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A NOTATION

Arguments for functions are denoted with parentheses, e.g., f(x) implies x is an argument for
function f . The iteration index for a parameter is indicated via superscripts, e.g., h(k) is the value of
the parameter h at iteration k. Device indices are given via subscripts, e.g., h(k)i refers to parameter
belonging to device i. We write a graph G with a set of nodes (devices) V and a set of edges (links)
E as G = (V, E).
We denote vectors with lowercase boldface, e.g., x, and matrices with uppercase boldface, e.g., X.
All vectors x ∈ Rd×1 are column vectors, except in certain cases where average vectors x̄ ∈ R1×d

and optimal vectors w⋆ ∈ R1×d are row vectors. ⟨x,x′⟩ and ⟨X,X′⟩ denote the inner product of
two vectors x,x′ of equal dimensions and the Frobenius inner product of two matrices X,X′ of
equal dimensions, respectively. Moreover, ∥x∥ and ∥X∥ denote the 2-norm of the vector x, and the
Frobenius norm of the matrix X, respectively. The spectral norm of the matrix X is written as ρ(X).

B ALGORITHM PSEUDOCODE

Algorithm 1: Decentralized Sporadic Federated Learning (DSpodFL)

Input: K, {G(k) = (M, E(k))}0≤k≤K , {d(k)i }i∈M,0≤k≤K , {b(k)ij }(i,j)∈E(k),0≤k≤K
,

{α(k)}0≤k≤K

Output: {θ(K+1)
i }i∈M

k ← 0, Initialize θ(0), {θ(0)i ← θ(0)}i∈M, {v(0)i ← 1}i∈M, {v̂(0)ij ← 1}
(i,j)∈E(0)

while k ≤ K do
forall i ∈M do

g
(k)
i ← 0, aggr(k)i ← 0

if v(k)i = 1 then
sample mini-batch ξ(k)i ∈ Di

g
(k)
i ← ∇Fi(θ

(k)
i ; ξ

(k)
i )

end
forall j ∈ E(k)i do

if v̂(k)ij = 1 then
rij ← 1/(1 + max {|N (k)

i |, |N
(k)
j |})

aggr(k)i ← aggr(k)i + rij

(
θ
(k)
j − θ(k)i

)
end

end
end
forall i ∈M do

θ
(k+1)
i ← θ

(k)
i + aggr(k)i − α(k)g

(k)
i

v
(k+1)
i ← 0

if random() ≤ d(k)i then
v
(k+1)
i ← 1

end
forall j ∈ E(k)i do

v̂
(k+1)
ij ← 0 if random() ≤ b(k)ij then
v̂
(k+1)
ij ← 1

end
end

end
k ← k + 1

end
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C INTERMEDIARY LEMMAS

Lemma C.1 (See Appendix D for the proof.) Let Assumption 4.2 hold. We have

(a) The global objective function F (θ) is β-smooth and µ-strongly convex, i.e.,

∥∇F (θ)−∇F (θ′)∥ ≤ β ∥θ − θ′∥ , ⟨∇F (θ)−∇F (θ′), θ − θ′⟩ ≥ µ∥θ − θ′∥2.

(b) The gradients of the global and local objective functions, and the gradient of the local objective
function at the optimal point are bounded as

∥∇F (θ)∥ ≤ β ∥θ − θ⋆∥ , ∥∇Fi(θ)∥2 ≤ 2
(
β2
i ∥θ − θ⋆∥

2
+ δ2i

)
, ∥∇Fi(θ

⋆)∥ ≤ δi.

Part-(a) of Lemma C.1 outlines the smoothness and convexity behaviour of the global objective
function based on the measures of local objectives, and part (b) provides upper bounds on the gradi-
ents. Note how these show that we are not making the bounded gradients assumption for all θ ∈ Rn,
but only bounded local gradients at the globally optimal point θ⋆.

Next, we provide upper bounds on the expected Frobenius norms of the following quantities related
to SGD noises.

Lemma C.2 (See Appendix E for the proof.) For every iteration k ≥ 0, the average SGD noise and
their deviation from this average can be bounded as

Eξ(k)

[∥∥∥ϵv(k)∥∥∥2] ≤ d(k)maxσ
2/m, Eξ(k)

[∥∥∥V(k)E(k) − 1mϵv
(k)
∥∥∥2] ≤ md(k)maxσ

2,

in which ϵv(k) = 1
m

∑m
i=1 ϵ

(k)
i v

(k)
i .

Note that by setting d(k)max = 1 in C.2, we get back the well-known estimation bounds for these
quantities (e.g., see Lemma 2 in Pu & Nedić (2021)).

Next, we find an upper bound on the expected deviation of the gradients from their average (similar
to the second quantity in Lemma C.2).

Lemma C.3 (See Appendix G for the proof.) For each iteration k ≥ 0, we have the following bound
on the expected error of gradients from their average

EΞ(k)

[∥∥∥V(k)∇(k) − 1m∇v
(k)
∥∥∥2] ≤ 3d(k)max

[
mδ2 +

(
ζ2 + 2β2

)
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+m
(
ζ2 + 2β2

(
1− d(k)min

))
EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2]]

in which∇(k) is a matrix whose rows are comprised of the gradient vectors∇Fi(θ
(k)
i ), and∇v(k) =

1
m

∑m
i=1∇Fi(θ

(k)
i )v

(k)
i .

Finally, we analyze the behaviour of the random mixing matrix P(k) defined in equation 3 and
equation 4.

Lemma C.4 (See Appendix H for the proof.) For each iteration k ≥ 0, we have

(a) The expected mixing matrix denoted as R̄(k), is irreducible and doubly-stochastic:

EV̂(k)

[
P(k)

]
≜ R̄(k) =

[
r̄
(k)
ij

]
1≤i,j≤m

, r̄
(k)
ij =

{
b
(k)
ij rij i ̸= j

1−
∑m

j=1 b
(k)
ij rij i = j

.
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(b) EV̂(k)

[(
P(k)

)2]
=
(
R̄(k)

)2
+R

(k)
0 ≜ R̃(k),

where R
(k)
0 is a matrix whose rows and columns sum to zero. Thus, R̃(k) will be irreducible

and doubly-stochastic.

(c) EΞ(k)

[∥∥P(k)Θ(k) − 1mθ̄
(k)
∥∥2] ≤ ρ̃(k)EΞ(k−1)

[∥∥Θ(k) − 1mθ̄
(k)
∥∥2],

in which ρ̃(k) is the spectral radius of the matrix R̃(k) − 1
m1m1T

m.

D PROOF OF LEMMA C.1

(a) First, we use the smoothness property given in Assumption 4.2-(a) to get

∥∇F (θ)−∇F (θ′)∥ =

∥∥∥∥∥∥ 1

m

m∑
j=1

(∇Fj(θ)−∇Fj(θ
′))

∥∥∥∥∥∥ ≤ 1

m

m∑
j=1

∥∇Fj(θ)−∇Fj(θ
′)∥

≤ 1

m

m∑
j=1

βj ∥θ − θ′∥ = β̄ ∥θ − θ′∥ ≤ β ∥θ − θ′∥

Next, using the strong convexity property of Assumption 4.2-(b), we have

⟨∇F (θ)−∇F (θ′), θ − θ′⟩ = 1

m

m∑
j=1

⟨∇Fj(θ)−∇Fj(θ
′), θ − θ′⟩

≥ 1

m

m∑
j=1

µj∥θ − θ′∥
2
= µ̄∥θ − θ′∥2 ≥ µ∥θ − θ′∥2

(b) Since∇F (θ⋆) = 0 by definition, we can use the results of part (a) of this lemma to show that

∥∇F (θ)∥ ≤ β ∥θ − θ⋆∥ .

Once again noting that ∇F (θ⋆) = 0, we next use the gradient diversity bound outlined in Assump-
tion 4.2-(c) to get

∥∇Fi(θ
⋆)∥ ≤ δi. (10)

Finally, using equation 10 and Assumption 4.2-(a), we write

∥∇Fi(θ)∥2 ≤ 2
(
∥∇Fi(θ)−∇Fi(θ

⋆)∥2 + ∥∇Fi(θ
⋆)∥2

)
≤ 2

(
β2
i ∥θ − θ⋆∥

2
+ δ2i

)
,

finishing the proof.

To explain the statement written after Assumption 4.2 on how these measures relate to each other,
we first have

µ ≤ µi ≤ βi ≤ β,

in which µi ≤ βi is a well-known fact (see Bottou et al. (2018) as a reference), and µ ≤ µi and
βi ≤ β follow from the definitions given in Assumption 4.2. Moreover, if we upper-bound the
gradient diversity term ∥∇F (θ)−∇Fi(θ)∥ without using Assumption 4.2-(c), we will have

∥∇F (θ)−∇Fi(θ)∥ ≤ ∥∇F (θ)−∇Fi(θ
⋆) +∇Fi(θ

⋆)−∇Fi(θ)∥
≤ ∥∇F (θ)∥+ ∥∇Fi(θ

⋆)∥+ ∥∇Fi(θ)−∇Fi(θ
⋆)∥

≤ δi + βi ∥θ − θ⋆∥+ β ∥θ − θ⋆∥ ≤ δi + (βi + β) ∥θ − θ⋆∥ ,
(11)

in which we used Assumption 4.2-(a) and the results of Lemma C.1-(b). Now comparing equation 11
with the assumption made in 4.2-(c) for the same expression, we conclude that

ζi ≤ βi + β, ζ ≤ 2β.
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E PROOF OF LEMMA C.2

We start by finding an upper bound for the average SGD noise, by expanding the terms using their
definitions, and employing the properties given in Assumption 4.3.

Eξ(k)

[∥∥∥ϵv(k)∥∥∥2] = Eξ(k)

∥∥∥∥∥ 1

m

m∑
i=1

ϵ
(k)
i v

(k)
i

∥∥∥∥∥
2
 = Eξ(k)

 1

m2

m∑
i=1

m∑
j=1

〈
ϵ
(k)
i v

(k)
i , ϵ

(k)
j v

(k)
j

〉
=

1

m2

m∑
i=1

E
ξ
(k)
i

[∥∥∥ϵ(k)i v
(k)
i

∥∥∥2]+ 1

m2

m∑
i=1

m∑
j=1
j ̸=i

〈
E
ξ
(k)
i

[
ϵ
(k)
i v

(k)
i

]
,E

ξ
(k)
j

[
ϵ
(k)
j v

(k)
j

]〉

=
1

m2

m∑
i=1

E
ξ
(k)
i

[∥∥∥ϵ(k)i

∥∥∥2v(k)i

]
+

1

m2

m∑
i=1

m∑
j=1
j ̸=i

〈
E
ϵ
(k)
i

[
ϵ
(k)
i

]
E
v
(k)
i

[
v
(k)
i

]
,

E
ϵ
(k)
j

[
ϵ
(k)
j

]
E
v
(k)
j

[
v
(k)
j

]〉
=

1

m2

m∑
i=1

E
ϵ
(k)
i

[∥∥∥ϵ(k)i

∥∥∥2]Ev
(k)
i

[
v
(k)
i

]
=

1

m2

m∑
i=1

d
(k)
i σ2

i ≤
d
(k)
maxσ2

m
.

Next, we found an upper bound for deviance of the error matrix from its average, using a similar
approach as above. We have

Eξ(k)

[∥∥∥V(k)E(k) − 1mϵv
(k)
∥∥∥2]

= Eξ(k)

[∥∥∥V(k)E(k)
∥∥∥2 − 2

〈
V(k)E(k),1mϵv

(k)
〉
+
∥∥∥1mϵv

(k)
∥∥∥2]

= Eξ(k)

[
m∑
i=1

∥∥∥ϵ(k)i v
(k)
i

∥∥∥2]− 2Eξ(k)

[
m∑
i=1

〈
ϵ
(k)
i v

(k)
i , ϵv(k)

〉]
+ Eξ(k)

[
m
∥∥∥ϵv(k)∥∥∥2]

=

m∑
i=1

E
ξ
(k)
i

[∥∥∥ϵ(k)i

∥∥∥2v(k)i

]
− 2

m

m∑
i=1

E
ξ
(k)
i

[∥∥∥ϵ(k)i

∥∥∥2v(k)i

]

− 2

m

m∑
i=1

〈
E
ξ
(k)
i

[
ϵ
(k)
i v

(k)
i

]
,

m∑
j=1
j ̸=i

E
ξ
(k)
j

[
ϵ
(k)
j v

(k)
j

]〉
+mEξ(k)

[∥∥∥ϵv(k)∥∥∥2]

=

(
1− 2

m
+

1

m

) m∑
i=1

E
ϵ
(k)
i

[∥∥∥ϵ(k)i

∥∥∥2]Ev
(k)
i

[
v
(k)
i

]
− 2

m

m∑
i=1

m∑
j=1
j ̸=i

〈
E
ϵ
(k)
i

[
ϵ
(k)
i

]
E
v
(k)
i

[
v
(k)
i

]
,E

ϵ
(k)
j

[
ϵ
(k)
j

]
E
v
(k)
j

[
v
(k)
j

]〉

=

(
1− 1

m

) m∑
i=1

d
(k)
i σ2

i ≤ (m− 1) d(k)maxσ
2 ≤ md(k)maxσ

2.

F PROOF OF LEMMA 4.1

Using Lemma C.1-(b) on θ̄(k), the average model parameters at iteration k, we get∥∥∥∇Fi

(
θ̄(k)

)∥∥∥2 ≤ 2

(
β2
i

∥∥∥θ̄(k) − θ⋆∥∥∥2 + δ2i

)
. (12)
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Now, if 0 < α(k) ≤ 2
µ+β , we can write∥∥∥θ̄(k+1) − θ⋆

∥∥∥2 =
∥∥∥θ̄(k) − α(k)gv(k) − θ⋆

∥∥∥2
=
∥∥∥θ̄(k) − α(k)∇v(k) − θ⋆

∥∥∥2 − 2
〈
θ̄(k) − α(k)∇v(k) − θ⋆, α(k)ϵv(k)

〉
+
(
α(k)

)2∥∥∥ϵv(k)∥∥∥2
≤
(
1 + µα(k)

)∥∥∥θ̄(k) − α(k)∇F
(
θ̄(k)

)
− θ⋆

∥∥∥2
+

(
1 +

1

µα(k)

) (
α(k)

)2
m

m∑
i=1

∥∥∥∇Fi

(
θ̄(k)

)
−∇Fi

(
θ
(k)
i

)
v
(k)
i

∥∥∥2
− 2

〈
θ̄(k) − α(k)∇v(k) − θ⋆, α(k)ϵv(k)

〉
+
(
α(k)

)2∥∥∥ϵv(k)∥∥∥2
≤
(
1 + µα(k)

)(
1− µα(k)

)2∥∥∥θ̄(k) − θ⋆∥∥∥2
+
α(k)

mµ

(
1 + µα(k)

) m∑
i=1

v
(k)
i =1

β2
i

∥∥∥θ̄(k) − θ(k)i

∥∥∥2

+
2α(k)

mµ

(
1 + µα(k)

) m∑
i=1

v
(k)
i =0

(
β2
i

∥∥∥θ̄(k) − θ⋆∥∥∥2 + δ2i

)

− 2
〈
θ̄(k) − α(k)∇v(k) − θ⋆, α(k)ϵv(k)

〉
+
(
α(k)

)2∥∥∥ϵv(k)∥∥∥2
=

[(
1 + µα(k)

)(
1− µα(k)

)2
+

2α(k)

mµ

(
1 + µα(k)

) m∑
i=1

β2
i

(
1− v(k)i

)]∥∥∥θ̄(k) − θ⋆∥∥∥2
+
α(k)

mµ

(
1 + µα(k)

) m∑
i=1

β2
i

∥∥∥θ(k)i − θ̄(k)
∥∥∥2v(k)i

+
2α(k)

mµ

(
1 + µα(k)

) m∑
i=1

δ2i

(
1− v(k)i

)
− 2

〈
θ̄(k) − α(k)∇v(k) − θ⋆, α(k)ϵv(k)

〉
+
(
α(k)

)2∥∥∥ϵv(k)∥∥∥2,
in which the relationship in first four lines follow from (i) equation 5, (ii) g(k)

i = ∇(k)
i + ϵ

(k)
i for

all i ∈ M, (iii) Young’s inequality, (iv) Lemma 10 in Qu & Li (2017), Assumption 4.2-(a) and
equation 12. Next, we take the expected value of the above inequality and use Assumption 4.3 and
Lemma C.2 to get

EΞ(k)

[∥∥∥θ̄(k+1) − θ⋆
∥∥∥2] ≤ Ev(k)

[(
1 + µα(k)

)(
1− µα(k)

)2
+

2α(k)

mµ

(
1 + µα(k)

) m∑
i=1

β2
i

(
1− v(k)i

)]
EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2]

+
α(k)

mµ

(
1 + µα(k)

) m∑
i=1

β2
i EΞ(k−1)

[∥∥∥θ(k)i − θ̄(k)
∥∥∥2]Ev

(k)
i

[
v
(k)
i

]
+

2α(k)

mµ

(
1 + µα(k)

) m∑
i=1

δ2i Ev
(k)
i

[
1− v(k)i

]
− 2EΞ(k−1)∪v(k)

[〈
θ̄(k) − α(k)∇v(k) − θ⋆, α(k)EE(k)

[
ϵv(k)

]〉]
+
(
α(k)

)2
Eξ(k)

[∥∥∥ϵv(k)∥∥∥2]
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≤

[(
1 + µα(k)

)(
1− µα(k)

)2
+

2α(k)

mµ

(
1 + µα(k)

) m∑
i=1

β2
(
1− d(k)i

)]

EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2]
+
α(k)

mµ

(
1 + µα(k)

) m∑
i=1

d
(k)
i β2

i EΞ(k−1)

[∥∥∥θ(k)i − θ̄(k)
∥∥∥2]

+
2α(k)

mµ

(
1 + µα(k)

) m∑
i=1

δ2i

(
1− d(k)i

)
+

(
α(k)

)2
d
(k)
maxσ2

m

− 2EΞ(k−1)∪v(k)

[〈
θ̄(k) − α(k)∇v(k) − θ⋆, α(k)EE(k)

[
ϵv(k)

]〉]
+
(
α(k)

)2
Eξ(k)

[∥∥∥ϵv(k)∥∥∥2]

=

[
1− µα(k)

(
1 + µα(k) −

(
µα(k)

)2)
+

2α(k)

µ

(
1 + µα(k)

)(
1− d(k)min

)
β2

]

EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2]
+
(
1 + µα(k)

) α(k)d
(k)
maxβ2

mµ
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+
2α(k)

µ

(
1 + µα(k)

)(
1− d(k)min

)
δ2 +

(
α(k)

)2
d
(k)
maxσ2

m

G PROOF OF LEMMA C.3

Noting that∥∥∥V(k)∇(k) − 1m∇v
(k)
∥∥∥2 = 2

∥∥∥V(k)∇(k) −V(k)∇F(k)
∥∥∥2 + 2

∥∥∥V(k)∇F(k) − 1m∇v
(k)
∥∥∥2,

we first find an upper bound for each of the two terms above separately. For the first term, we have

∥∥∥∥V(k)∇(k) −V(k)∇F(k)

∥∥∥∥2 =

m∑
i=1

∥∥∥∇Fi

(
θ
(k)
i

)
v
(k)
i −∇F

(
θ
(k)
i

)
v
(k)
i

∥∥∥2
=

m∑
i=1

∥∥∥∇Fi

(
θ
(k)
i

)
−∇F

(
θ
(k)
i

)∥∥∥2v(k)i ≤
m∑
i=1

(
δi + ζi

∥∥∥θ(k)i − θ⋆
∥∥∥)2v(k)i

≤
m∑
i=1

(
δi + ζi

∥∥∥θ(k)i − θ̄(k)
∥∥∥+ ζi

∥∥∥θ̄(k) − θ⋆∥∥∥)2v(k)i

≤ 3

m∑
i=1

(
δ2i + ζ2i

∥∥∥θ(k)i − θ̄(k)
∥∥∥2 + ζ2i

∥∥∥θ̄(k) − θ⋆∥∥∥2) v(k)i ,

where Assumption 4.2-(c) was used in the first inequality. Next, for the second term, we use As-
sumption 4.2-(a) write∥∥∥V(k)∇F(k) − 1m∇v

(k)
∥∥∥2 =

m∑
i=1

∥∥∥∇F(θ(k)i

)
v
(k)
i −∇v(k)

∥∥∥2

=

m∑
i=1

∥∥∥∥∥∥ 1

m

m∑
j=1

(
∇Fj

(
θ
(k)
i

)
v
(k)
i −∇Fj

(
θ
(k)
j

)
v
(k)
j

)∥∥∥∥∥∥
2

18



Under review as a conference paper at ICLR 2024

≤
m∑
i=1

1

m

m∑
j=1

∥∥∥∇Fj

(
θ
(k)
i

)
v
(k)
i −∇Fj

(
θ
(k)
j

)
v
(k)
j

∥∥∥2
=

1

m

m∑
i=1

m∑
j=1

∥∥∥∇Fj

(
θ
(k)
i

)
v
(k)
i −∇Fj

(
θ̄(k)

)
v
(k)
i +∇Fj

(
θ̄(k)

)
v
(k)
i −∇Fj(θ

⋆)v
(k)
i

+∇Fj(θ
⋆)v

(k)
i −∇Fj

(
θ̄(k)

)
v
(k)
j +∇Fj

(
θ̄(k)

)
v
(k)
j −∇Fj

(
θ
(k)
j

)
v
(k)
j

∥∥∥2
=

3

m

m∑
i=1

m∑
j=1

(∥∥∥∇Fj

(
θ
(k)
i

)
−∇Fj

(
θ̄(k)

)∥∥∥2v(k)i +
∥∥∥∇Fj

(
θ̄(k)

)
−∇Fj(θ

⋆)
∥∥∥2(v(k)i − v(k)j

)2
+
∥∥∥∇Fj

(
θ̄(k)

)
−∇Fj

(
θ
(k)
j

)∥∥∥2v(k)j

)
≤ 3

m

m∑
i=1

m∑
j=1

(
β2
j

∥∥∥θ(k)i − θ̄(k)
∥∥∥2v(k)i + β2

j

∥∥∥θ̄(k) − θ⋆∥∥∥2 (v(k)i + v
(k)
j − 2v

(k)
i v

(k)
j

)
+ β2

j

∥∥∥θ̄(k) − θ(k)j

∥∥∥2v(k)j

)
≤ 3

m

m∑
j=1

β2
j

m∑
i=1

(∥∥∥θ(k)i − θ̄(k)
∥∥∥2v(k)i +

∥∥∥θ̄(k) − θ⋆∥∥∥2 (v(k)i + v
(k)
j − 2v

(k)
i v

(k)
j

)
+
∥∥∥θ̄(k) − θ(k)j

∥∥∥2v(k)j

)
≤ 3β2

m

[
m

m∑
i=1

∥∥∥θ(k)i − θ̄(k)
∥∥∥2v(k)i +m

m∑
j=1

∥∥∥θ̄(k) − θ(k)j

∥∥∥2v(k)j

+
∥∥∥θ̄(k) − θ⋆∥∥∥2

m m∑
i=1

v
(k)
i +m

m∑
j=1

v
(k)
j − 2

m∑
i=1

m∑
j=1

v
(k)
i v

(k)
j

]

≤ 6β2
m∑
i=1

∥∥∥θ(k)i − θ̄(k)
∥∥∥2v(k)i + 6β2

∥∥∥θ̄(k) − θ⋆∥∥∥2
 m∑

i=1

v
(k)
i − 1

m

(
m∑
i=1

v
(k)
i

)2


≤ 6β2
m∑
i=1

∥∥∥θ(k)i − θ̄(k)
∥∥∥2 + ∥∥∥θ̄(k) − θ⋆∥∥∥2

1− 1

m

m∑
j=1

v
(k)
j

 v(k)i .

Now, by combining the two components together we get

∥∥∥V(k)∇(k) − 1m∇v
(k)
∥∥∥2 = 2

∥∥∥V(k)∇(k) −V(k)∇F(k)
∥∥∥2 + 2

∥∥∥V(k)∇F(k) − 1m∇v
(k)
∥∥∥2

≤ 3

m∑
i=1

[
δ2i +

(
ζ2i + 2β2

) ∥∥∥θ(k)i − θ̄(k)
∥∥∥2

+

ζ2i + 2β2

1− 1

m

m∑
j=1

v
(k)
j

∥∥∥θ̄(k) − θ⋆∥∥∥2]v(k)i .
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Finally, we take the expected value of the above inequality to conclude the proof.

EΞ(k)

[∥∥∥V(k)∇(k) − 1m∇v
(k)
∥∥∥2]

≤ 3

m∑
i=1

[(
δ2i +

(
ζ2i + 2β2

)
EΞ(k−1)

[∥∥∥θ(k)i − θ̄(k)
∥∥∥2])E

v
(k)
i

[
v
(k)
i

]
+

(
ζ2i Ev

(k)
i

[
v
(k)
i

]
+2β2

(
E
v
(k)
i

[
v
(k)
i

]
− 1

m
E
v
(k)
i

[
v
(k)
i

]
− 1

m
E
v
(k)
i

[
v
(k)
i

] m∑
j=1
j ̸=i

E
v
(k)
j

[
v
(k)
j

]))

EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2]]

≤ 3

m∑
i=1

[(
δ2i +

(
ζ2i + 2β2

)
EΞ(k−1)

[∥∥∥θ(k)i − θ̄(k)
∥∥∥2]) d(k)i +

(
ζ2i d

(k)
i

+2β2

d(k)i − 1

m
d
(k)
i − 1

m
d
(k)
i

m∑
j=1
j ̸=i

d
(k)
j


)
EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2]]

≤ 3

m∑
i=1

d
(k)
i

[
δ2i +

(
ζ2i + 2β2

)
EΞ(k−1)

[∥∥∥θ(k)i − θ̄(k)
∥∥∥2]

+

(
ζ2i + 2β2

(
1− 1

m

[
1 +

m∑
j=1
j ̸=i

d
(k)
j

]))
EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2]]

≤ 3d(k)max

[
mδ2 +

(
ζ2 + 2β2

)
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+m

(
ζ2 + 2β2

(
1− 1

m

[
1 + (m− 1)d

(k)
min

]))
EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2]]

= 3d(k)max

[
mδ2 +

(
ζ2 + 2β2

)
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+m

(
ζ2 + 2β2

(
1− 1

m

)(
1− d(k)min

))
EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2]]

≤ 3d(k)max

[
mδ2 +

(
ζ2 + 2β2

)
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+m
(
ζ2 + 2β2

(
1− d(k)min

))
EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2]].
H PROOF OF LEMMA C.4

(a) We take the expected value of the matrix P(k) by looking at its individual elements. We have

EV̂(k)

[
P(k)

]
=
[
E
v̂
(k)
ij

[
p
(k)
ij

]]
1≤i,j≤m

=


[
rijEv̂

(k)
ij

[
v̂
(k)
ij

]]
1≤i,j≤m

i ̸= j[
1−

∑m
j=1 rijEv̂

(k)
ij

[
v̂
(k)
ij

]]
1≤i≤m

i = j

=


[
b
(k)
ij rij

]
1≤i,j≤m

i ̸= j[
1−

∑m
j=1 b

(k)
ij rij

]
1≤i≤m

i = j
= R̄(k)
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(b) Similar to the proof of the previous part, we take the expected value of
(
P(k)

)T
P(k) =

(
P(k)

)2
by looking at its individual elements. We can write

if i ̸= j :

EV̂(k)

[
m∑
l=1

p
(k)
il p

(k)
lj

]

= EV̂(k)

 m∑
l=1
l ̸=i,j

rilrlj v̂
(k)
il v̂

(k)
lj +

(
1−

m∑
q=1

riq v̂
(k)
iq

)
rij v̂

(k)
ij +

(
1−

m∑
q=1

rjq v̂
(k)
jq

)
rij v̂

(k)
ij


= EV̂(k)

[
m∑
l=1

rilrlj v̂
(k)
il v̂

(k)
lj +

(
2−

m∑
q=1

(
riq v̂

(k)
iq + rjq v̂

(k)
jq

))
rij v̂

(k)
ij

]

= EV̂(k)

[
m∑
l=1

rilrlj v̂
(k)
il v̂

(k)
lj +

2−
m∑
q=1
q ̸=i,j

(
riq v̂

(k)
iq + rjq v̂

(k)
jq

) rij v̂
(k)
ij

−
(
rij v̂

(k)
ij + rjiv̂

(k)
ji

)
rij v̂

(k)
ij

]

=

m∑
l=1

rilrljEv̂
(k)
il

[
v̂
(k)
il

]
E
v̂
(k)
lj

[
v̂
(k)
lj

]

+

2−
m∑
q=1
q ̸=i,j

(
riqEv̂

(k)
iq

[
v̂
(k)
iq

]
+ rjqEv̂

(k)
jq

[
v̂
(k)
jq

]) rijEv̂
(k)
ij

[
v̂
(k)
ij

]

− 2r2ijEv̂
(k)
ij

[
v̂
(k)
ij

]

=

m∑
l=1

b
(k)
il rilb

(k)
lj rlj +

2−
m∑
q=1
q ̸=i,j

(
b
(k)
iq riq + b

(k)
jq rjq

) b
(k)
ij rij − 2b

(k)
ij r

2
ij

On the other hand,

if i = j :

EV̂(k)

[
m∑
l=1

p
(k)
il p

(k)
lj

]
= EV̂(k)

 m∑
l=1
l ̸=i

rilrliv̂
(k)
il v̂

(k)
li +

(
1−

m∑
q=1

riq v̂
(k)
iq

)2


= EV̂(k)

[
m∑
l=1

r2ilv̂
(k)
il + 1− 2

m∑
q=1

riq v̂
(k)
iq +

m∑
q=1

m∑
t=1

riqritv̂
(k)
iq v̂

(k)
it

]

= EV̂(k)

 m∑
l=1

r2ilv̂
(k)
il + 1− 2

m∑
q=1

riq v̂
(k)
iq +

m∑
q=1

m∑
t=1
t ̸=q

riqritv̂
(k)
iq v̂

(k)
it +

m∑
q=1

r2iq v̂
(k)
iq


= 2

m∑
l=1

r2ilEv̂
(k)
il

[
v̂
(k)
il

]
+ 1− 2

m∑
q=1

riqEv̂
(k)
iq

[
v̂
(k)
iq

]
+

m∑
q=1

m∑
t=1
t̸=q

riqritEv̂
(k)
iq

[
v̂
(k)
iq

]
E
v̂
(k)
it

[
v̂
(k)
it

]

= 2

m∑
l=1

b
(k)
il r

2
il + 1− 2

m∑
q=1

b
(k)
iq riq +

m∑
q=1

m∑
t=1
t ̸=q

b
(k)
iq riqb

(k)
it rit
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Finally, comparing the above expression with the elements of
(
R̄(k)

)2
, we get

EV̂(k)

[(
P(k)

)2]
=

[
EV̂(k)

[
m∑
l=1

p
(k)
il p

(k)
lj

]]
1≤i,j≤m

=
(
R̄(k)

)2
+


[
−2b(k)ij

(
1− b(k)ij

)
r2ij

]
1≤i,j≤m

i ̸= j[∑m
l=1 2b

(k)
il

(
1− b(k)il

)
r2il

]
1≤i≤m

i = j

=
(
R̄(k)

)2
+R

(k)
0 ≜ R̃(k),

in which R
(k)
0 is a matrix whose rows and columns sum to zero.

(c) In order to prove this inequality, we expand the left-hand side frobenius norm by its columns and
use the results of part (b) of this lemma. We have

EΞ(k)

[∥∥∥P(k)Θ(k) − 1mθ̄
(k)
∥∥∥2] = EΞ(k)

 m∑
j=1

∥∥∥P(k)θ
(k)
j − θ̄(k)j 1m

∥∥∥2


= EΞ(k)

 m∑
j=1

∥∥∥P(k)θ
(k)
j − θ̄(k)j P(k)1m

∥∥∥2
 = EΞ(k)

 m∑
j=1

∥∥∥P(k)
(
θ
(k)
j − θ̄(k)j 1m

)∥∥∥2


= EΞ(k)

 m∑
j=1

(
θ
(k)
j − θ̄(k)j 1m

)T(
P(k)

)T
P(k)

(
θ
(k)
j − θ̄(k)j 1m

)
= EΞ(k−1)

 m∑
j=1

(
θ
(k)
j − θ̄(k)j 1m

)T
EV̂(k)

[
P(k)P(k)

] (
θ
(k)
j − θ̄(k)j 1m

)
= EΞ(k−1)

 m∑
j=1

(
θ
(k)
j − θ̄(k)j 1m

)T
R̃(k)

(
θ
(k)
j − θ̄(k)j 1m

)
≤ EΞ(k−1)

 m∑
j=1

ρ̃(k)
∥∥∥θ(k)j − θ̄(k)j 1m

∥∥∥2
 ≤ ρ̃(k)EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2].

I PROOF OF LEMMA 4.2

Using equation 3 and equation 5, we first expand the left-hand side norm, and then use Young’s
inequality to get

∥∥∥Θ(k+1) − 1mθ̄
(k+1)

∥∥∥2 =
∥∥∥P(k)Θ(k) − 1mθ̄

(k) − α(k)
(
V(k)G(k) − 1mgv(k)

)∥∥∥2
≤
∥∥∥P(k)Θ(k) − 1mθ̄

(k) − α(k)
(
V(k)∇(k) − 1m∇v

(k)
)∥∥∥2

−2α(k)
〈
P(k)Θ(k) − 1mθ̄

(k) − α(k)
(
V(k)∇(k) − 1m∇v

(k)
)
,

V(k)E(k) − 1mϵv
(k)
〉

+
(
α(k)

)2∥∥∥V(k)E(k) − 1mϵv
(k)
∥∥∥2
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≤
(
1 +

1− ρ̃(k)

2ρ̃(k)

)∥∥∥P(k)Θ(k) − 1mθ̄
(k)
∥∥∥2

+

(
1 +

2ρ̃(k)

1− ρ̃(k)

)(
α(k)

)2∥∥∥V(k)∇(k) − 1m∇v
(k)
∥∥∥2

−2α(k)

〈
P(k)Θ(k) − 1mθ̄

(k) − α(k)
(
V(k)∇(k) − 1m∇v

(k)
)
,(

Im −
1

m
1m1T

m

)
V(k)E(k)

〉
+
(
α(k)

)2∥∥∥V(k)E(k) − 1mϵv
(k)
∥∥∥2.

Next, we take the expected value of the above inequality and use Lemmas C.2, C.3 and C.4-(c) to
get

EΞ(k)

[∥∥∥Θ(k+1) − 1mθ̄
(k+1)

∥∥∥2] ≤ 1 + ρ̃(k)

2ρ̃(k)
ρ̃(k)EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+3
1 + ρ̃(k)

1− ρ̃(k)
d(k)max

(
α(k)

)2(
mδ2 +

(
ζ2 + 2β2

)
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+m
(
ζ2 + 2β2

(
1− d(k)min

))
EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2])
−2α(k)EΞ(k)\E(k)

[〈
P(k)Θ(k) − 1mθ̄

(k) − α(k)
(
V(k)∇(k) − 1m∇v

(k)
)
,

(
Im −

1

m
1m1T

m

)
V(k)EE(k)

[
E(k)

]〉]

+m
(
α(k)

)2
d(k)maxσ

2

≤

[
1 + ρ̃(k)

2
+ 3

1 + ρ̃(k)

1− ρ̃(k)
d(k)max

(
α(k)

)2 (
ζ2 + 2β2

) ]
EΞ(k−1)

[∥∥∥Θ(k) − 1mθ̄
(k)
∥∥∥2]

+ 3
1 + ρ̃(k)

1− ρ̃(k)
md(k)max

(
α(k)

)2 (
ζ2 + 2β2

(
1− d(k)min

))
EΞ(k−1)

[∥∥∥θ̄(k) − θ⋆∥∥∥2]
+m

(
α(k)

)2
d(k)max

(
3
1 + ρ̃(k)

1− ρ̃(k)
δ2 + σ2

)

J PROOF OF PROPOSITION 4.1

Step 1: Setting up the proof. We want to find the conditions under which we will have ρ
(
Φ(k)

)
<

1. As we have Φ(k) = [ϕij ]1≤i,j≤2 and ρ
(
Φ(k)

)
= max

{∣∣∣λ(k)1

∣∣∣ , ∣∣∣λ(k)2

∣∣∣} where λ(k)i are the

eigenvalues of the matrix Φ(k) for i = 1, 2, we need to show that max
{∣∣∣λ(k)1

∣∣∣ , ∣∣∣λ(k)2

∣∣∣} < 1.
Therefore, we first write the eigenvalue equation of the matrix as(
λ− ϕ(k)11

)(
λ− ϕ(k)22

)
− ϕ(k)12 ϕ

(k)
21 = 0 ⇒ λ2 −

(
ϕ
(k)
11 + ϕ

(k)
22

)
λ+ ϕ

(k)
11 ϕ

(k)
22 − ϕ

(k)
12 ϕ

(k)
21 = 0.

Since this is a quadratic equation in the form of aλ2+bλ+c = 0, we know that if b < 0, and a, c > 0

and the determinant is positive, we will have max
{∣∣∣λ(k)1

∣∣∣ , ∣∣∣λ(k)2

∣∣∣} = −b+
√
b2−4ac
2a . Therefore, we

solve for −b+
√
b2−4ac
2a < 1 as follows√
b2 − 4ac < b+ 2a ⇒ 4a (b+ c) + 4a2 > 0 ⇒ a+ b+ c > 0.

Now, rewriting the above inequality in terms of the actual coefficients, we get

1− ϕ(k)11 − ϕ
(k)
22 + ϕ

(k)
11 ϕ

(k)
22 − ϕ

(k)
12 ϕ

(k)
21 > 0 ⇒

(
1− ϕ(k)11

)(
1− ϕ(k)22

)
> ϕ

(k)
12 ϕ

(k)
21 . (13)
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Furthermore, note that a = 1 > 0, b = −
(
ϕ
(k)
11 + ϕ

(k)
22

)
< 0 and b2 − 4ac =

(
ϕ
(k)
11 − ϕ

(k)
22

)2
+

4ϕ
(k)
12 ϕ

(k)
21 > 0 hold by definition, so we only need to check for

c = ϕ
(k)
11 ϕ

(k)
22 − ϕ

(k)
12 ϕ

(k)
21 > 0. (14)

Equation 13 and equation 14 lay out the necessary conditions in order to get ρ
(
Φ(k)

)
< 1.

Step 2: Simplifying the conditions. Starting off with the more important of the two, we first solve
for equation 13. In order to simplify this inequality, we choose to have (i) 0 < ϕ

(k)
11 ≤ 1 and (ii)

0 < ϕ
(k)
22 ≤ 1 for the main diagonal entries. For ϕ(k)11 as defined in Lemma 4.1, we have

ϕ
(k)
11 ≤ 1 ⇒

1 + µα(k) −
(
µα(k)

)2
1 + µα(k)

≥ 2β2

µ2

(
1− d(k)min

)
. (15)

To better characterize the condition on α(k) based on the above inequality, we put the following
constraint on α(k) to get

Constraint 1: α(k) ≤ Γ
(k)
1

µ
⇒ µα(k) ≥ 2β2

µ2

(
1− d(k)min

)(
1 + Γ

(k)
1

)
+
(
Γ
(k)
1

)2
− 1,

where Γ
(k)
1 > 0 is a scalar. The above condition requires the step size α(k) to be lower-bounded,

which is something we want to avoid. Thus, if the right-hand side of the inequality is non-positive,
this condition only requires us to choose a non-negative value for the step size, which is sensible.
So, we have

2β2

µ2

(
1− d(k)min

)(
1 + Γ

(k)
1

)
+
(
Γ
(k)
1

)2
− 1 ≤ 0

⇒
(
Γ
(k)
1

)2
+

(
2β2

µ2

(
1− d(k)min

))
Γ
(k)
1 +

(
2β2

µ2

(
1− d(k)min

)
− 1

)
≤ 0

⇒
∣∣∣∣Γ(k)

1 − β2

µ2

(
1− d(k)min

)∣∣∣∣ ≤ ∣∣∣∣β2

µ2

(
1− d(k)min

)
− 1

∣∣∣∣
⇒

d
(k)
min < 1− µ2

β2 : 1 ≤ Γ
(k)
1 ≤ 2β2

µ2

(
1− d(k)min

)
− 1

d
(k)
min > 1− µ2

β2 : 2β2

µ2

(
1− d(k)min

)
− 1 ≤ Γ

(k)
1 ≤ 1

⇒ min

{
1,

2β2

µ2

(
1− d(k)min

)
− 1

}
≤ Γ

(k)
1 ≤ max

{
1,

2β2

µ2

(
1− d(k)min

)
− 1

}
.

We observe that we found a lower and upper bound for the choice of Γ(k)
1 . Note that this lower

bound is not on the step size, as we only have α(k) ≤ Γ
(K)
1

µ .

Next, in order to simplify ϕ(k)11 as defined in Lemma 4.1, we can use equation 15 to write

Constraint 2:
1 + µα(k) −

(
µα(k)

)2
1 + µα(k)

≥ 2β2

µ2

(
1− d(k)min

)
Γ
(k)
2 ,

in which Γ
(k)
2 ≥ 1 ensures that the constraint is satisfied, since we solved for equation 15 and found

the conditions on α(k) and Γ
(k)
1 to do so. Hence, for the bounds defined in Lemma 4.1, we get

ϕ
(k)
11 ≤ 1− 2

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− d(k)min

)
β2α(k), ϕ

(k)
12 ≤

(
1 + Γ

(k)
1

)
d
(k)
maxβ2

mµ
α(k),

ψ
(k)
1 ≤ 2α(k)

µ

(
1 + Γ

(k)
1

)(
1− d(k)min

)
δ2 +

(
α(k)

)2
d
(k)
maxσ2

m
,

and there are no changes to the upper bounds of ϕ(k)21 , ϕ(k)22 and ψ(k)
2 , which were defined in Lemma

4.2. Note that matrix Φ(k) and vector Ψ(k) in equation 6 were used as upper bounds, therefore we
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can always replace their values with new upper bounds for them. Consequently, with this new value
for ϕ(k)11 , we continue as

ϕ
(k)
11 > 0 ⇒ α(k) <

µ

2
(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− d(k)min

)
β2
.

Finally, we check the next conditions on ϕ(k)22 defined in Lemma 4.2, i.e., 0 < ϕ
(k)
22 ≤ 1. Note that

for ϕ(k)11 , ϕ(k)12 and ϕ(k)21 the lower bound is 0, but for ϕ(k)22 it is 1+ρ̃(k)

2 . Therefore, the lower-bound
condition of ϕ(k)22 > 0 is already met. For the upper-bound condition ϕ(k)22 ≤ 1, noting that we have
3+ρ̃(k)

4 < 1, we can write ϕ(k)22 ≤
3+ρ̃(k)

4 to enforce this constraint. We have

1 + ρ̃(k)

2
≤ ϕ(k)22 ≤

3 + ρ̃(k)

4
⇒ 0 ≤ α(k) ≤ 1

2

√
3d

(k)
max

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

Step 3: Determining the constraints. Now that we have made sure that (i) 0 < ϕ
(k)
11 ≤ 1 and (ii)

0 < ϕ
(k)
22 ≤ 1 in the previous step, we can continue to solve equation 13. For the left-hand side of

the inequality, we have

(
1− ϕ(k)11

)(
1− ϕ(k)22

)
=

[
2

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− d(k)min

)
β2α(k)

](
1− ϕ(k)22

)
≥
[
2

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− d(k)min

)
β2α(k)

]
1− ρ̃(k)

4
.

Now, putting this back to equation 13, we get

[
2

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− d(k)min

)
β2α(k)

]
1− ρ̃(k)

4
> ϕ

(k)
12 ϕ

(k)
21

⇒


(
1 + Γ

(k)
1

)
d
(k)
maxβ2

mµ
α(k)

[3md(k)max

1 + ρ̃(k)

1− ρ̃(k)
(
ζ2 + 2β2

(
1− d(k)min

))(
α(k)

)2]

<

[
2

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− d(k)min

)
β2α(k)

]
1− ρ̃(k)

4

⇒ α(k) <

√
Γ
(k)
2 − 1

√
1− d(k)min

(
1− ρ̃(k)

)
√
6d

(k)
max

√
1 + ρ̃(k)

√
ζ2 + 2β2

(
1− d(k)min

) .

Finally, we solve for equation 14. Noting that by solving equation 13 we made sure that 1− ϕ(k)11 −
ϕ
(k)
22 + ϕ

(k)
11 ϕ

(k)
22 − ϕ

(k)
12 ϕ

(k)
21 > 0, we can write

c > 0 ⇒ ϕ
(k)
11 ϕ

(k)
22 − ϕ

(k)
12 ϕ

(k)
21 > 0 ⇒ ϕ

(k)
11 + ϕ

(k)
22 − 1 > 0

⇒ 1− 2

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− d(k)min

)
β2α(k) +

1 + ρ̃(k)

2
− 1 > 0

⇒ α(k) <
µ
(
1 + ρ̃(k)

)
4
(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− d(k)min

)
β2
.
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Step 4: Putting all the constraints together. Reviewing all the constraints on α(k) from the begin-
ning of this appendix, we can collect all of the constraints together and simplify them as

α(k) < min

{
Γ
(k)
1

µ
,

1

2

√
3d

(k)
max

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

,
µ

2
(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− d(k)min

)
β2
,

µ
(
1 + ρ̃(k)

)
4
(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− d(k)min

)
β2
,

√
Γ
(k)
2 − 1

√
1− d(k)min

(
1− ρ̃(k)

)
√
6d

(k)
max

√
1 + ρ̃(k)

√
ζ2 + 2β2

(
1− d(k)min

)
}

= min

{
Γ
(k)
1

µ
,

1

2

√
3d

(k)
max

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

,
µ
(
1 + ρ̃(k)

)
4
(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− d(k)min

)
β2
,

√
Γ
(k)
2 − 1

√
1− d(k)min

(
1− ρ̃(k)

)
√
6d

(k)
max

√
1 + ρ̃(k)

√
ζ2 + 2β2

(
1− d(k)min

)
}
,

while satisfying

Γ
(k)
1 > 0, min

{
1,

2β2

µ2

(
1− d(k)min

)
− 1

}
≤ Γ

(k)
1 ≤ max

{
1,

2β2

µ2

(
1− d(k)min

)
− 1

}
,

Γ
(k)
2 > 1.

(16)

Note that one of the terms in the above minimization function was trivially removed since 1+ρ̃(k)

2 <

1. In order to simply the condition on α(k) further, we take the minimum of these terms with respect
to each variable separately to get

α(k) < min

{
min
Γ
(k)
1

{
Γ
(k)
1

µ
,min
Γ
(k)
2

{
µ
(
1 + ρ̃(k)

)
4
(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− d(k)min

)
β2
,

√
Γ
(k)
2 − 1

√
1− d(k)min

(
1− ρ̃(k)

)
√
6d

(k)
max

√
1 + ρ̃(k)

√
ζ2 + 2β2

(
1− d(k)min

)
}}

,

1

2

√
3d

(k)
max

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

}
.

(17)

Solving for the inner minimization in equation 17 first using Γ
(k)
2 by defining c

(k)
1 =√

1−d
(k)
min(1−ρ̃(k))

√
6d

(k)
max

√
1+ρ̃(k)

√
ζ2+2β2

(
1−d

(k)
min

) and c(k)2 =
4
(
1+Γ

(k)
1

)(
1−d

(k)
min

)
β2

µ(1+ρ̃(k))
, we have


c
(k)
1

√
Γ
(k)
2 − 1 ≤ 1

c
(k)
2 (Γ

(k)
2 −1)

; 1 < Γ
(k)
2 ≤ Γ⋆

2
(k)

1

c
(k)
2 (Γ

(k)
2 −1)

≤ c(k)1

√
Γ
(k)
2 − 1; Γ

(k)
2 ≥ Γ⋆

2
(k)

, (18)

in which Γ
(k)
2 > 1 is due to equation 16. We can see that in equation 18, one of the expressions is

increasing with respect to Γ
(k)
2 , and the other one is decreasing. Thus, we find the optimal value for
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it Γ⋆(k)
2 as

√
Γ⋆
2
(k) − 1

3

=
1

c
(k)
1 c

(k)
2

⇒ Γ⋆
2
(k) =

1(
c
(k)
1 c

(k)
2

)2/3+1

⇒ Γ⋆
2
(k) =


√
6d

(k)
max

√
1 + ρ̃(k)

√
ζ2 + 2β2

(
1− d(k)min

)
√
1− d(k)min

(
1− ρ̃(k)

) µ
(
1 + ρ̃(k)

)
4
(
1 + Γ

(k)
1

)(
1− d(k)min

)
β2


2/3

+1

=

(1 + ρ̃(k)) 3
√
3 3

√
ζ2 + 2β2

(
1− d(k)min

)
2
(
1− d(k)min

)
 d

(k)
maxµ

(1− ρ̃(k))
(
1 + Γ

(k)
1

)
β2

2/3

+1

In order to simplify the above value for Γ⋆(k)
2 , we bound it as

 √
3µζd

(k)
min

2
(
1 + Γ

(k)
1

)
β

2/3

+1 < Γ⋆
2
(k) <

 3
√
2d

(k)
max(

1− d(k)max

)3/2 (
1− ρ̃(k)

) (
1 + Γ

(k)
1

)


2/3

+1.

Note that if d(k)min → 0 and d(k)max → 1, then we would have 1 < Γ⋆
2
(k) <∞. Choosing Γ

(k)
2 = Γ

(k)⋆
2 ,

we get

min
Γ
(k)
2


µ
(
1 + ρ̃(k)

)
4
(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− d(k)min

)
β2
,

√
Γ
(k)
2 − 1

√
1− d(k)min

(
1− ρ̃(k)

)
√
6d

(k)
max

√
1 + ρ̃(k)

√
ζ2 + 2β2

(
1− d(k)min

)


≥
µ
(
1 + ρ̃(k)

) (
c
(k)
1 c

(k)
2

)2/3
4
(
1 + Γ

(k)
1

)(
1− d(k)min

)
β2

=

 (c
(k)
1 )

2

c
(k)
2

1/3

=

 µ

6(1 + Γ
(k)
1 )

(
ζ2 + 2β2

(
1− d(k)min

))
1/3(

1− ρ̃(k)

2d
(k)
maxβ

)2/3

Moving on to the second minimization in equation 17 using Γ
(k)
1 , we note that finding the

optimal value Γ
⋆(k)
1 would be analytically cumbersome due to the conditions that need to

be satisfied for it; First, Γ
(k)
1 > 0, and second, min

{
1, 2β

2

µ2

(
1− d(k)min

)
− 1
}
≤ Γ

(k)
1 ≤

max
{
1, 2β

2

µ2

(
1− d(k)min

)
− 1
}

. Thus, in order to get a more intuitive upper bound for α(k), we

settle for a possible suboptimal value for it. If we choose Γ(k)
1 = 1 which is the only point satisfying

the conditions in equation 16 and it also does not rely on the value of d(k)min, we get

α(k) < min

{
1

µ
,

 µ

12
(
ζ2 + 2β2

(
1− d(k)min

))
1/3(

1− ρ̃(k)

2d
(k)
maxβ

)2/3

,

1

2

√
3d

(k)
max

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

}
.
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Step 5: Obtaining ρ(Φ(k)). We established ρ(Φ(k)) < 1 in the previous steps. The last step is to
determine what ρ(Φ(k)) is. We have

ρ
(
Φ(k)

)
=
−b+

√
b2 − 4ac

2a
=
ϕ
(k)
11 + ϕ

(k)
22 +

√(
ϕ
(k)
11 + ϕ

(k)
22

)2
− 4

(
ϕ
(k)
11 ϕ

(k)
22 − ϕ

(k)
12 ϕ

(k)
21

)
2

=
ϕ
(k)
11 + ϕ

(k)
22 +

√(
ϕ
(k)
11 − ϕ

(k)
22

)2
+ 4ϕ

(k)
12 ϕ

(k)
21

2

=
1

2

[
1− 2

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− d(k)min

)
β2α(k) +

1 + ρ̃(k)

2

+ 3
1 + ρ̃(k)

1− ρ̃(k)
d(k)max

(
α(k)

)2 (
ζ2 + 2β2

) ]
+
1

2

[(
1− 2

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− d(k)min

)
β2α(k)

− 1 + ρ̃(k)

2
− 3

1 + ρ̃(k)

1− ρ̃(k)
d(k)max

(
α(k)

)2 (
ζ2 + 2β2

))2

+ 4

(
1 + Γ

(k)
1

)
d
(k)
maxβ2

mµ
α(k)3

1 + ρ̃(k)

1− ρ̃(k)
md(k)max

(
α(k)

)2 (
ζ2 + 2β2

(
1− d(k)min

))]1/2

=
3 + ρ̃(k)

4
− 1

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− d(k)min

)
β2α(k)

+
3

2

1 + ρ̃(k)

1− ρ̃(k)
d(k)max

(
ζ2 + 2β2

) (
α(k)

)2
+
1

2

[(
1− ρ̃(k)

2
− 2

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)(
1− d(k)min

)
β2α(k)

− 3
1 + ρ̃(k)

1− ρ̃(k)
d(k)max

(
ζ2 + 2β2

) (
α(k)

)2)2

+ 12

(
1 + Γ

(k)
1

)
β2

µ

1 + ρ̃(k)

1− ρ̃(k)
(
d(k)max

)2 (
ζ2 + 2β2

(
1− d(k)min

))(
α(k)

)3]1/2

K PROOF OF THEOREM 4.1

Note that by the properties of spectral radius, we have that Φ∥·∥ ≤ ρ(Φ)∥·∥. Now, using equation 7,
we can write EΞ(k)

[∥∥θ̄(k+1) − θ⋆
∥∥2]

EΞ(k)

[∥∥Θ(k+1) − 1mθ̄
(k+1)

∥∥2]
 ≤ ρ(Φ)

k+1

[ ∥∥θ̄(0) − θ⋆∥∥2∥∥Θ(0) − 1mθ̄
(0)
∥∥2
]
+

k∑
r=1

ρ(Φ)
k−r+1

Ψ+Ψ.

We emphasize that the time index k in Φ(k) and Ψ(k) was dropped, since we are using a constant step
size, constant probability of SGDs and aggregations. This results in the constant matrix Φ(k) = Φ

and the constant vector Ψ(k) = Ψ. Focusing on the term
∑k

r=1 ρ(Φ)
k−r+1

Ψ+Ψ, we get

k∑
r=1

ρ(Φ)
k−r+1

Ψ+Ψ =

k+1∑
r=1

ρ(Φ)
k−r+1

Ψ =

(
k∑

u=0

ρ(Φ)
u

)
Ψ ≤

( ∞∑
u=0

ρ(Φ)
u

)
Ψ

=
1

1− ρ(Φ)
Ψ.
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Putting the above inequalities together concludes the proof of equation 8. Finally, noting that
ρ(Φ) < 1 following 4.1, We can let k →∞ to get equation 9.

L DIMINISHING STEP SIZE POLICY

In this appendix, we do the convergence analysis of our methodology under a diminishing step size
policy, i.e., when α(k+1) < α(k) for all k ≥ 0. We will show that convergence to the globally
optimal point is possible if the frequency of SGDs, i.e., d(k)i , is increasing over time. Thus, a few
preliminary lemmas are first required, to re-derive counterparts of Proposition 4.1 and Corollary 4.1
for the increasing d(k)i strategy.

Proposition L.1 (See Appendix M for the proof.) If the probability of SGDs is chosen as d(k)i =

1− Γ3α
(0) with 0 ≤ Γ3 ≤ 1

α(0) , and the step size satisfies the following condition for all k ≥ 0

α(k) < min

{
Γ
(k)
1

µ
,

1

2
√
3

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

,

 µ

6
(
ζ2 + 2Γ3Γ

(k)
1

β2

µ

)(
1 + Γ

(k)
1

)
1/3(

1− ρ̃(k)

2β

)2/3
}
.

then we have ρ
(
Φ(k)

)
< 1 for all k ≥ 0, in which ρ(·) denotes the spectral radius of a given matrix,

and Φ(k) is given in the linear system of inequalities of equation 6. ρ(Φ(k)) is given by

ρ(Φ(k)) = 1 − h(α(k)), where h(α(k)) = 1−ρ̃(k)

4 + Aα(k) − B(α(k))
2 −

1
2

√
( 1−ρ̃(k)

2 − 2(Aα(k) +B(α(k))
2
))

2
+ C(α(k))

3, and A =
Γ3Γ

(k)
1

µ (1 + Γ
(k)
1 )(Γ

(k)
2 − 1)β2,

B = 3
2
1+ρ̃(k)

1−ρ̃(k) (ζ
2 + 2β2), and C = 12

(1+Γ
(k)
1 )β2

µ
1+ρ̃(k)

1−ρ̃(k) (ζ
2 + 2Γ3Γ

(k)
1

β2

µ ).

Proposition L.1 implies that limk→∞ Φ(k:0) = 0 in equation 7. However, note that this is only
the asymptotic behaviour of Φ(k:0), and the exact convergence rate will depend on the choice of
the step size α(k). Furthermore, noting that the first expression in equation 7 asymptotically ap-
proaches zero, Proposition L.1 also implies that the optimality gap is determined by the terms∑k

r=1 Φ
(k:r)Ψ(r−1)+Ψ(k), and it can be made zero if the step size α(k) satisfies certain conditions,

which we will discuss in Theorem L.1.

Proposition L.1 outlines the necessary constraint on the step size α(k) at each iteration k ≥ 0. We
next provide a corollary to Proposition L.1, in which we show that under certain conditions, the
above-mentioned constraint needs to be satisfied only on the initial value of the step size, i.e, α(0).

Corollary L.1 If the step size α(k) is non-increasing, i.e., α(k+1) ≤ α(k), the probability of SGDs
are determined as d(k)i = 1 − Γ3α

(k) with 0 ≤ Γ3 ≤ 1
α(0) , for all k ≥ 0, and we have ρ̃(k) ≤ ρ̃ =

supk=0,1,... ρ̃
(k) for the spectral radius, then the constraints in Proposition L.1 simplify to

α(0) < min

{
Γ1

µ
,

1

2
√
3

1− ρ̃√
1 + ρ̃

1√
ζ2 + 2β2

,

 µ

6
(
ζ2 + 2Γ3Γ1

β2

µ

)
(1 + Γ1)

1/3(
1− ρ̃
2β

)2/3
}
.

In the above Corollary, we obtained the constraints on the initial value of the step size, i.e., α(0),
that lead to the spectral radius of Φ(k) being less than 1, i.e., ρ(Φ(k)) < 1. We need one more
ingredient given in the subsequent lemma in order ultimately characterize the short-term behavior
and also derive non-asymptotic convergence guarantees on DSpodFL in Theorem L.1.

Two final building blocks are necessary for the proof of Theorem L.1. We present these in the
following lemmas.
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Lemma L.1 (See Lemma 1 in Zehtabi et al. (2022b) for the proof.) Let {ζr}∞r=0 be a scalar se-
quence where 0 < ζr ≤ 1, ∀r ≥ 0. For any p ≥ 1, we have

k∏
r=s

(1− ζr)p ≤
1

p
∑k

r=s ζr
.

Next, we outline another crucial lemma for our analysis.

Lemma L.2 (See Appendix N for the proof.) Let a diminishing step size α(k) = α(0)/
√
1 + k/γ be

used, which satisfies the properties

α(k+1) < α(k),

∞∑
k=0

α(k) =∞,
∞∑
k=0

(
α(k)

)2
<∞3. (19)

Under the setup of Proposition L.1 for the probability of SGDs, i.e., d(k)i , if the probability of aggre-
gations are constant, i.e., b(k)ij = bij for all (i, j) ∈M2, then the following bounds hold

(a)
∑k

q=r α
(q) ≥ 2α(0)(

√
1 + k

γ −
√
1 + r

γ ),

(b) limk→∞
∑k

q=r h(α
(q)) ≥ 4Aα(0)

(√
1 + k

γ −
√
1 + r

γ

)
,

(c) limk→∞
∑k

r=1
(α(r−1))

2∑k
q=r h(α(q))

≤ α(0)

4A

[
1√

1+ k
γ −

√
1+ 1

γ

+ 2(γ+1)√
1+ k

γ

(
ln
√

1 + k
γ + ln 1√

1+ 1
γ+k−1−1

)
+

2
√

1+ k
γ

1+ k−1
γ

]
.

where h(α(k)) and the constant A were defined in Proposition L.1.

Using Corollary L.1 and Lemmas L.1 and L.2, our main theorem follows.

Theorem L.1 (See Appendix O for the proof.) If a diminishing step size policy α(k) =
α(0)/

√
1 + k/γ with γ > 0 satisfying the conditions outlined in Corollary 4.1 is employed, and

the probability of SGDs are all set to same value as d(k)i = 1 − α(k)/α(0) for all i ∈ M, while
probability of aggregations are set to constant values, i.e., b(k)ij = bij for all (i, j) ∈ M2, then we
can rewrite equation 7 as

lim
k→∞

 EΞ(k)

[∥∥θ̄(k+1) − θ⋆
∥∥2]

EΞ(k)

[∥∥Θ(k+1) − 1mθ̄
(k+1)

∥∥2]
 ≤ O( 1√

k

)[ ∥∥θ̄(0) − θ⋆∥∥2∥∥Θ(0) − 1mθ̄
(0)
∥∥2
]

+
(
α(0)

)2(
3O
(

1√
k

)
+O

(
ln k√
k

)
+O

(
1

k

)) 2
µα(0)

(
1 + µα(0)

)
δ2 + σ2

m

m
(
3 1+ρ̃
1−ρ̃δ

2 + σ2
)  .

(20)

Letting k →∞, we get

lim sup
k→∞

 EΞ(k)

[∥∥θ̄(k+1) − θ⋆
∥∥2]

EΞ(k)

[∥∥Θ(k+1) − 1mθ̄
(k+1)

∥∥2]
 = 0. (21)

3Note that the last condition implies limk→∞ α(k) = 0

30



Under review as a conference paper at ICLR 2024

The bound in equation 20 of Theorem L.1 indicates that by using a diminishing step size policy
of α(k) = α(0)/

√
1 + k/γ, DSpodFL achieves a sub-linear convergence rate of O(ln k/

√
k), and

equation 21 shows that asymptotic zero optimality gap as k →∞ can be achieved.

However, it is worth noting that choosing the probability of SGDs based on the step size, i.e.,
d
(k)
i = 1 − α(k)/α(0) for all i ∈ M and k ≥ 0, is only of theoretical value in this paper. This

is because our motivation of introducing the notion of probability of SGDs was to capture compu-
tational capabilities of heterogeneous devices in real-world settings, therefore, it is an independent
uncontrollable parameter and cannot be chosen based on the step size.

Finally, note that setting d(k)i = 1−α(k)/α(0) is equivalent to having all devices in the decentralized
system to conduct SGD at each iteration as k →∞. This result is akin to Wang & Nedic (2022), in
which an increasing similarity between the step sizes of devices is needed for convergence, despite
them being initially uncoordinated.

M PROOF OF PROPOSITION L.1

Let the probability of SGDs d(k)i be chosen as the following for all i ∈M:

d
(k)
i = 1− Γ3α

(k), 0 ≤ Γ3 ≤
1

α(0)
,

where α(k) is the step size with a diminishing policy, i.e., limk→∞ α(k) = 0. Note that d(0)i =

1 − Γ3α
(0) and limk→∞ d

(k)
i = 1, which means that all devices will basically do SGDs at every

iteration for large enough values of k. Based on this relationship that we put between the probability
of SGDs and the step size, we first rewrite the bounds for matrices Φ(k) and Ψ(k) which were given
in Lemmas 4.1 and 4.2. We have

ϕ
(k)
11 = 1− µα(k)

(
1 + µα(k) −

(
µα(k)

)2)
+

2Γ3

(
α(k)

)2
µ

(
1 + µα(k)

)
β2,

ϕ
(k)
12 =

(
1 + µα(k)

)(
1− Γ3α

(k)
) α(k)β2

mµ
,

ϕ
(k)
21 = 3

1 + ρ̃(k)

1− ρ̃(k)
m
(
1− Γ3α

(k)
)(

α(k)
)2 (

ζ2 + 2β2Γ3α
(k)
)

ϕ
(k)
22 =

1 + ρ̃(k)

2
+ 3

1 + ρ̃(k)

1− ρ̃(k)
(
1− Γ3α

(k)
)(

α(k)
)2 (

ζ2 + 2β2
)
,

ψ
(k)
1 =

(
α(k)

)2 [2Γ3

µ

(
1 + µα(k)

)
δ2 +

(
1− Γ3α

(k)
) σ2

m

]
,

ψ
(k)
2 = m

(
1− Γ3α

(k)
)(

α(k)
)2(

3
1 + ρ̃(k)

1− ρ̃(k)
δ2 + σ2

)
.

(22)

The important difference with the terms in equation 22 and the corresponding ones outlined in
Lemmas 4.1 and 4.2 is the fact that we get a

(
α(k)

)2
factor for ψ(k)

1 and ψ(k)
2 . This factor will

help us show in Theorem L.1 that zero optimality gap can be reached, which follows mainly from
equation 19.

Next, we do an analysis similar to the proof of Proposition 4.1, which was given in Appendix J.

Step 1: Setting up the proof. We skip repeating the explanations for this step, as they are exactly
the same as step 1 in Appendix J.

Step 2: Simplifying the conditions. Recall that we have to ensure (i) 0 < ϕ
(k)
11 ≤ 1 and (ii)

0 < ϕ
(k)
22 ≤ 1. For ϕ(k)11 as defined in equation 22, we have

ϕ
(k)
11 ≤ 1 ⇒

1 + µα(k) −
(
µα(k)

)2(
1 + µα(k)

)
α(k)

≥ 2β2Γ3

µ2
. (23)
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We then put the following constraint on α(k) to get a tighter lower bound for equation 23. We have

Constraint 1: α(k) ≤ Γ
(k)
1

µ
, ⇒ µα(k) >

2β2Γ3

µ2
Γ
(k)
1

(
1 + Γ

(k)
1

)
+
(
Γ
(k)
1

)2
− 1,

where Γ
(k)
1 > 0 is a scalar. In order to avoid a positive lower-bound on the step size α(k), we find

the conditions under which the right-hand side of the above inequality is negative. We have
2β2Γ3

µ2
Γ
(k)
1

(
1 + Γ

(k)
1

)
+
(
Γ
(k)
1

)2
− 1 < 0

⇒
(
1 +

2β2Γ3

µ2

)(
Γ
(k)
1

)2
+

2β2Γ3

µ2
Γ
(k)
1 − 1 < 0,

⇒
((

1 +
2β2Γ3

µ2

)
Γ
(k)
1 − 1

)(
Γ
(k)
1 + 1

)
< 0 ⇒ −1 < Γ

(k)
1 <

1

1 + 2β2Γ3

µ2

.

Next, in order to simplify ϕ(k)11 further, we add another constraint using equation 23 to parameterize
the lower bound in equation 23. We have

1 + µα(k) −
(
µα(k)

)2
1 + µα(k)

≥ 2β2Γ3

µ2
Γ
(k)
1 ,

Constraint 2:
1 + µα(k) −

(
µα(k)

)2
1 + µα(k)

>
2β2Γ3

µ2
Γ
(k)
1 Γ

(k)
2 , Γ

(k)
2 > 1,

in which Γ
(k)
2 > 1 makes sure that the constraint in equation 23 is satisfied. Hence, we can update

the entries of matrices Φ(k) and Ψ(k) as

ϕ
(k)
11 ≤ 1− 2Γ3Γ

(k)
1

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2α(k),

ϕ
(k)
12 ≤

(
1 + Γ

(k)
1

)
β2

mµ
α(k), ϕ

(k)
21 ≤ 3

1 + ρ̃(k)

1− ρ̃(k)
m
(
α(k)

)2(
ζ2 + 2Γ3Γ

(k)
1

β2

µ

)
ϕ
(k)
22 ≤

1 + ρ̃(k)

2
+ 3

1 + ρ̃(k)

1− ρ̃(k)
(
α(k)

)2 (
ζ2 + 2β2

)
,

ψ
(k)
1 ≤

(
α(k)

)2 [2Γ3

µ

(
1 + Γ

(k)
1

)
δ2 +

σ2

m

]
, ψ

(k)
2 ≤ m

(
α(k)

)2(
3
1 + ρ̃(k)

1− ρ̃(k)
δ2 + σ2

)
.

(24)

Note that matrix Φ(k) and vector Ψ(k) in equation 6 were used as upper bounds, therefore we can
always replace their values with new upper bounds for them. Consequently, with this new value for
ϕ
(k)
11 , we continue as

ϕ
(k)
11 > 0 ⇒ α(k) <

µ

2Γ3Γ
(k)
1

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2
.

Finally, we check the next condition 0 < ϕ
(k)
22 ≤ 1. Noting that we have 3+ρ̃(k)

4 < 1, we can enforce
ϕ
(k)
22 ≤ 1 by setting ϕ(k)22 ≤

3+ρ̃
4 . We have

1 + ρ̃(k)

2
≤ ϕ(k)22 ≤

3 + ρ̃(k)

4
⇒ 0 ≤ α(k) ≤ 1

2
√
3

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

.

Step 3: Determining the constraints. Having made sure that (i) 0 < ϕ
(k)
11 ≤ 1 and (ii) 0 < ϕ

(k)
22 ≤ 1

in the previous step, we can continue to solve equation 13. For the left-hand side of the inequality,
we have(

1− ϕ(k)11

)(
1− ϕ(k)22

)
=

[
2Γ3Γ

(k)
1

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2α(k)

](
1− ϕ(k)22

)
≥

[
2Γ3Γ

(k)
1

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2α(k)

]
1− ρ̃(k)

4
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Now, putting this back to equation 13, we get[
2Γ3Γ

(k)
1

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2α(k)

]
1− ρ̃(k)

4
> ϕ

(k)
12 ϕ

(k)
21

⇒


(
1 + Γ

(k)
1

)
β2

mµ
α(k)

[3m1 + ρ̃(k)

1− ρ̃(k)

(
ζ2 + 2Γ3Γ

(k)
1

β2

µ

)(
α(k)

)2]

<

[
2Γ3Γ

(k)
1

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2α(k)

]
1− ρ̃(k)

4

⇒ α(k) <

√√√√√ Γ3Γ
(k)
1

(
Γ
(k)
2 − 1

) (
1− ρ̃(k)

)2
6
(
1 + ρ̃(k)

) (
ζ2 + 2Γ3Γ

(k)
1

β2

µ

) .
Finally, we solve for equation 14, i.e., c = ϕ

(k)
11 ϕ

(k)
22 − ϕ

(k)
12 ϕ

(k)
21 > 0. Noting that by solving

equation 13 we made sure that 1− ϕ(k)11 − ϕ
(k)
22 + ϕ

(k)
11 ϕ

(k)
22 − ϕ

(k)
12 ϕ

(k)
21 > 0, we can write

c > 0 ⇒ ϕ
(k)
11 + ϕ

(k)
22 − 1 > 0

⇒ 1− 2Γ3Γ
(k)
1

µ

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2α(k) +

1 + ρ̃(k)

2
− 1 > 0

⇒ α(k) <
µ
(
1 + ρ̃(k)

)
4Γ3Γ

(k)
1

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2
,

in which we have used the value of ϕ(k)11 itself, but the lower bound of ϕ(k)22 in the second line.

Step 4: Putting all the constraints together. Reviewing all the constraints on α(k) from the
beginning of this appendix, we can collect all of the constraints together and simplify them as

α(k) < min

{
Γ
(k)
1

µ
,

1

2
√
3

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

,
µ

2Γ3Γ
(k)
1

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2
,

µ
(
1 + ρ̃(k)

)
4Γ3Γ

(k)
1

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2
,

√√√√√ Γ3Γ
(k)
1

(
Γ
(k)
2 − 1

) (
1− ρ̃(k)

)2
6
(
1 + ρ̃(k)

) (
ζ2 + 2Γ3Γ

(k)
1

β2

µ

)}

= min

{
Γ
(k)
1

µ
,

1

2
√
3

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

,
µ
(
1 + ρ̃(k)

)
4Γ3Γ

(k)
1

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2
,

√√√√√ Γ3Γ
(k)
1

(
Γ
(k)
2 − 1

) (
1− ρ̃(k)

)2
6
(
1 + ρ̃(k)

) (
ζ2 + 2Γ3Γ

(k)
1

β2

µ

)},
(25)

while satisfying

max {−1, 0} = 0 < Γ
(k)
1 < min

{
1,

1

1 + 2β2Γ3

µ2

}
=

1

1 + 2β2Γ3

µ2

, Γ
(k)
2 > 1,

0 ≤ Γ3 ≤
1

α(0)
.

(26)
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Note that one of the terms in equation 25 was trivially removed since 1+ρ̃(k)

2 < 1. Consequently, we
obtain

α(k) < min

{
Γ
(k)
1

µ
,

1

2
√
3

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

,
µ
(
1 + ρ̃(k)

)
4Γ3Γ

(k)
1

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2
,

√√√√√ Γ3Γ
(k)
1

(
Γ
(k)
2 − 1

) (
1− ρ̃(k)

)2
6
(
1 + ρ̃(k)

) (
ζ2 + 2Γ3Γ

(k)
1

β2

µ

)}

= min
Γ
(k)
1

{
Γ
(k)
1

µ
,

1

2
√
3

1− ρ̃(k)√
1 + ρ̃(k)

1√
ζ2 + 2β2

, min
Γ
(k)
2 ,Γ3

{
µ
(
1 + ρ̃(k)

)
4Γ3Γ

(k)
1

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2
,

√√√√√ Γ3Γ
(k)
1

(
Γ
(k)
2 − 1

) (
1− ρ̃(k)

)2
6
(
1 + ρ̃(k)

) (
ζ2 + 2Γ3Γ

(k)
1

β2

µ

)}},
(27)

First, we focus on minimizing the inner expression in equation 27 using Γ
(k)
2 by defining c(k)1 =√

Γ3Γ
(k)
1 (1−ρ̃(k))

2

6(1+ρ̃(k))
(
ζ2+2Γ3Γ

(k)
1

β2

µ

) and c(k)2 =
4Γ3Γ

(k)
1

(
1+Γ

(k)
1

)
β2

µ(1+ρ̃(k))
. We can see that one of the above expres-

sions is increasing with respect to Γ
(k)
2 , and the other one is decreasing. Thus, we have

c
(k)
1

√
Γ
(k)
2 − 1 ≤ 1

c
(k)
2

(
Γ
(k)
2 −1

) ; 1 < Γ
(k)
2 ≤ Γ⋆

2
(k)

1

c
(k)
2

(
Γ
(k)
2 −1

) ≤ c(k)1

√
Γ
(k)
2 − 1; Γ

(k)
2 ≥ Γ⋆

2
(k).

in which Γ
(k)
2 > 1 is due to equation 26. Hence, we find the optimal value for it, i.e., Γ⋆(k)

2 , as√
Γ⋆
2
(k) − 1

3

=
1

c
(k)
1 c

(k)
2

⇒ Γ⋆
2
(k) =

1(
c
(k)
1 c

(k)
2

)2/3 + 1

⇒ Γ⋆
2
(k) =


√√√√√6

(
1 + ρ̃(k)

) (
ζ2 + 2Γ3Γ

(k)
1

β2

µ

)
Γ3Γ

(k)
1

(
1− ρ̃(k)

)2 µ
(
1 + ρ̃(k)

)
4Γ3Γ

(k)
1

(
1 + Γ

(k)
1

)
β2


2/3

+ 1

=
1 + ρ̃(k)

2Γ3Γ
(k)
1 β

3
(
ζ2 + 2Γ3Γ

(k)
1

β2

µ

)
β

1/3 µ(
1− ρ̃(k)

) (
1 + Γ

(k)
1

)
2/3

+ 1

We choose Γ
(k)
2 = Γ

⋆(k)
2 (see the explanation given in related step of Appendix J) to get

min
Γ
(k)
2

 µ
(
1 + ρ̃(k)

)
4Γ3Γ

(k)
1

(
1 + Γ

(k)
1

)(
Γ
(k)
2 − 1

)
β2
,

√√√√√ Γ3Γ
(k)
1

(
Γ
(k)
2 − 1

) (
1− ρ̃(k)

)2
6
(
1 + ρ̃(k)

) (
ζ2 + 2Γ3Γ

(k)
1

β2

µ

)


≥
µ
(
1 + ρ̃(k)

) (
c
(k)
1 c

(k)
2

)2/3
4Γ3Γ

(k)
1

(
1 + Γ

(k)
1

)
β2

=

 (c
(k)
1 )

2

c
(k)
2

1/3

=

 µ

6
(
ζ2 + 2Γ3Γ

(k)
1

β2

µ

)(
1 + Γ

(k)
1

)
1/3(

1− ρ̃(k)

2β

)2/3

.
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Note that in the process of minimizing equation 27 over Γ(k)
2 , two out of the three dependencies on

Γ3, and two out of four dependencies on Γ
(k)
1 were removed. Hence, we get

α(k) < min

{
Γ
(k)
1

µ
,

1

2
√
3
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}
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(28)

Finally, we make a remark that we do not minimize over Γ3 here, as we take it as a given determin-
istic value based on the choice of d(k)i = 1− Γ3α

(k).

Step 5: Obtaining ρ(Φ(k)). We established ρ(Φ(k)) < 1 in the previous steps. The last step is to
determine what ρ(Φ(k)) is. We have

ρ
(
Φ(k)

)
=
−b+

√
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N PROOF OF LEMMA L.2

(a) Since α(k) = α(0)√
1+ k

γ

, we have

k∑
q=r

α(q) =

k∑
q=r

α(0)√
1 + q

γ

≥
∫ k

r

α(0) dx√
1 + x

γ

≥ 2α(0)

(√
1 +

k

γ
−
√

1 +
r

γ

)
.

(b) Based on the equation ρ(Φ(k)) = 1− h(α(k)) given in Proposition L.1, h(α(k)) was given as

h(α(k)) =
1− ρ̃(k)

4
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.

Further note that since we established 0 ≤ ρ
(
Φ(k)

)
< 1 in Proposition L.1, it would mean 0 <

h(α(k)) ≤ 1. Next, since we have b(k)ij = bij for all (i, j) ∈M2 and k ≥ 0, it follows that ρ̃(k) = ρ̃,
where ρ̃(k) was defined in Lemma C.4-(c). Consequently, we have
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where Cauchy-Schwartz inequality was used to move the sum inside the square root term. Next,
noting that

∑∞
k=0 α

(k) = ∞ but
∑∞

k=0 (α
(k))

2
< ∞, we can take the limit of the above inequality

36



Under review as a conference paper at ICLR 2024

as k →∞ to get

lim
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in which Binomial approximation was used.

(c) First, we break the summation to two parts, i.e.,

k∑
r=1
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2∑k
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(q))
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. (29)

On the other hand, note that using the definition of h(α(k)) as given in Proposition L.1, we have
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Therefore, when taking the limit of equation 29, the second term becomes
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Now, moving on to the second term in equation 29, we can write

lim
k→∞

k−1∑
r=1

(α(r−1))
2∑k

q=r h(α
(q))

=

∞∑
r=1

(α(r−1))
2∑∞

q=r h(α
(q))

=

∞∑
r=1

lim
k→∞

(α(r−1))
2∑k

q=r h(α
(q))

≤
∞∑
r=1

lim
k→∞

(α(r−1))
2

4Aα(0)
(√

1 + k
γ −

√
1 + r

γ

) = lim
k→∞

k−1∑
r=1

(α(0))
2

1+ r−1
γ

4Aα(0)
(√

1 + k
γ −

√
1 + r

γ

)
=
α(0)

4A
lim
k→∞

k−1∑
r=1

1(
1 + r−1

γ

)(√
1 + k

γ −
√
1 + r

γ

)
≤ α(0)

4A
lim
k→∞

k−1∑
r=1

1 + 1
γ(

1 + r
γ

)(√
1 + k

γ −
√
1 + r

γ

)
≤ α(0)

4A

 1√
1 + k

γ −
√
1 + 1

γ

+

∫ k−1

1

(
1 + 1

γ

)
dx(

1 + x
γ

)(√
1 + k

γ −
√
1 + x

γ

)
 .

Focusing only on the integral and defining u(x) =
√
1 + x

γ , we have

∫ k−1

1

(
1 + 1

γ

)
dx(

1 + x
γ

)(√
1 + k

γ −
√
1 + x

γ

) =

∫ k−1

1

2γ
(
1 + 1

γ

)
du(x)

u(x) (u(k)− u(x))

=

∫ k−1

1

2 (γ + 1)

u(k)

(
1

u(x)
+

1

u(k)− u(x)

)
du(x)

=
2 (γ + 1)

u(k)

(
ln
u(k − 1)

u(1)
+ ln

u(k)− u(1)
u(k)− u(k − 1)

)
=

2 (γ + 1)

u(k)
ln

u(k − 1)u(k)

u(k)− u(k − 1)

=
2 (γ + 1)

u(k)

lnu(k) + ln
1

u(k)
u(k−1) − 1


=

2 (γ + 1)√
1 + k

γ

ln

√
1 +

k

γ
+ ln

1√
1 + 1

γ+k−1 − 1

 .

Putting everything back together concludes the proof.

O PROOF OF THEOREM L.1

First, using the fact that Φ(k)∥ · ∥ ≤ ρ(Φ(k))∥ · ∥ for each iteration k ≥ 0, we can rewrite equation 7
to get  EΞ(k)

[∥∥θ̄(k+1) − θ⋆
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)
δ2 + σ2

m

m
(
3 1+ρ̃
1−ρ̃δ

2 + σ2
) +Ψ(k),

(30)

where the Ψ(k) matrix was written using equation 22.

Next, in order to obtain equation 20 when k → ∞, we need to simplify each of the three terms in
equation 30. The easiest one to show is the last term, i.e., Ψ(k). Based on equation 22, both of its
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(a) IID data split, with each device having data points
from all of the 10 classes in the dataset.
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(b) Non-IID data split, with each device having data
points from only 1 of the classes in the dataset.

Figure 3: Results of employing an SVM model on the Fashion-MNIST image classification dataset, with varying
radius for the generated random geometric network graph.
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Regarding the first and the second term, i.e.,
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and
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respectively, we have
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,

in both of which Lemma L.1 was used, since 0 ≤ h(α(k)) < 1. Next, we employ Lemma L.2 on the
above expressions. The proof easily follows. Note that ln 1√

1+ 1
γ+k−1−1

≤ O(ln k).

P FURTHER EXPERIMENTS

P.1 EFFECT OF GRAPH CONNECTIVITY

We examine the effect of graph connectivity in this section. The underlying network topology that
we use in this paper are generated via a random geometric graph with radius r Penrose (2003). In
the following numerical simulations, we compare our method with the baselines for different values
of the radius, i.e., r = 0.2, 0.4, 0.6, 0.8, 1, where r = 1 corresponds to a fully-connected graph. We
focus on the achieved accuracy after a specific amount of overall delay on the y-axis, for both cases
of IID and non-IID data distributions among devices.

We have demonstrated the results for the IID case for the SVM model in Fig. 3a, and the CNN model
in 4a. Notice how the graph connectivity does not have much effect on the outcome of any of the
methods in the IID case. This is due to all devices already having data points from the distribution
of the whole dataset, making inter-device communications insignificant. To express differently, if
each device has access to the distribution of the whole dataset, it can solely conduct SGDs without
any aggregations, and it would still perform notably well.
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(a) IID data split, with each device having data points
from all of the 10 classes in the dataset.
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(b) Non-IID data split, with each device having data
points from only 1 of the classes in the dataset.

Figure 4: Results of employing a CNN model on the Fashion-MNIST image classification dataset, with varying
radius for the generated random geometric network graph.

However, we note that DSpodFL is able to outperform other baselines across all graph connectivity
levels in Figs. 3a and 4a. Our method’s efficiency becomes more prominent for the CNN model, as
shown in 4a.

As illustrated in Fig. 3b for the SVM model and 4b for the CNN model, we see that graph con-
nectivity plays a major role in performance of all methods in the non-IID case. We observe that
higher graph connectivity helps devices in the fully-decentralized setup to reach convergence in less
time. This is due to the fact that each device has access to only a portion of the distribution of the
whole dataset, thus making inter-device communications very critical to reach the globally optimal
solution.

P.2 EFFECT OF DATA DISTRIBUTION

Next, we look into the effect of data distribution among devices, and compare our method with the
baselines. We vary the number of labels from which each device gets samples. For example, if the
number of labels is denoted as k in Fig. 5, it means that each device has samples randomly chosen
from k of the classes in the whole dataset. Since the Fashion-MNIST dataset consists of 10 classes,
we run our experiments with k = 1, 2, ..., 10, and look at the achieved accuracy per a fixed overall
delay for all methods.

We observe that for both the SVM model in Fig. 5a and the CNN model in 5b, our DSpodFL
method outperforms the baselines for any number of labels per devices. Moreover, an increasing
trend with the number of labels can be seen for all algorithms, which is expected since with more
labels, devices would have access to data points from the distribution of the whole dataset, and not
just a portion of it.

Finally, the intriguing conclusion of this experiment is that for low number of labels per each device,
i.e., the non-IID case, the Sporadic SGDs method outperforms Sporadic Aggregations method. This
is because inter-device communication is critical for convergence in non-IID setups, and we cannot
cut back on them arbitrarily. Therefore, Sporadic Aggregations perform very poorly in non-IID
setups. Finally, note that this means in a low-label regime, our DSpodFL method benefits most
from its Sporadic SGDs component in achieving resource efficiency.

On the other hand, however, when the number of labels per each device is high enough, Sporadic
Aggregations tends to out perform Sporadic SGDs, due to the converse of the argument we made in
the previous paragraph. This is clearly visualized in Fig. 5, where in 5a the two above-mentioned
methods cross each other at 5 labels per device, and in 5b that happens in 3 labels per device.
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(a) Using the convex SVM model.
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(b) Using the non-convex CNN model.

Figure 5: Results for the Fashion-MNIST image classification dataset, with varying number of labels per device.
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(a) IID data split, with each device having data points
from all of the 10 classes in the dataset.
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(b) Non-IID data split, with each device having data
points from only 1 of the classes in the dataset.

Figure 6: Results of employing an SVM model on the Fashion-MNIST image classification dataset, with device
and link capabilities coming from a beta distribution with α = β = 0.5.

P.3 EFFECT OF DEVICE AND LINK CAPABILITIES

In all of our experiments so far, the probability of SGDs and aggregations were sampled from a
uniform distribution, e.g., d(k)i ∼ U [0, 1] and b(k)ij ∼ U [0, 1]. In this section, we investigate sampling
these probabilities from the beta distribution, denoted as Beta(α, β), where the values of α and
β determine its probability density function (PDF). Specifically, we choose α = β = 0.5, which
corresponds to an inverted bell curve PDF. In this regime, the probabilities are either extremely close
to 1 or extremely close to 0.

We assign the probability of SGDs and aggregations as di ∼ Beta(0.5, 0.5) and bij ∼
Beta(0.5, 0.5), respectively. This regime is in accordance with practical settings where the de-
vices/links in a decentralized network are either vastly abundant in resources, or are overly poor in
them.

We have provided experimental results for both the IID and non-IID cases in Fig. 6 for the SVM
model and Fig. 7 for the CNN model. It can be observed that the findings discussed in Sec. 5.2 also
hold here. In other words, our DSpodFL method outperforms the baselines in terms of accuracy per
overall delay. However, we observe that our method is able to compellingly surpass other methods
when link and device resource capabilities come from Beta(0.5, 0.5), compared to the uniform
distribution as discussed in Sec. 5.
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Figure 7: Results of employing a CNN model on the Fashion-MNIST image classification dataset, with device
and link capabilities coming from a beta distribution.
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Figure 8: Results of employing an SVM model on the Fashion-MNIST image classification dataset, with varying
the number of devices in the network.

We will explain the intuitive reason for this drastic improvement with an example. Let G = (M, E)
be given a network graph, and assume there exits two paths between nodes i and j. Let one of these
paths have a communication cost k times more than the other path, where k ≫ 1. In our DSpodFL
method, the path with lower cost will be utilized roughly k times more than the other path, thus
resulting in lower communication overhead while still preserving information flow between nodes i
and j. Meanwhile, the DGD method does not take this into account.

P.4 EFFECT OF NUMBER OF DEVICES

Next, we do an ablation study on the number of devices, i.e., m. We compare DSpodFL with the
baselines for m = 10, 20, 30, 40, 50. Similar to the previous subsections in this appendix, we plot
the accuracy reached after a specific amount of total average delay. For each m, we generate a new
random geometric graph with radius r = 0.4.

Figs. 8 and 9 showcase that our approach outperforms all other baselines regardless of the number
of devices available in the system, with an SVM and a CNN model, respectively. Using either a
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Figure 9: Results of employing a CNN model on the Fashion-MNIST image classification dataset, with varying
the number of devices in the network.

convex or a non-convex model, The superiority of our approach can be seen for both the IID case as
illustrated in Figs. 8a and 9a, and the non-IID case as shown in Figs. 8b and 9b.

However, note that in the non-IID cases of Figs. 8b and 9b, increasing the number of devices from
10 to 50 results in an increase the achieved accuracy. This is because if the total number of devices
in a decentralized network increases, the number of nodes containing data from a particular class in
the dataset increases as well. In other words, there are multiple sources in the system where data
distribution from each class in the dataset can propagate through the network.

P.5 EFFECT OF PARAMETERS ALPHA AND BETA IN BETA DISTRIBUTION

As we discussed in Sec. P.3, sampling the probability of SGDs and aggregations, i.e., d(k)i and b(k)ij ,
from the beta distribution Beta(α, β), will correspond to various real-world scenarios if we vary its
parameters α and β. For example, we employed a uniform distribution U [0, 1] in Sec. 5, which is
equivalent to using α = β = 1 in the beta distribution. Moreover, the choice of α = β = 0.5 in Sec.
P.3 gives rise to an inverted bell curve PDF. In this section, we will analyze the effect of choosing
different values for α and β in the distribution, and compare our method’s performance with other
baselines in each scenario.

We have laid out the results for the SVM model In Fig. 10 and for the CNN model in Fig. 11. In
all setups, we plot the achieved testing accuracy after 5000 overall delay units where α and β in the
beta distribution Beta(α, β) come from α, β = 0.5, 1, 2, 3, 4, 5.

We observe that in all figures, our DSpodFL method outperforms other baselines for all values of α
and β. Most notably, in setups with lower values of α for a fixed β, which corresponds to scenarios
where most of the devices/links have low processing units/bandwidth, the efficiency of our method
in converging faster than other baselines becomes more prominent.
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(a) IID data split, with each device having data points from all of the 10 classes in the dataset.
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(b) Non-IID data split, with each device having data points from only 1 of the classes in the dataset.

Figure 10: Results of employing a SVM model on the Fashion-MNIST image classification dataset, with device
and link capabilities coming from a beta distribution Beta(α, β) with varying values for α and β.
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(b) Non-IID data split, with each device having data points from only 1 of the classes in the dataset.

Figure 11: Results of employing a CNN model on the Fashion-MNIST image classification dataset, with device
and link capabilities coming from a beta distribution (Beta(α, β)) with varying values for α and β.
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