
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Supplementary Materials: Tracing Training Progress: Dynamic
Influence Based Selection for Active Learning

Anonymous Authors

1 EXPERIMENTAL DETAILS
1.1 Comparision Methods Details
Random randomly selects labeled data from the full unlabeled
dataset to annotate and form a labeled subset.

Dropout [3] employsMonte Carlo-dropout variational inference
(MC-dropout) to compute the uncertainty of samples.

Learning Loss [14] is a method that employs a loss prediction
network, which is jointly trained to estimate the losses of unlabeled
data, with samples predicted to have high losses being prioritized
for annotation.

CoreSet [11] focuses on selecting a subset from an unlabeled
data set that represents the whole set well. This is achieved by
choosing data points such that the union of n-dimensional spheres
centered on these points covers all other points in the dataset, with
the goal of minimizing the radius of these spheres.

VAAL [12] introduces the adversarial network to discriminate
between labeled and unlabeled samples within the latent space
encoded by the VAE [6]. The query score is determined by discrim-
inator network.

CoreGCN [1] introduces a novel pool-based AL framework
based on a sequential Graph Convolutional Network (GCN), which
utilizes the message-passing capabilities of GCNs to generate simi-
lar representations for closely related nodes. Leveraging this feature,
CoreGCN efficiently identifies and selects unlabeled examples that
are distinct from the labeled ones.

Boosting [13] has theoretically established that annotating un-
labeled samples with higher gradient norms can lead to a reduced
upper limit on test loss. To mitigate the need for labels in gradi-
ent computation, Boosting has devised two approaches: expected-
gradnorm and entropy-gradnorm, which use expected loss and
entropy as substitutes, respectively.

TiDAL [8] employs a prediction module to learn and estimate
training dynamic of large-scale unlabeled data.

TOD [5] presents the concept of temporal output discrepancy
(TOD) to measure the discrepancy between the model outputs
across different learning iterations. This study theoretically demon-
strates that this discrepancy can offer a lower-bound estimate of
sample loss.

Full Training trains the model based on the full training dataset.

1.2 Implementation details
We utilize ResNet-18 [4] as the image classification model across
Cifar10 [7], Cifar100 [7] and SVHN [9] datasets. The annotation
budget for each active learning cycle incrementally increases by
5% from 10% to 40%. For the Cifar10, Cifar100 and SVHN dataset,
each cycle involves training the model for 200 epochs using an SGD
optimizer with an initial learning rate of 0.1, momentum of 0.9,
weight decay of 5 × 10−4, and a batch size of 128. The learning rate
is reduced to 0.01 after completing 80% of the epochs. In contrast,

Caltech101 dataset is trained over 50 epochs with a batch size of 64
and an initial learning rate of 0.01.

For the semantic segmentation task, we utilize the 22-layer di-
lated residual network model (DRN-D-22) [15] on the Cityscapes
dataset. Similarly, the annotation budget for each active learning
cycle incrementally increases by 5%, ranging from 10% to 40%. The
model undergoes training for 40 epochs each cycle using an SGD
optimizer with a learning rate of 5 × 10−4 and a batch size of 4.
Detailed implementation about datasets and parameter setting are
summarized in Table1 and Table2.

2 MORE EXPERIMENTAL RESULTS
2.1 Robustness to More Complex Scenarios
In this section, we provide additional experiments on image clas-
sification using the Imagenet100 benchmark in large scale active
learning setting.

Dataset and implementation details. ImageNet [2] contains
over 1.3 million images distributed across 1,000 classes, including
1,279,867 training images and 49,950 test images. For ease of ex-
perimentation, we focus on evaluating model performance on the
ImageNet100, which includes 100 classes, 50,000 training images,
and 10,000 testing images. We employ ResNet-18 as the task model
for ImageNet100 dataset. The model is trained for 200 epochs, using
a batch size of 128 and an initial learning rate of 0.1. The compari-
son methods are aligned with those used in our other experiments.
For ImageNet100 dataset, the annotation budget increases by 5%,
ranging from 10% to 40% across seven active learning steps, which
are exactly the same as outlined for the other datasets. More details
about datasets and parameter setting are summarized in Table 1
and Table2.

Results. As a more challenging dataset, the superior perfor-
mance on ImageNet100 demonstrates the scalability of our ap-
proach. As depicted in Figure 1, our method outperforms other
methods from the start and across most cycles, with a consider-
able advantage. It demonstrates that our method is still effective
for more complicated datasets. Specifically, in the final iteration
with 20,000 labeled points, DISAL achieves an accuracy of 68.16%,
surpassing the next best method by 1.08%. Additionally, DISAL’s
performance notably increases in the initial cycles. This implies
that our method has a distinct advantage at selecting samples that
significantly improve the model performance during the training
progress, compared with other methods. Note that methods like
Learning Loss [14] and Dropout [3] do not perform as well on Ima-
geNet100, sometimes performing worse or comparable to “Random”
selection baseline.

2.2 Study on Imabalanced dataset
Dataset and implementation details. As a supplementary to
Section 4.3 of the paper, we further explore the robustness of DISAL
inmore imbalanced scenarios. Specifically, wemodified the Cifar100
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Table 1: The summary of datasets used in the experiments. “#Classes” indicates the number of categories within each dataset.
And “Image Size” represents the size of images after for preprocessing.

Dataset Task Content #Classes Image Size Train Test

Cifar-10 image classification natural images 10 32x32 50,000 10,000
Cifar-100 image classification natural images 100 32x32 50,000 10,000
SVHN image classification street view house numbers 10 32x32 73,257 26,032
Caltech-101 image classification natural images 101 224x224 8,046 1098
Cityscapes semantic segmentation driving video sequences 19 688x688 2,975 500
Imagenet100 image classification natural images 100 224x224 50,000 10,000

Table 2: The summary of parameter setting in the experiments. “Start” refers to the number of initially labeled samples.
“Budget” indicates the number of samples annotated in each cycle. “Cycle” representes the number of active learning cycles.
And “𝜆” is the weight for dynamic loss.

Dataset Start Budget Cycle Optimizer Lr Momentum Decay Epochs Batch 𝜆

Cifar-10 10% 5% 7 SGD 0.1 0.9 5 × 10−4 200 128 1
Cifar-100 10% 5% 7 SGD 0.1 0.9 5 × 10−4 200 128 1
SVHN 10% 5% 7 SGD 0.1 0.9 5 × 10−4 200 128 1
Caltech-101 10% 5% 7 SGD 0.01 0.9 5 × 10−4 50 64 1
Cityscapes 10% 5% 7 Adam 5 × 10−4 - - 40 4 1
Imagenet100 10% 5% 7 SGD 0.1 0.9 5 × 10−4 200 128 1

Figure 1: Mean accuracy of different AL approaches on Ima-
genet100.

dataset to create “Cifar100-IR10" with an imbalance ratio (IR) of 10.
And further, a higher IR of 100 is employed to recompose a more
imbalanced Cifar10 dataset (“Cifar10-IR100”). Since “Cifar100-IR100”

is too challenge to learn an effective classification strategy using
all AL approaches with limited data, we ignore this setting. For the
“Cifar100-IR10”, the distribution of images per class is varying from
50 to 500, across 100 classes. The experiments are conducted over
the same seven AL cycles, varying from 2𝑘 of the labeled pool to 8𝑘
with an addition 1𝑘 at each AL cycle. For the “Cifar10-IR100", the
number of each class images changes from 50 to 5000 with a wider
change. Given its total of just over 10k training images, annotation
budgets are set from 1𝑘 to 4𝑘 with an addition 0.5𝑘 at each AL cycle.
All additional experimental details are consistent with those for
the balanced Cifar10 and Cifar100, described in Section 4.1 in main
paper.

Results. As illustrated in Figure 2, DISAL shows almost consis-
tent superiority on the “Cifar100-IR10" and “Cifar10-IR100" dataset,
demonstrating its robustness across varying levels of data imbal-
ance and scenarios. An exception is in the CIFAR10 dataset with
an IR of 100, where Learning Loss shows marginally better per-
formance than DISAL. We assume that the loss prediction module
enhances model optimization in Learning Loss. Nevertheless, in all
other imbalanced scenarios, DISAL surpasses Learning Loss by a
wide margin. Additionally, while other methods suffer a tiny dis-
turbance from the imbalanced dataset, DISAL exhibits particularly
strong performance with minimal variance, especially on the im-
balanced "Cifar100-IR10," where the dataset has the largest number
of classes.
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Figure 2: Mean accuracy of different AL approaches on synthetically imbalanced “Cifar100-IR10” and “Cifar10-IR100”. “IR”
represents imbalance ratio.

‘

Figure 3: Ablation study on dynamic influence based selection strategies, DISAL vs. TracInCP, on Cifar10 and Cifar100.
“TracInCP-full” estimates dynamic influence by replaying and summing up influence at checkpoints throughout the entire
training, “TracInCP-last” focuses on the latter half of the training progress.

2.3 Ablation Study on Evaluating Dynamic
Influence Based Selection Strategies

In this section, we aim to demonstrate the effectiveness of our dy-
namic influence-based selection strategies, DISAL, which employ
an additional dynamic loss to trace training progress. In contrast,

TracInCP [10] also achieves dynamic influence estimation by regu-
larly saving checkpoints and inferring predicted probabilities on
all unlabeled data each training epoch, as detailed in Section 3.3 of
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the main paper. Despite the significantly high memory and com-
putational costs associated with TracInCP in AL setting, we rigor-
ously implement this process to facilitate a detailed comparison
with our method on the Cifar10 and Cifar100 datasets. Specifically,
“TracInCP-full” indicates that the dynamic influence is estimated
by replaying checkpoints throughout the entire training progress
and summing up the influence at checkpoints. “TracInCP-last” fo-
cuses on replaying checkpoints during the latter half of the training
progress.

As illustrated in Section 4.4 of main paper, while DISAL intro-
duces no additional memory and computational overheads, DISAL
still achieves a considerably higher performance than TracInCP in
Figure 3, demonstrating the effectiveness of our dynamic influence-
based selection strategies. We attribute the disadvantage of Trac-
InCP to its reliance on how to sample checkpoints in the training
procedure. Selecting checkpoints either during loss fluctuations or
after training has converged, often contributes minimally or even
detrimentally to the results. In contrast, DISAL effectively captures
the dynamic information by recording and aligning with a gen-
eralized dynamic predicted probabilities during training, thereby
avoiding the instability associated with checkpoint sampling.
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