the parallelizability of FairProjection
can significantly reduce the runtime, especially when the dataset contains hundreds of thousands
of samples. We report the runtime of FairProjection-KL on ENEM with 2 classes, 2 groups,
and with different sizes. In Table A.1, we observe that when the number of samples exceeds 200k,
parallelization leads to 10.1× to 15.5× speedup of the runtime.

Method # of Samples (in thousands)
20 50 100 200 500 ∼1400

Non-Parallel 0.37±0.00 0.87±0.01 1.72±0.01 3.53±0.01 9.09±0.01 25.26±0.02
Parallel (GPU) 0.18±0.00 0.22±0.01 0.25±0.01 0.32±0.01 0.64±0.01 1.63±0.05

Speedup 2.00× 3.92× 7.21× 10.97× 14.23× 15.46×

Table A.1: Execution time of parallel (on GPU) and non-parallel (on CPU) versions of the FairProjection-KL
ADMM algorithm on the ENEM datasets with different sizes (time shown in minutes) with gradient boosting
base classifiers.

A.2.3 Additional Explanation on runtime comparison

The theoretical analysis below contrasts the runtimes of both FairProjection and Reduc-
tion [ABD+18], which is in line with our numerically observed comparison in Table 3. Two
key factors make FairProjection faster than Reduction:

1. FairProjection needs a much lower number of iterations than Reduction does (logarith-
mic vs. polynomial).
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2. Each iteration for FairProjection is less computationally expensive than its counterpart in
Reduction. In fact, it is independent of the underlying model being projected, whereas
Reduction requires retraining.

In more detail, one can obtain from [ABD+18, Theorem 3] that the Reductions approach converges
in O(N2) iterations (where N is the number of samples and we use the suggested α = 1/2 in
[ABD+18, Theorem 3] according to the discussion at the top of page 6 therein). Taking the runtime
of each iteration into consideration, one cannot hope for a runtime faster than O(N4) for Reduction.
In fact, the runtime for Reduction must be higher than O(N4), since each of its iterations performs
the subroutine BESTh(λ), which is a ‘cost-sensitive classification’ problem (i.e., numerically solving
for an optimal classifier), and the O(N4) estimate would hold only if this retraining procedure can
be done in constant time (which might be overly optimistic). In contrast, FairProjection does
not require this retraining procedure at all, runs in O(logN) iterations, has O(N) runtime for each
iteration, and can perform much of each iteration in a parallel way.

For the dependence of the runtime of FairProjection on the number of groups, we note that
there is a linear dependence on the number of constraints K when the number of samples N is
much larger than K (which is the case for all datasets we consider), so one can say that the runtime
is at most γKN logN for an absolute constant γ. Note that there are K = 2AC constraints for
statistical parity, where A is the number of sensitive groups, and C is the number of classes; e.g.,
for the ENEM-1.4M-2C dataset that is used in Table 3, we get K = 8 for statistical parity. The
K factor in the O(KN logN) rate comes from the creation of the vector q in Algorithm 1. If one
does not parallelize, still one gets a runtime of O(CKN logN). Interestingly, the vi-update step
runtime in Algorithm 1 is O(C) for a fixed i ∈ [N ] for both KL-divergence and Cross Entropy (see
Appendices A.1.3 and A.1.4).

A.2.4 Omitted Experimental Results on Accuracy-Fairness Trade-off

A.2.4.1 Accuracy-fairness trade-off in binary classification

We include the results of benchmark methods and Fair Projection on 4 datasets (HSLS, ENEM-
50k, Adult, and COMPAS) and 3 base classifiers (Logistic regression, Random forest, and GBM)
in Figures A.1-A.8. For equalized odds experiments, we have six benchmark methods (EqOdds,
Rejection, Reduction, CalEqOdds, FACT, LevEqOpp). For statistical parity experiments, we have
Rejection and Reduction. We plot Fair Projection with both cross entropy and KL divergence.

When a method performs significantly worse than others, we did not plot its results. We did not
include Rejection in the Adult plots as it did not produce consistent and reliable results on this
dataset. CalEqOdds is included only in COMPAS as its performance was significantly worse and
the point was too far away from other curves in all other datasets. FACT is also included only in the
COMPAS plots and the reasons for this are explained in Appendix A.2.1.3.

We observe that Fair Projection performs consistently well in all four datasets. FairProjection-CE
and FairProjection-KL have similar performance (i.e., overlapping curves) in most cases. The
performance of Fair Projection is often comparable with Reduction. Rejection has competitive
performance in ENEM-50k and HSLS, but its performance falters in COMPAS and Adult. EqOdds
produces a point with very low MEO but with a substantial loss in accuracy. LevEqOpp also yields a
point with low MEO but with a much smaller accuracy drop. Even though LevEqOpp only optimizes
for FNR difference between two groups, it performs surprisingly well in terms of MEO in all four
datasets. However, we note that LevEqOpp can only produce a point, not a curve, and it does not
enjoy the generality of Fair Projection as it is specifically designed for binary-class, binary-group
predictions and minimizing Equalized Opportunity difference.

A.2.4.2 Accuracy-fairness trade-off in multi-class/multi-group classification

In the main text, we showed the performance of FairProjection-CE on multi-class prediction with
5 classes and 2 groups (see Figure 2). We include results under a few different multi-class settings
here. First, we show results on ENEM-50k-5-5 which has 5 classes and 5 groups in Figure A.9
and A.10 . We obtain 5 groups by not binarizing the race feature. Then, we show results on binary
classification with 5 groups in Figure A.11 and A.12. Finally, we include the extended version of
Figure 2 that include both FairProjection-CE and FairProjection-KL in Figure A.13.
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To measure multi-class performance, we extend the definition of mean equalized odds (MEO) and
statistical parity as follows:

MEO = max
i∈Y

max
s1,s2∈S

(|TPRi(s1)− TPRi(s2)|+ |FPRi(s1)− FPRi(s2)|)/2

(A.108)
Statistical Parity = max

i∈Y
max

s1,s2∈S
|Ratei(s1)− Ratei(s2)| (A.109)

where we denote TPRi(s) = P (Ŷ = i | Y = i, S = s), FPRi(s) = P (Ŷ = i | Y ̸= i, S = s), and
Ratei(s) = P (Ŷ = i | S = s).

In all experiments, FairProjection reduces MEO and statistical parity significantly (e.g., 0.22 to
0.14) with a negligible sacrifice in accuracy.
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Figure A.1: Accuracy-fairness curves of FairProjection and benchmark methods on the HSLS dataset with 3
different models (Logistic regression, Random forest, GBM). The fairness constraint is MEO.
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Figure A.2: Accuracy-fairness curves of FairProjection and benchmark methods on the HSLS dataset with 3
different models (Logistic regression, Random forest, GBM). The fairness constraint is statistical parity.

0.0 0.1 0.2 0.3
Mean Equalized Odds

0.63

0.64

0.65

0.66

0.67

A
cc

ur
ac

y

ENEM-50k (Logistic Regression)

0.1 0.2
Mean Equalized Odds

0.62

0.63

0.64

0.65

0.66

A
cc

ur
ac

y

ENEM-50k (Random Forest)

0.0 0.1 0.2 0.3
Mean Equalized Odds

0.63

0.64

0.65

0.66

0.67

A
cc

ur
ac

y

ENEM-50k (GBM)

Base
EqOdds
Rejection
Reduction
LevEqOpp
FairProjection-CE
FairProjection-KL

Figure A.3: Accuracy-fairness curves of FairProjection and benchmark methods on the ENEM-50k-2C dataset
with 3 different models (Logistic regression, Random forest, GBM). The fairness constraint is MEO.
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Figure A.4: Accuracy-fairness curves of FairProjection and benchmark methods on the ENEM-50k-2C dataset
with 3 different models (Logistic regression, Random forest, GBM). The fairness constraint is statistical parity.
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Figure A.5: Accuracy-fairness curves of FairProjection and benchmark methods on COMPAS with 3 different
models (Logistic regression, Random forest, GBM). The fairness constraint is MEO.
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Figure A.6: Accuracy-fairness curves of FairProjection and benchmark methods on COMPAS with 3 different
models (Logistic regression, Random forest, GBM). The fairness constraint is statistical parity.
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Figure A.7: Accuracy-fairness curves of FairProjection and benchmark methods on the Adult dataset with 3
different models (Logistic regression, Random forest, GBM). The fairness constraint is MEO.
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Figure A.8: Accuracy-fairness curves of FairProjection and benchmark methods on the Adult dataset with 3
different models (Logistic regression, Random forest, GBM). The fairness constraint is statistical parity.
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Figure A.9: Accuracy-fairness curves of FairProjection-CE and FairProjection-KL on ENEM-50k with
with 5 labels, 5 groups and different base classifiers base classifiers. The fairness constraint is MEO.
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Figure A.10: Accuracy-fairness curves of FairProjection-CE and FairProjection-KL on ENEM-50k
with with 5 labels, 5 groups and different base classifiers base classifiers. The fairness constraint is SP.
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Figure A.11: Accuracy-fairness curves of FairProjection-CE and FairProjection-KL on ENEM-50k
with with 2 labels, 5 groups and different base classifiers base classifiers. The fairness constraint is MEO.

0.02 0.04 0.06 0.08
Statistical Parity

0.008

0.006

0.004

0.002

0.000

A
cc

ur
ac

y 
D

iff
er

en
ce

ENEM-50k-2-5 (Logistic Regression)

FairProjection-CE
FairProjection-KL

0.02 0.04 0.06 0.08
Statistical Parity

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

A
cc

ur
ac

y 
D

iff
er

en
ce

ENEM-50k-2-5 (Random Forest)

FairProjection-CE
FairProjection-KL

0.02 0.04 0.06 0.08
Statistical Parity

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

A
cc

ur
ac

y 
D

iff
er

en
ce

ENEM-50k-2-5 (GBM)

FairProjection-CE
FairProjection-KL

Figure A.12: Accuracy-fairness curves of FairProjection-CE and FairProjection-KL on ENEM-50k
with with 2 labels, 5 groups and different base classifiers base classifiers. The fairness constraint is SP.
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Figure A.13: Comparison of FairProjection-CE and FairProjection-KL with Adversarial on ENEM-
50k-5-2, meaning 5 labels, 2 groups. The reason for the difference comparing to Fig. 2 is that we resampled 50k
data points from ENEM.
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Method Feature
Multiclass Multigroup Scores Curve Parallel Rate Metric

Reductions [ABD+18] # ! ! ! # ! SP, (M)EO
Reject-option [KKZ12] # ! # ! # # SP, (M)EO

EqOdds [HPS16] # ! # # # ! EO
LevEqOpp [CDH+19] # # # # # # FNR
CalEqOdds [PRW+17] # # ! # # ! MEO

FACT [KCT20] # # # ! # # SP, (M)EO

Identifying [JN20] !
#

! ! ! # # SP, (M)EO

FST [WRC20, WRC21] # ! ! ! # ! SP, (M)EO
Overlapping [YCK20] ! ! ! ! # # SP, (M)EO
Adversarial [ZLM18] ! ! N/A ! ! # SP, (M)EO

FairProjection (ours) ! ! ! ! ! ! SP, (M)EO

Copy of Table 1. Comparison between benchmark methods. Multiclass/multigroup: implementation takes
datasets with multiclass/multigroup labels; Scores: processes raw outputs of probabilistic classifiers; Curve:
outputs fairness-accuracy tradeoff curves (instead of a single point); Parallel: parallel implementation (e.g.,
on GPU) is available; Rate: convergence rate or sample complexity guarantee is proved; Metric: applicable
fairness metric, with SP↔Statistical Parity, EO↔Equalized Odds, MEO↔Mean EO. Since FairProjection
is a post-processing method, we focus our comparison on post-processing fairness intervention methods, except
for Reductions [ABD+18], which is a representative in-processing method, and Adversarial [ZLM18], which
we use to benchmark multi-class prediction. For comparing in-processing methods, see [LPB+21, Table 1].

A.2.5 More on related work

Our method is a model-agnostic post-processing method, so we focus our comparison on such
post-processing fairness intervention methods. In the above table, the only exception is Adver-
sarial [ZLM18], which we use to benchmark multi-class prediction. Adversarial [ZLM18] is an
in-processing method based on generative-adversarial network (GAN) where the adversary tries
to guess the sensitive group attribute S from Y and Ŷ . Even though this GAN-based approach is
applicable to multi-class, multi-group prediction, it cannot be universally applied to any pre-trained
classifier like our method.

EqOdds [HPS16], CalEqOdds [PRW+17] and LevEqOpp [CDH+19] are post-processing methods
designed for binary prediction with binary groups. They find different decision thresholds for each
group that equalize FNR and FPR of two groups. CalEqOdds [PRW+17] has an additional constraint
that the post-processed classifier must be well-calibrated, and we observe in our experiments that
this stringent constraint leads to a low-accuracy classifier especially when there is a big gap in the
base rate between the two groups. FACT [KCT20] follows a similar approach but generalizes this to
an optimization framework that can have both equalized odds and statistical parity constraints and
flexible accuracy-fairness trade-off. The optimization formulation finds a desired confusion matrix,
and their proposed post-processing method flips the predictions to match the desired confusion matrix.
Reject-option [KKZ12] is similar in that it flips predictions near the decision threshold. In [KKZ12],
instead of finding the optimal confusion matrix, it performs grid search to find the optimal margin
around the decision threshold that can minimize either equalized odds or statistical parity. For these
methods that center around modifying decision thresholds, it is not straightforward to extend to
multi-class and multi-group as one will have to consider

(|Y|
2

)
·
(|S|

2

)
boundaries.

FST [WRC20, WRC21] tackles fairness intervention via minimizing cross-entropy for binary classes.
Their method is inherently tailored to binary classification and only a cross-entropy objective function,
and our FairProjection-CE reduces to FST for the case of CE and binary classification tasks.
Identifying [JN20] is a method for minimizing KL-divergence for group-fairness intervention, which
changes the label weights (via a convex combination) between unweighted and weighted samples, but
it is not clear that this would navigate a good fairness-accuracy trade-off curve. Their method can be
extended to non-binary prediction with non-binary groups by an appropriate choice of base classifier
and fairness constraints, which is a non-trivial extension of the accompanying code, and we chose
not to pursue this. Note that [JN20] and FairProjection solve the KL-divergence minimization in
very different ways. In particular, the runtime of [WRC20, WRC21] on a 350k training dataset is

24



longer than 30 minutes using logistic regression as a base classifier (in comparison, the runtime of
FairProjection for a 500k dataset is less than 1 minute). This is because they require reweighing
the data and retraining a large number of times. Hence, it is inherently non-parallelizable.

A.2.5.1 Fairness in Multi-Class Prediction

Methods that are based on optimization with a fairness regularizer often can be easily extended to
multi-class prediction as it only requires a small change in the regularizer. For example, instead of
using |FNR0(x)− FNR1(x)|, one can replace this with∑

i∈Y

∑
j ̸=i∈Y

|P (Ŷ = j | Y = i, S = 0)− P (Ŷ = j | Y = i, S = 1)|. (A.110)

FERM [DOBD+18] mentions how their method can be extended to multi-class sensitive attribute.
Similarly, we believe that their method can be used for multi-class labels as well. The reductions
approach [ABD+18] assumes binary labels but is has natural extension to multi-class, which is
explored in [YCK20]. In-processing methods proposed in [CHS20] and [ZLM18] allow for both
multi-class labels and multi-class group attributes. [ZLM18] aims to achieve the independence
between the sensitive attribute S and Ŷ or Ŷ given Y by training an adversary who tries to figure
out Ŝ. [CHS20] directly estimates the fairness loss (e.g., A.110) using kernel density estimation.
They also demonstrate the empirical performance in a three-class classification using synthetic data.
Another in-processing method is [AAV19] where the authors propose a way to incorporate multi-class
fairness constraints into decision tree training. The preprocessing method suggested in [CKV20]
is conceptually similar to our methods in that it aims to minimize the KL-divergence between
the original distribution and preprcoessed distribution while satisfying fairness constraints. Their
method, however, requires all feature vectors to be binary, and applies only to demographic parity or
representation rate. There exist other notions of fairness, which is different from commonly-used
group fairness metrics such as envy-freeness [BDNP19] or best-effort [KJW+21], which can be
applied to multi-class prediction tasks.

Finally, there are unpublished works [DEHH21, YX20] that could handle multi-class classification.
Specifically, [DEHH21] presents a post-processing method that selects different thresholds for each
group to achieve demographic parity. [YX20] formulates SVM training as a mixed-integer program
and integrates fairness regularizer in the objective, which can also deal with multi-class.

A.3 Datasheet for ENEM 2020 dataset

Questions

The questions below are derived from [GMV+21] and aim to provide context about the ENEM-2020
dataset. We highlight that we did not create the dataset nor collect the data included in it. Instead, we
simply provide a link to the ENEM-2020 data at [INE20]. At the time of writing, the ENEM-2020
dataset is open and made freely available by the Brazilian Government at [INE20] under a Creative
Commons Attribution-NoDerivs 3.0 Unported License [Com]. We provide the datasheet below to
clarify certain aspects of the dataset (e.g., motivation, composition, etc.) since the original information
is available in Portuguese at [INE20], thus limiting its access to a broader audience. The website
[INE20] contains a link to download a .zip file which contains the ENEM-2020 data in .csv format
and extensive accompanying documentation.

The datasheet below is not a substitute for the explanatory files that are downloaded together with
the dataset at [INE20], and we emphatically recommend the user to familiarize themselves with
associated documentation prior to usage. We also strongly recommend the user to carefully read the
“Leia-Me” (readme) file Leia_Me_Enem_2020.pdf available in the same .zip folder that contains
the dataset. The answers in the datasheet below are based on an English translation of information
available at [INE20] and may be incomplete or inaccurate. The datasheet below is based on our own
independent analysis and in no way represents or attempts to represent the opinion or official position
of the Brazilian Government and its agencies.

We also note that we do not distribute the ENEM-2020 dataset directly nor host the dataset ourselves.
Instead, we provide a link to download the data from a public website hosted by the Brazilian
Government. The dataset may become unavailable in case the link in [INE20] becomes inaccessible.
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Motivation

• For what purpose was the dataset created? According to the “Leia-me” (Read Me) file
that accompanies the data, the dataset was made available to fufill the mission of the Instituto
Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (INEP) of developing and
disseminating data about exams and evaluations of basic education in Brazil.

• Who created the dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)? The dataset was developed by INEP,
which is a government agency connected to the Brazilian Ministry of Education.

• Who funded the creation of the dataset? The data is made freely available by the Brazilian
Government.

Composition

• What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)? The instances of the dataset are information about individual students
who took the Exame Nacional do Ensino Médio (ENEM). The ENEM is the capstone exam
for Brazilian students who are graduating or have graduated high school.

• How many instances are there in total (of each type, if appropriate)? The raw data
provided in at [INE20] has approximately 5.78 million entries. The processed version we
use in our experiments has approximately 1.4 million entries.

• Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set? The data provided is the lowest level of aggregation of data
collected from ENEM exam-takers made available by INEP.

• What data does each instance consist of? We provide a brief description of the features
available in the raw public data provided at [INE20]. Upon downloading the data, a
detailed description of features and their values are available (in Portuguese) in the file titled
Dicionário_Mircrodados_ENEM_2020.xsls. The features include:

– Information about exam taker: exam registration number (masked), year the exam
was taken (2020), age range, sex, marriage status, race, nationality, status of high
school graduation, year of high school graduation, type of high school (public, private,
n/a), if they are a “treineiro” (i.e., taking the exam as practice).

– School data: city and state of participant’s school, school administration type (private,
city, state, or federal), location (urban or rural), and school operation status.

– Location where exam was taken: city and state.
– Data on multiple-choice questions: The exam is divided in 4 parts (translated from

Portuguese): natural sciences, human sciences, languages and codes, and mathematics.
For each part there is data if the participant attended the corresponding portion of
the exam, the type of exam book they received, their overall grade, answers to exam
questions, and the answer sheet for the exam.

– Data on essay question: if participant took the exam, grade on different evaluation
criteria, and overall grade.

– Data on socio-economic questionnaire answers: the data include answers to 25
socio-economic questions (e.g., number of people who live in your house, family
average income, if the your house has a bathroom, etc.).

• Is there a label or target associated with each instance? No, there is no explicit label. In
our fairness benchmarks, we use grades in various components of the exam as a predicted
label.

• Is any information missing from individual instances? Yes, certain instances have missing
values.

• Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)? No explicit relationships identified.

• Are there recommended data splits (e.g., training, development/validation, testing)?
No.
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• Are there any errors, sources of noise, or redundancies in the dataset? The data contains
missing values and, according to INEP, was collected from individual exam takers. The
information is self-reported and collected at the time of the exam.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? Self-contained.

• Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor–patient confidentiality, data that includes the
content of individuals’ non-public communications)? According to the Leia-me (readme)
file (in Portuguese) that accompanies the dataset and our own inspection, the dataset does
not contain any feature that allows direct identification of exam takers such as name, email,
ID number, birth date, address, etc. The exam registration number has been substituted
by a sequentially generated mask. INEP states that the released data is aligned with the
Brazilian Lei Geral de Proteção dos Dados (LGPD, General Law for Data Protection). We
emphatically recommend the user to view the Readme file prior to usage.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? The official terminology used by the
Brazilian Government to denote race can be viewed as offensive. Specifically, the term used
to describe the race of exam takers of Asian heritage is “Amarela,” which is the Portuguese
word for the color yellow. Moreover, the term “Pardo,” which roughly translates to brown,
is used to denote individuals of multiple or mixed ethnicity. This outdated and inappropriate
terminology is still in official use by the Brazilian Government, including in its population
census. The dataset itself includes integers to denote race, which are mapped to specific
categories through the variable dictionary.

• Does the dataset relate to people? Yes.
• Does the dataset identify any subpopulations (e.g., by age, gender)? Yes. Information

about age, sex, and race are included in the dataset.
• Is it possible to identify individuals (i.e., one or more natural persons), either directly

or indirectly (i.e., in combination with other data) from the dataset? The Leia-me
(readme) file notes that the individual exam-takers cannot be directly identified from the
data. However, in the same file, INEP recognizes that the Brazilian data protection law
(LGPD) does not clearly define what constitutes a reasonable effort of de-identification.
Thus, INEP adopted a cautious approach: this dataset is a simplified/abbreviated version of
the ENEM micro-data compared to prior releases and aims to remove any features that may
allow identification of the exam-taker.

• Does the dataset contain data that might be considered sensitive in any way (e.g., data
that reveals racial or ethnic origins, sexual orientations, religious beliefs, political
opinions or union memberships, or locations; financial or health data; biometric or
genetic data; forms of government identification, such as social security numbers;
criminal history)? The data includes race information and socio-economic questionnaire
answers.

Collection Process

Since we did not produce the data, we cannot speak directly about the collection process. Our
understanding is that the data contains self-reported answers from exam-takers of the ENEM collected
at the time of the exam. The exam was applied on 17 and 24 of January 2021 (delayed due to COVID).
The data was aggregated and made publicly available by INEP at [INE20]. After consulting the IRB
office at our institution, no specific IRB was required to use this data since it is anonymized and
publicly available.

Preprocessing/cleaning/labeling

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucket-
ing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)? Some mild pre-processing was done on the data to ensure
anonymity, as indicated in the “Leia-me” file. This includes aggregating participant ages,
masking exam registration numbers, and removing additional information that could allow
de-anonymization.
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• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? The raw data is not publicly available.

Uses

• Has the dataset been used for any tasks already? We have used this dataset to benchmark
fairness interventions in ML in the present paper. ENEM microdata has also been widely
used in studies ranging from public policy in Brazil to item response theory in high school
exams.

• Are there tasks for which the dataset should not be used? INEP does not clearly define
tasks that should not be used on this dataset. However, no attempt should be made to
de-anonymize the data.

Distribution and Maintenance

The ENEM-2020 dataset is open and made freely available by the Brazilian Government at [INE20]
under a Creative Commons Attribution-NoDerivs 3.0 Unported License [Com] at the time of writing.
The dataset may become unavailable in case the link in [INE20] becomes inaccessible.
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