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1 Sampling Operation Networks details

1.1 Architecture Details

Node Encoder The Node Encoder consists of three separate CNN encoders, which consume RGB
features (output by Resnet50+FPN [1, 2]), a backprojected XYZ point cloud (from a depth map
and known camera intrinsics), and the mask, respectively. Each CNN encoder has 3 blocks of 2
3x3 convolutions followed by a 2x2 max pooling for resolution reduction. Lastly, there is a 7th

convolution layer. Each convolution is immediately followed by a GroupNorm layer [3] and ReLU.
The resulting features are 2x2 averaged pooled, flattened, then put through an MLP with 2 hidden
layers of dimension 1024 and 512 and an output dimension of 128 (except for SplitNet, which directly
consumes the fully convolutional output after the 7th conv layer).

SplitNet SplitNet builds off of the multi-stream CNN encoders from the Node Encoder. Given the
outputs after the 7th conv layer of the Node Enocder, these are then concatenated and passed through
another conv layer for fusion. Next, this fused output is passed to a U-Net [4] style decoder. Skip
connections are fed from the multi-stream CNN encoders to the decoder. Essentially, the overall
architecture (including the Node Encoder) is a multi-stream encoder-decoder UNet architecture. This
is similar to Y-Net [5], except that it has three streams instead of two. Weights of the Node Encoder
(multi-stream encoders) are shared with DeleteNet.

DeleteNet DeleteNet also builds off of the Node Encoder (off of the MLP outputs). In particular,
for each node, it computes the difference between the Node Encoder output vi − vbg, where vbg is
the Node Encoder output of the background node. This difference is then passed through an MLP
with 2 hidden layers of dimension 512 and output dimension of 1. The score is passed through a
sigmoid to be in the range [0, 1]. Weights of the Node Encoder are shared with SplitNet.

1.2 Sampling a Split from SplitNet

We provide pseudocode of how to sample a split of mask S ∈ {0, 1}h×w given the output of SplitNet,
which is a pixel-dense probability map p ∈ [0, 1]h×w in Algorithm 1. At a high level, we essentially
compute a probability distribution over the contour of S by seeing which pixels on the contour is
close to split-able boundaries given by p (more weight is given to split-able boundaries that are large
components, since it is likely to find a path through that boundary). Then, start and end points are
sampled and the lowest cost (where cost is 1 - p) is computed, scored and returned.

2 Segmentation Graph Scoring Network Details

A high-level illustration of SGS-Net can be found in Figure 4 of the main paper. The initial node
features v

(0)
i are given by the Node Encoder, and we obtain initial edge features e

(0)
ij by running

the Node Encoder on all neighboring union masks Sij . Then, we run multiple Residual GraphNet
Layers (RGLs). Our Residual GraphNet Layer is an adaptation of a GraphNet Layer [6] with residual
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Algorithm 1 Sampling a Split

Require: Segmentation mask S ∈ {0, 1}h×w, SplitNet output p ∈ [0, 1]h×w, boundary threshold ν.

1: Compute contour of S.
2: Threshold p by ν, and compute the connected components. Create an image p̃ ∈ Zh×w where p̃i

is the size (in pixels) of the component at pi for pixel i.
3: Compute contour probabilities for each contour pixel by weighted average of p̃ with Gaussian

weights.
4: Sample start and end points on contour from contour probabilities.
5: Compute highest probability path from start to end through p, resulting in trajectory τ =
{(ut, vt)}Lt=1.

6: Compute score sτ = 1
Li

∑
t pi[ut, vt].

7: return τ, sτ

connections. Our RGL first applies an edge update:

e
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where φ(l)e is an MLP, and l describes the layer depth. This is followed by a node update:
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where A is the mean of all elements in the set A, and φ(l)v1 , φ
(l)
v2 are MLPs. We additionaly apply

ReLUs after the residual connections. After passing through L levels of RGLs, we end up with the
set of node and edge feature vectors V =

{
v
(L)
i

}
, E =

{
e
(L)
ij

}
. We pass these through an output

layer that aggregates these features:

sG = σ
(
φo
(
V, E

))
∈ [0, 1], (4)

where φo is yet another MLP and sG is the predicted graph score for segmentation graph G, and σ is
the sigmoid function.

3 Implementation Details

Our Node Encoder is shared amongst all of the networks, including SplitNet, DeleteNet, and SGS-Net.
We first jointly train the SO-Nets for 200k iterations, with one segmentation graph per network per
iteration (the batch sizes is the number of instances in the segmentation graph) so that the Node
Encoder contains useful information for both operations. Next, we hold the Node Encoder fixed
while we train SGS-Net for 100k iterations.

To generate training examples for SGS-Net, we take an initial segmentation and perturb it with the
four proposed sampling operations and compute their ground truth scores. However, we do not
use the SO-Nets here, instead we perform the perturbation of the initial segmentation by randomly
splitting masks with sampled lines, merging neighboring masks, deleting masks, and adding masks
in the same fashion as Xie et al. [7]. Modality tuning is performed during training of the SO-Nets,
and held fixed during SGS-Net training. We use the outputs of Xie et al. [8] as initial segmentations,
but we can similarly use ground truth labels. To generate training examples for SplitNet, given an
initial segmentation, we randomly choose neighboring masks to merge. Lastly, to generate training
examples for DeleteNet, given an initial segmentation, we randomly add masks in the same fashion
as Xie et al. [7].

All images have resolution H = 480,W = 640. For our networks, we crop and resize the image,
depth, and masks to h = w = 64. All training procedures use Adam [9] with an initial learning
rate of 1e-4. We use K = 3 sample tree expansion iterations with a branching factor B = 3. Max
nodes and edges are set to mn = 100,me = 300 during training, and mn = 350,me = 1750 during
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Algorithm 2 RICE

Require: Initial instance segmentation S, RGB image I , organized point cloud D.
1: Build GS with NodeEncoder applied to I,D, S
2: Initialize T = {GS}
3: for k ∈ [K] do
4: for G ∈ T .leaves() do
5: for b ∈ [B] do
6: Randomly choose a sampling operation and apply it to G to get candidate graph G′
7: Apply SGS-Net to obtain sG′ , sG
8: if sG′ > sG then
9: Add G′ to T as a child of G

10: end if
11: if T .exceeds_budget(mn,me) then
12: Return T
13: end if
14: end for
15: end for
16: end for
17: return Highest scoring graph in T and/or contour uncertainties

inference. Undirected edges are handled by including both (i, j) and (j, i) as directed edges in the
graph. For each segmentation graph, edges are connected between nodes if their corresponding masks
are within 10 pixels in set distance. Additionally, when sampling a candidate graph, we first randomly
choose a sampling operation, compute all possible perturbation scores (e.g. split scores sτ for each
mask), and randomly select 3 of these perturbations that have a score of 0.7 or higher. This gives the
opportunity to explore more segmentations within the allotted budget. All experiments are trained
and evaluated on a single NVIDIA RTX2080ti GPU.

4 Pseudocode for Building the Sample Tree

We provide pseudocode for building the sample tree in Algorithm 2.

5 Example Sample Tree

In Figure 4, we show an example of a sample tree with branch factor B = 2 and K = 2 expansion
iterations. We also visualize the ground truth score (.8F + .2F@.75) and the predicted score from
SGS-Net. Note that the SGS-Net scores improve as the graph node gets further away from the root. In
this particular example, SGS-Net would return the bottom left graph, which is also the most accurate
graph.

6 Additional Experimental Results

6.1 Modality Tuning

Inspired by Aytar et al. [12], we perform an ablation to study how to best generalize from our non-
photorealistic dataset TOD to real-world data. Starting from a ResNet50 pre-trained on COCO [13],
we ablate over tuning the conv1 layer, the conv2_1, conv2_2, conv2_3 bottleneck building
blocks [1], or keeping ResNet fixed. The idea is that by fixing the rest of the layers, we can
encourage ResNet to learn the high level representation it has learned on COCO, on our simulated
dataset. Thus, our SO-Nets and SGS-Net will learn to consume this high-level representation to
provide their predictions. Then, during inference in the real-world, we resort back to the pre-trained
ResNet to extract that representation from real images. In Figure 1, we show the results of our
experiment. Interestingly, only modality-tuning conv1 leads a small dip in performance compared to
no tuning, while the optimal tuning for our scenario is to tune conv1 and conv2_1. For the rest of
this section, all networks will have been trained with this optimal setting.
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Figure 1: Modality tuning on OCID [10] and OSD [11] shows that tuning up to conv2_1 when
training on simulated data generalizes best to real data. Note that standard deviation bars are shown,
but are very tight and difficult to see.

Initial Instance Split only Merge only
Segmentation Method F@.75 Fn@0.75 F@.75 Fn@0.75

UCN [14] 92.0 (100%) 87.2 (64.7%) 88.8 (-23.1%) 87.5 (73.5%)
UOIS-Net-3D [8] 88.5 (101%) 84.6 (91.6%) 78.4 (2.1%) 77.4 (4.8%)
Mask R-CNN [15] 79.7 (60.3%) 75.8 (82.0%) 66.0 (0.0%) 64.6 (1.4%)
PointGroup [16] 82.4 (86.1%) 77.4 (87.7%) 61.2 (1.6%) 60.7 (2.1%)

Delete only Add only
F@.75 Fn@0.75 F@.75 Fn@0.75

UCN [14] 89.1 (-11.5%) 86.9 (55.9%) 89.5 (3.8%) 86.8 (52.9%)
UOIS-Net-3D [8] 78.2 (0.1%) 77.3 (3.6%) 78.3 (1.1%) 76.8 (-2.4%)
Mask R-CNN [15] 66.0 (0.0%) 64.8 (2.9%) 69.1 (13.6%) 67.0 (18.7%)
PointGroup [16] 61.0 (0.8%) 60.6 (1.5%) 64.0 (12.7%) 62.9 (13.3%)

Table 1: Sampling Operation Ablation on OCID [10]. We omit standard deviations as they are all
less than 0.0005. We show results on F@.75 and Fn@.75. In parentheses, we show relative gain
compared to the full RICE method (with all sampling operations).

6.2 Evaluating the Usefulness of Each Sampling Operation

We provide an ablation experiment where we test the efficacy of each sampling operation. In particular,
we test RICE while only using one sampling operation at a time, so that the sample tree is built only
by a particular operation, e.g. splitting. This allows us to determine which of the sampling operations
is most helpful in comparison to the initial instance segmentation method (e.g. UOIS-Net-3D [8],
UCN [14]). We run these experiments on the larger OCID [10] dataset.

We test Split only, Merge only, and Delete only, and Add only. In Table 1, we show the results
for F@.75 and Fn@.75 metrics using UCN [14], UOIS-Net-3D [8], Mask R-CNN [15], and Point-
Group [16] as initial instance segmentation methods. We also show the percentage of increased
performance with respect to the increased performance when using all sampling operations in paren-
theses. Clearly, we see that the split operation alone results in most of the performance gain compared
to the full RICE method. This indicates that all four initial instance segmentation methods tend
to under-segment, which is a common failure case in densely cluttered environments. UCN gains
a lot from merging; the reason for this is that a common failure case from their pixel-clustering
procedure is that the boundaries of the objects tend to be clustered as a separate object which results
in over-segmentation. Merging can easily solve this issue. It turns out that the need to add and delete
masks is relatively rare given the initial segmentation methods, which leads to smaller performance
gains when considering these operations. UCN, Mask R-CNN and PointGroup benefit the most from
adding, which suggests that they are either predicting false negatives.

6.3 Full Results on P/R/F

We provide full results on all Object Size Normalized (OSN) metrics for OCID [10] and OSD [11] in
Figures 2a and 2b. For OCID, we can see increases in performance across all metrics in light orange.
When RICE underperforms the initial segmentation, we color the bar underneath as light orange. On
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(a) Results on OCID [10] using OSN metrics.

(b) Results on OSD [11] using OSN metrics.

OSD, we can see that overlap Pn and boundary Pn are slightly worse than the initial method, while
the recall Rn and Fn measures are still higher.

Figures 3a and 3b show Overlap and Boundary P/R/F measures on OCID and OSD. They show
similar results to the OSN measures, but the numbers are higher. This suggests that common mistakes
for SOTA methods more commonly occur in smaller objects (investigations of failure cases from
Xie et al. [8], Xiang et al. [14] suggest this is the case). These numbers are directly comparable with
previously published works.

7 More Details for: Guiding a Manipulator with Contour Uncertainties for
Efficient Scene Understanding

To extract contour uncertainties, we exploit the fact that RICE is a stochastic algorithm by design.
Each leaf is essentially a sampled trajectory of states (segmentations) and actions (perturbations)
from the initial segmentation S. These trajectories may have explored different parts of the state
space (e.g. perturbed different object masks in the scene). We compute the standard deviation of the
contours of each leaf graph in order to provide contour uncertainty estimates, which are shown in red
in Figure 8 of the main paper and the Supplemental video. Additionally, we visualize the confident
contours (which are present in each leaf graph) in green.

The contour uncertainties depict certain segmentations that not all of the trajectories explored. It
reflects which objects RICE is not as confident about. If a mask Si in the initial segmentation is split
the same way in all leaf graphs, then RICE is confident that Si should be split, and there will be no
uncertainty. However, if Si is only split in some of the leaf graphs, then RICE is not as confident
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(a) Results on OCID [10] using Overlap and Boundary P/R/F metrics as defined by Xie
et al. [7]. Note that the UCN [14] numbers are slightly different than in the published
paper, due to the authors finding a bug in the reporting code. This is the case for Xie et al.
[8] as well.

(b) Results on OSD [11] using Overlap and Boundary P/R/F metrics as defined by Xie
et al. [7].

Algorithm 3 Guiding a Manipulator with RICE
1: repeat
2: Get S from initial instance segmentation method (e.g. UCN [14])
3: Run RICE to get best masks and contour uncertainty
4: if Contour Uncertainty is present then
5: Sample a grasp with Sundermeyer et al. [17] from the uncertain masks, and execute it
6: end if
7: until No Contour Uncertainty

about whether Si truly represents more than 1 object, and an interaction is required to resolve such
uncertainty. For example, in Trial 2 in the Supplemental video, the cup and the bowl it is on top of
(far left) are constantly under-segmented together by UCN [14]. RICE splits it correctly each time,
and there is no uncertainty about splitting that mask, as evidenced by the uncertainty contours.

We provide a short description of the grasping algorithm with pseudocode in Algorithm 3.
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