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A Assorted Proofs

A.1 Proof of the Variational Principle

Proof. Since multiplying  by any complex constant c 2 C leaves the value of R( ) un-
changed, we can, without loss of generality, assume that h | i = 1. Taking the orthonormal
basis  n from the application of the spectral theorem to Ĥ, we can expand
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Since we assumed h | i = 1, it must hold
P

n ↵
2
n = 1. This yields that the minimum of R

is achieved precisely when
↵0 = 1,↵n = 0 : 8n � 1

which implies  =  0.

A.2 Derivation of the energy gradient

First, let’s rewrite the expectation of Eloc in bra-ket notation
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Differentiating by ✓ yields

@

@✓


h ✓|Eloc| ✓i

h ✓| ✓i

�
=
@ h ✓|Eloc| ✓i

@✓

1

h ✓| ✓i
+ h ✓|Eloc| ✓i

@

@✓

1

h ✓| ✓i
(15)

For the derivative in the first term, since Ĥ is Hermitian, we have:
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As for the derivative in the second term, some manipulations yield:
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Substituting these expressions into (15), we find
@

@✓


h ✓|Eloc| ✓i

h ✓| ✓i

�
=
@ h ✓|Eloc| ✓i

@✓

1

h ✓| ✓i
+ h ✓|Eloc| ✓i

@

@✓

1

h ✓| ✓i

=


2

⌧
 ✓|Êloc|
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At first, this might not appear like much of an improvement. Recognizing, however, that
every term here can be written as an expectation against  2

✓, makes clear its usefulness
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In practice, we will estimate (4) using a finite collection of samples drawn from the normalized
density  2
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Again, this can thankfully be achieved through standard MHMC techniques without having
to estimate the normalization constant.

Remark: Isn’t that estimate biased?

Mathematically, it is true that since we are reusing the same batch of xi to estimate both
expectations in (21) via (4), there will be bias introduced – the covariance between the two
portions of the second term will be non-zero. Vanishing variance of the energy, however, will
save us again here, since we can upper bound the covariance using Cauchy-Schwarz as
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and we know Var(X) �! 0 as our estimate of the ground state improves. So for practical
purposes, this correlation is negligible.

A.3 Proof that the sortlet is once-differatiable

Proof. By assumption, ↵ is itself assumed smooth (C1), so since � is constant except for
points in the set

D =
�
r 2 R3N : 9i 2 {0..N} such that ↵i(r) = ↵i+1(r)

 
(24)

 ↵ is also smooth on R3N\D. Now for r 2 D, continuity of  ↵ at r is straightforward sinceQN
i=1 (↵i+1(r)� ↵i(r)) = 0, which exactly cancels the discontinuity created by �(r).

Once-Differentiability

As for differentiability, we claim that the derivative is given by
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where k satisfies ↵k+1�↵k = 0. By smoothness, we know this expression is correct on Rd\D,
so the claim is that it extends, as one might expect, to D as well. To see this, let’s consider
two cases:
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1. k is non-unique. Then it’s easy to see that @ ↵
@ri = 0, since the resulting sum from

applying the product rule always has a zero in each term, canceling any discontinuity
potentially resulting from �(⇡↵). To put this more rigorously, the limit from any
direction limr0�!r

@ ↵
@ri (r

0) = 0.

2. k is unique. Handling the case where k is unique requires a little more delicate
manipulation. Consider that locally, for any q 2 B"(r)

 ↵(q) = �(⇡↵) (↵k+1(q)� ↵k(q))
NY
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where b↵k and b↵k+1 are the same outputs of ↵, evaluated locally, but ordered
according to a fixed ⇡↵̂(r). The exact " > 0 can be computed by taking a minimum
over all ✏i for i 6= k, defined to each satisfy

(↵i+1(y)� ↵i(y)) > 0 : 8y 2 B"i(x) (28)

This means that locally,  ↵ is smooth, since the sorted order of the other ↵j does
not change inside this neighbourhood.

B Experimental Details

All results in Figure 3a, Figure 3b and Section 3.1 were produced by modifying the FermiNet
codebase to use our sortlet instead of the determinant. For the values in Figure 3b we
optimized the wavefunction for 20,000 iterations, but for the others in Section 3.1, we ran
each for 100,000 iterations. For the smaller systems, Li, LiH,Be,H4 we used a batch size of
512. For those with more electrons, B,C,N we used between 2048 and 4096. We changed
the initialization envelope parameters pursuant to [14], but we found that initializing to the
suggested Z/row value too unstable with our ansatz, so we used 2 instead for Boron and
Carbon. All training runs were completed using 2 A6000 GPUs, and ran for approximately
12 hours on average. The energy values except for N,CH4 in Section 3.1 were computed by
averaging over 10,000 separate estimates, with 500 mcmc equilibriation steps in between. For
N,CH4, due to time constraints, the values were estimated using the last 5000 iterations
of training. In both cases, the 3 � � confidence interval reflected by the parenthesis (x)
around a digit where estimated using the Gaussian formula from the central limit theorem
as 3� = 3 �̂p

n
. Molecules below C in Section 3.1 used K = 16 determinants, but those above

used K = 32.
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