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A DATASET STATISTICS

Table 4 summarizes the key statistics of the node classification datasets used in our experiments.

Table 4: Statistics of node classification datasets.
Dataset Cora Citeseer Pubmed Chameleon Film Cornell Texas Wisconsin Ogbn-Arxiv

Classes 7 6 3 5 5 5 5 5 40
Nodes 2,708 3,327 19,717 2,277 7,600 183 183 251 169,343
Edges 5,429 4,732 44,338 36,101 33,544 295 309 499 1,116,243
Features 1,433 3,703 500 2,325 932 1,703 1,703 1,703 128
Homophily 0.81 0.80 0.74 0.23 0.22 0.30 0.11 0.21 0.63

B PROOF OF THEOREMS

This section reiterates the theorems, propositions, and key observations from the main paper, and
provides their detailed proofs.

B.1 P̃ AS A SCALED DIFFUSION OPERATOR

Let A be the adjacency matrix and D the degree matrix. Define the adjacency matrix with self-loops
as Ã = A+ I. The convolution operator in GCN (Kipf & Welling, 2016) is given by:

P̃ = D̃− 1
2 ÃD̃− 1

2

First, note that the Laplacian including self-loops is the same as the original Laplacian:

L̃ = D̃− Ã = D+ I−A− I = D−A = L.

Thus, we can derive:
P̃ = I− I+ D̃− 1

2 ÃD̃− 1
2 = I− D̃− 1

2 L̃D̃− 1
2 .

B.2 UPPER BOUND OF DIRICHLET ENERGY

To eliminate the degree dependency in the Dirichlet energy and estimate an upper bound, we apply
the triangle inequality to simplify the expression. The original formulation of Dirichlet energy is:

E(X(k)) =
1

2

∑
(i,j)∈E

aij

∥∥∥∥∥ x
(k)
i√

1 + di
−

x
(k)
j√

1 + dj

∥∥∥∥∥
2

2

.

By applying the triangle inequality and introducing a conservative estimate for the normalization
factor, we obtain: ∥∥∥∥∥ x

(k)
i√

1 + di
−

x
(k)
j√

1 + dj

∥∥∥∥∥ ≤ C
∥∥∥x(k)

i − x
(k)
j

∥∥∥ ,
where C is the maximum of the normalized degree terms over all nodes in the graph. Therefore, the
upper bound for the Dirichlet energy is:

E(X(k)) ≤ C2

2

∑
(i,j)∈E

aij

∥∥∥x(k)
i − x

(k)
j

∥∥∥2
2
.

Proposition B.1. (Graph Structure Irrelevance) Let W ∈ Rd×d be an arbitrary matrix with
maximum singular value λW

1 , and let ϕ be a component-wise non-expansive mapping satisfying
ϕ(0) = 0. Then:

|ϕ (LXW)|F ≤ λW
1 · |X|F (9)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof. We aim to prove the following inequality:

|ϕ (LXW)|F ≤ λW
1 · |X|F

Frobenius Norm Definition

The Frobenius norm of a matrix is defined as the square root of the sum of the squares of its elements.
For any matrix A, we have:

|A|F =

√∑
i,j

|Aij |2

This indicates that the Frobenius norm measures the L2 norm of all elements in the matrix.

Application of Non-Expansive Mapping

We know that ϕ is a non-expansive mapping, meaning it does not increase the norm of the input.
For any matrix A, we have:

|ϕ(A)|F ≤ |A|F

In particular, since ϕ(0) = 0, if A = 0, then ϕ(A) = 0.

Applying this property to A = LXW, we obtain:

|ϕ(LXW)|F ≤ |LXW|F

Singular Value Decomposition and Norm Scaling

Next, we analyze the Frobenius norm of LXW.

Given that the maximum singular value of W is λW
1 , we can interpret W as applying a scaling

operation to X. Specifically, W maps each column of X to a new column space, with the maximum
singular value controlling the degree of scaling.

Thus, we can derive:
|LXW|F ≤ λW

1 |LX|F

Incorporating Properties of the Laplacian

The Laplacian matrix L is also a linear operator that maps each column of X to the differences
between neighboring nodes. Since L is constructed from the degree and adjacency matrices, the
norm of L does not exceed 1 (in the case of a normalized Laplacian). Therefore, we have:

|LX|F ≤ |X|F

Combining the Inequalities

Combining the above results, we get:

|LXW|F ≤ λW
1 |X|F

By the non-expansiveness of ϕ, we finally obtain:

|ϕ(LXW)|F ≤ λW
1 |X|F

When λW(l)

1 < 1 for all layers, the feature map norms progressively decrease, eventually converging
to a zero matrix. This implies that when the singular value is less than 1, the feature maps will grad-
ually smooth out over multiple layers, leading to over-smoothing, where all node features become
indistinguishable.
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