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ABSTRACT

Topology reasoning aims to comprehensively understand road scenes and present
drivable routes in autonomous driving. It requires detecting road centerlines (lane)
and traffic elements, further reasoning their topology relationship, i.e., lane-lane
topology, and lane-traffic topology. In this work, we first present that the topology
score relies heavily on detection performance on lane and traffic elements. There-
fore, we introduce a powerful 3D lane detector and an improved 2D traffic element
detector to extend the upper limit of topology performance. Further, we propose
TopoMLP, a simple yet high-performance pipeline for driving topology reasoning.
Based on the impressive detection performance, we develop two simple MLP-
based heads for topology generation. TopoMLP achieves state-of-the-art perfor-
mance on OpenLane-V2 dataset, i.e., 41.2% OLS with ResNet-50 backbone. It
is also the 1st solution for 1st OpenLane Topology in Autonomous Driving Chal-
lenge. We hope such simple and strong pipeline can provide some new insights to
the community. Code is at https:/github.com/wudongming97/TopoMLP. |

1 INTRODUCTION

Understanding the topology in road scenes is an important task for autonomous driving, since it
provides the information about the drivable region as well as the traffic signal. Recently, the topol-
ogy reasoning task has raised great attention in the community thanks to its crucial application in
ego planning (Chai et al.l [2020; [Casas et al} [2021; Hu et al., [2023). In specific, given multi-view
images, topology reasoning aims to learn vectorized road graphs between the centerlines and traffic
elements (Li et al., [2023} |Wang et al.,[2023)). It consists of four primary tasks, centerline detection,
traffic element detection, lane-lane topology, and lane-traffic topology reasoning.

Different from the conventional perception pipelines that include multiple independent tasks (Li
et al.,2022b; |Liu et al.| [2023b), these four tasks naturally have a logical order, i.e., first-detect-then-
reason. If some lane and traffic instances are not detected, the corresponding topology connection
will be missed, as illustrated in the right of Fig.|l} It naturally leads to a question: What is the extent
of the quantitative effect of basic detection on topology reasoning? To answer this question, we
conduct detailed ablation studies on detection performance by varying the backbones. It shows that
the topology performances are constantly improved with stronger detection. When the basic detec-
tion is freezed, we find that replacing the topology prediction with the ground truth (GT) introduces
minor improvements. For example, when using Swin-B backbone, the TOP;; and TOP;; scores with
topology GT are 10.0% and 30.9%, which are only higher than using topology prediction by 0.5%
and 2.6%, respectively. This phenomenon encourages us to prioritize the design of two detectors.

In specific, we employ two query-based detection branches: one (Liu et al.| |2023b) dedicated to
the detection of 3D centerlines, and another one (Zhu et al., 2021) for 2D traffic detection. The 3D
lane detector utilizes a smooth lane representation and interprets each lane query as a set of control
points of a Bézier curve. Inspired by MOTRV2 (Zhang et al., [2023), the performance of 2D traffic
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Figure 1: Left: The evaluation of topology when using ground-truth topology (represented as “Topo
GT”) to replace predicted topology while retaining the detection results. Right: The illustration of
how missing detections (represented by dashed lines) influence topology reasoning. They uncover
an essential truth: the fundamental detections are paramount to the topology reasoning.

detector can be further enhanced by adding an additional YOLOvV8 (optional) object detector thanks
to its advantage on detecting small objects, such as traffic lights.

Despite the basic detection, another challenge in driving topology reasoning is how to effectively
model the connection between lanes and traffic elements. Prior works (Langenberg et al., 2019} |Can
et al., 20215 2022) employ a straightforward method, which uses a multi-layer perceptron (MLP)
to predict the topology relationship. However, they mainly focus on associating different lanes in
image domain. To cope with the 3D space, some follow-up methods (Li et al., 2023} Xu et al.|[2023)
tend to utilize graph-based modeling to predict topology structure.

In this paper, we develop a simple yet effective framework, termed TopoMLP, for topology reason-
ing. Our work is inspired by the pairwise representation in human-object interaction detection (Gao
et al., 2018; |Chao et al.l 2018} [Wang et al., 2019), similar to topology reasoning. The pairwise
representation is constructed by encoding the human/object pair boxes into two mask embeddings.
These embeddings are concatenated together and further used to perform action classification by a
simple MLP. We wonder if it is possible to develop a simple MLP-based framework for sufficiently
understanding the relationships in driving topology reasoning. Taking lane-lane topology as an ex-
ample, if the lanes are accurately predicted, the intersection points (see Fig. [2)) between lanes can
be easily reasoned to be overlapped. As for the lane-traffic topology, the traffic elements can be
easily matched with the corresponding centerlines by the relative location between traffic bounding
boxes and lane points. Therefore, a simple MLP seems enough for efficient topology reasoning.
Specifically, we convert the query representations of both traffic elements and centerlines into two
embeddings and concatenate them together for topology classification by an appended MLP.

Moreover, we notice that the topology metrics of OpenLane-V2 have some drawbacks. It uses graph-
based mAP, while it focuses more on the order of predictions. Some false positives from unmatched
lanes or traffic elements are defaulted to a high confidence score, i.e., 1.0. Accordingly, manually
decreasing the priority of these false positive predictions (or increasing the priority of true positive
predictions) enables to improve the overall mAP score by a large margin. To tackle this problem, we
suggest to include a correctness factor based on existing topology metric to correct the drawback.

Our contributions are summarized as four-fold. First, we provide an in-depth analysis of the na-
ture of driving topology reasoning. It requires following a “first-detect-then-reason” philosophy for
better topology prediction. Second, we propose a simple but strong model, named TopoMLP. It in-
cludes two well-designed high-performance detectors and two elegant MLP networks with position
embedding for topology reasoning. Third, we claim that the current topology reasoning evaluation
possesses a significant loophole. To rectify this, we enhance the topology metric by incorporating a
correctness factor. Fourth, all experiments are conducted on the popular driving topology reason-
ing benchmark, OpenLane-V2, showing TopoMLP reaches state-of-the-art performance. Besides,
TopoMLP ranks 1st of 1st OpenLane Topology in Autonomous Driving Challenge (Wu et al.,[2023).

2 RELATED WORKS

2.1 LANE DETECTION METHOD

For a long time, detecting lane markings has been one of the most important topics in autonomous
driving. Prior works usually use appearance and geometric cues to detect the road (Tan et al., 2006;
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Alvarez & Lopez, 2010; |Paz et al., [2015). With the advancement of deep learning, the development
of lane detection has made great progress. Among them, some methods attempt to use a segmen-
tation map to describe road lane (Batra et al., 2019; (Can et al., 2022; He & Balakrishnan, [2022)).
Currently, vector-based methods have become mainstream because they can deal well with 3D lane
detection (Garnett et al.,[2019; |Guo et al., 2020; Yan et al., 2022} |Chen et al., 2022). However, these
methods base a set of predefined Y-axis points in the query to predict 3D lanes, which fail to make
the 3D lane prediction only across the Y axis. More recently, TopoNet (Li et al., 2023)) models each
lane into an anchor query, but it misses the lane prior with a smoothed curve. In our study, we make
full use of this prior to providing a smoother representation.

2.2 LANE TOPOLOGY LEARNING

Learning lane topology plays an important role in scene understanding for autonomous driving.
Earlier works (Chu et al.l 2019; Homayountar et al.l 2019; He et al., |2020; [Bandara et al.| [2022)
focus on generating road graphs from aerial images. However, using aerial images is unreasonable
for ongoing vehicles. Therefore, directly using vehicle-mounted sensors to detect lane topology has
become popular due to their valuable application. STSU (Can et al.}[2021) uses a Transformer-based
model to detect centerlines and objects together, and then predict centerline association formatted
to a directed graph by an MLP. TopoRoad (Can et al.l [2022)) further introduces additional minimal
cycle queries to ensure the preservation of the order of intersections. Can et al. (Can et al.,[2023) also
provide additional supervision of the relationship by considering the centerlines as cluster centers to
assign objects and greatly improve the lane graph estimation. LaneGAP (Liao et al., 2023) designs
a heuristic-based algorithm to recover the graph from a set of lanes. CenterLineDet (Xu et al., 2023
and TopoNet (L1 et al) [2023) regard centerlines as vertices and design a graph model to update
centerline topology. In this work, we focus on lane topology nature and employ a simple and elegant
position embedding to enhance topology modeling.

2.3 HD MAP PERCEPTION

HD Map Perception aims to comprehend the layout of the driving scene, such as lanelines, pedestrian
crossing, and drivable areas, mirroring the concept of driving scene reasoning. The recent research
focuses on learning HD maps using segmentation and vectorization techniques to meet low-cost
requirements. HDMapNet (Li et al., [2022a)) explores grouping and vectorizing the segmented map
with complicated post-processings. VectorMapNet (Liu et al. |2023a) directly uses a sequence of
points to represent each map element, further decoding laneline locations. Some follow-up methods
propose different modeling strategies to represent the sequence of points, such as the permutation-
based (Liao et al.| 2022)), the piecewise Bézier curve (Qiao et al.| 2023)), the pivot-based map (Ding
et al.,[2023). Different from the aforementioned approaches, our method employs simple and elegant
modeling, each query referring to a lane.

3 METHOD

In this section, we elaborate on TopoMLP, a unified query-based framework for driving topology
reasoning. It is able to effectively accomplish four different tasks in a single framework, including
lane detection, traffic element detection, lane-lane topology, and lane-traffic topology prediction.
The overall pipeline of TopoMLP is shown in Fig.|2} More details are described as follows.

3.1 LANE DETECTOR

Our lane detector is inspired by the advanced 3D multi-view object detector PETR (Liu et al., 2022
2023b), which first introduces 3D position embedding (3D PE) into the query-based framework
DETR (Carion et al.,2020; Zhu et al.,2021). In this work, we represent each centerline as a smooth
Bézier curve with M control points within 3D space and each curve refers to a lane query. Our
lane detector performs direct interaction between lane queries with multi-view visual features in
transformer decoder and outputs control points, further transformed to lane coordinates.

Formally, given multi-view images from camera sensors, we first employ a backbone (e.g., ResNet-
50 (He et al., 2016)) to generate feature maps F' € RV*C*H*W ‘where V, C, H, and W represent
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Figure 2: The overall architecture of TopoMLP. The lane decoder depicts each centerline as a
Bézier curve for a smooth representation. The traffic decoder is optionally enhanced by additional
YOLOVS proposals. The prediction of lane-traffic (LT) and lane-lane (LL) topology is accomplished
by an MLP with position embedding. “Topology” means an operation in §@

the view number, channel, height, and width of the features, respectively. The 3D PE is encoded
into the visual features to generate position-aware features following (Liu et al., [2022)). Then we
initialize N1, learnable 3D lane anchor points, denoted as Q¥ € RNVZ*3, After projecting the feature
dimension of anchor points from 3 to C' using a position encoding and a linear layer, we further feed

it into transformer decoder to update the lane query features QL :
Q" = LaneDecoder(F, Linear(Q")) e RN: > 6))

where the LaneDecoder is a stack of Transformer decoder layers. On top of the transformer decoder,
we adopt two independent MLPs to predict the offset of control points and the classification scores,
respectively. The final control point outputs are ordered and obtained by adding basic anchor points
with the relative offsets. The control points are transformed into lane points for training and testing.

3.2 TRAFFIC ELEMENT DETECTOR

The prevalent approaches for traffic element detection in driving topology reasoning are mainly
query-based and end-to-end deployed (L1 et al., |2023; |Kalfaoglu et al.l 2023} [Lu et al., [2023). Al-
though such straightforward end-to-end implementation is appealing, the detection performance is
much inferior to the specialized 2D detectors, such as YOLO series, due to small objects and class
imbalance problems. To address these limitations, we propose to optionally improve the query-based
detectors by elegantly incorporating an extra object detector YOLOVS.

Our traffic element detector typically follows the head design in Deformable DETR (Zhu et al.,
2021)) to predict bounding boxes and classification scores. It adopts query embeddings to generate
a set of reference points as anchors. We modify the reference format into reference boxes with the
center points, height, and width. As an alternative, the high-quality proposals from YOLOvVS8 can
serve as an anchor box initialization, providing better local priors. It greatly eases the trade-off
between topology reasoning and traffic detection.

Specifically, we first collect the multi-scale feature maps of the front view from multi-view features
F, denoted as F°. YOLOVS takes F° as input and generates multiple proposals, which are con-
catenated with a set of reference boxes produced from randomized queries, denoted as RY. The
generated boxes by YOLOVS are encoded by sine-cosine embedding to generate query features,
which are concatenated with the randomized queries, denoted as Q7. The query features as well as
the reference boxes are fed into the deformable decoder:

Q" = TrafficDecoder(F°, Q"  R")eRN7 ¢ 2)
where the TrafficDecoder is a stack of Deformable decoder layers. Based on the decoded traffic
features Q7', we implement two independent MLPs for bounding box classification and regression.
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3.3 LANE-LANE TOPOLOGY REASONING

Lane-lane topology reasoning branch aims to predict the lane-lane connection relationship. To in-
corporate the discriminative lane information, we integrate the predicted lane points into the lane
query features. In specific, we implement MLP to embed the lane coordinates and then add them
into the decoded lane query features Q~ € RV2*C For notion simplicity, we still use Q" to repre-
sent the integrated query features. They are repeated Ny, times, generating two features with sizes
Npx(Np)xC and (N1 )xNpxC, where (N1,) defines different repeating directions. After concate-
nation operation generating QX% € RNt XN x2C 'we apply MLP to perform binary classification:

Gall — MLP(QLL) cRNE xNL7 3)
where the G” is lane-lane topology prediction.

3.4 LANE-TRAFFIC TOPOLOGY REASONING

The key idea of our lane-traffic topology reasoning is to project two kinds of features into the same
space. Given the lane query embedding Q% € RVZ*C from 3D space, we sum the view transfor-
mation matrix A € R3*3 from 3D to perspective view with it, i.e., QL + MLP(A). Here, the view
transformation matrix A is formulated in terms of camera intrinsic and extrinsic. Similar to lane-
lane topology, the transformed lane query features and the traffic query embedding Q7 € RN7x¢
are transformed into Q-7 € RNV2*NTx2C through repeating and concatenating operations. An MLP
network is used to generate lane-traffic topology prediction G

G = MLP(Q*") eRNE XN )

3.5 Loss FUNCTION

Our final loss function is defined as follows:

L= £deiﬁ; + cdett + £top” + ‘Ctoplw (5)
where L., is lane detection loss, which includes a focal loss (Lin et al.| [2017) supervising classifi-
cation and an L1 loss for lane regression. Lg.;, is traffic element detection loss, which has a focal
loss for classification, a £ loss and a GloU loss for bounding box regression. The lane-lane topol-
ogy loss Ly, contains a focal loss for binary classification and an L1 loss between the matched
lane points in terms of the topology ground-truth. The lane-traffic topology loss L:,p,, is a focal
loss for binary classification. Since our TopoMLP is a query-based method, it requires the matching
between the predictions and ground-truth. In this work, we only use bipartite matching on the basic
lane and traffic element detection. The matching is directly used in topology reasoning loss as well.

4 EXPERIMENTS

4.1 DATASET AND METRIC

Dataset. The experiments are conducted on the OpenLane-V2 (Wang et al.l 2023). OpenLane-V2
is a large-scale perception and reasoning dataset for scene structure in autonomous driving. It has
two subsets, i.e. subset_A and subset_B, developed from Argoverse 2 (Wilson et al., 2021 and
nuScenes (Caesar et al., 2020), respectively. Each subset comprises 1,000 scenes with annotations
at 2H z. Note that the subset_A contains seven views and subset_B contains six views.

Evaluation Metric. These two basic detections require measuring instance-level performance.
Therefore, the perception metrics, including DET; and DET}, are mean average precision (mAP)
following the work (Wang et al.| 2023). Specifically, DET; employs the Fréchet distance for quan-
tifying similarity and is averaged over match thresholds set at {1.0, 2.0, 3.0}. On the other hand,
DET, employs Intersection over Union (IoU) as the similarity measure, with averages calculated
over various traffic categories. For topology metrics, the TOP score also employs an mAP metric,
which is designed specifically for graph data. To summarize the overall effect of primary detection
and topology reasoning, the OpenLane-V2 Score (OLS) is conducted as:

OLS = i[DETl + DET; + f(TOPy) + f(TOPy)], (6)
where f is the square root function.
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Method | Backbone Epoch | DET; DET, TOP; TOP; OLS
STSU (Can et al.;|2021) ResNet-50 24 127 43.0 0.5 15.1 254
VectorMapNet (Liu et al.|[2023a) | ResNet-50 24 11.1 41.7 0.4 5.9 20.8
MapTR (Liao et al.[[2022) ResNet-50 24 17.7 435 1.1 104 26.0
TopoNet (L1 et al.|[2023) ResNet-50 24 285 481 4.1 20.8 35.6
TopoMLP ResNet-50 24 283  50.0 7.2 22.8 382
TopoMLP* ResNet-50 24 28.8 533 7.8 30.1 412
TopoMLP \Y{0)% 24 29.7 521 7.9 25.6  40.1
TopoMLP Swin-B 24 30.7 543 9.5 283 422
TopoMLP* Swin-B 24 30,0 558 9.4 31.7 433
TopoMLP Swin-B 48 325 535 11.9 294 437

Table 1: Performance comparison with state-of-the-art methods on OpenLane-V2 subset_A set.
Results for existing methods are from TopoNet. TopoMLP is trained end-to-end, while ‘*’ indicates
using extra YOLOV8 proposals. The best is in bold.

Method | Backbone Epoch | DET; DET, TOP; TOP; OLS
STSU (Can et al.|[2021) ResNet-50 24 8.2 43.9 0.0 9.4 21.2
VectorMapNet (Liu et al.|[2023a) | ResNet-50 24 3.5 49.1 0.0 1.4 16.3
MapTR (Liao et al.||2022) ResNet-50 24 15.2 54.0 0.5 6.1 25.2
TopoNet (Li et al.|[2023) ResNet-50 24 24.3 55.0 2.5 14.2 33.2
TopoMLP ResNet-50 24 26.6 58.3 7.6 17.8  38.7
TopoMLP VOV 24 29.6 62.2 8.9 205 41.7
TopoMLP Swin-B 24 32.3 65.5 10.5 232 446

Table 2: Performance comparison with state-of-the-art methods on OpenLane-V2 subset_B set.
Results for existing methods are from TopoNet.

4.2 IMPLEMENTATION DETAILS

Feature Extractor. All images are resized into the same resolution of 1550%2048, and are down-
sampled with a ratio of 0.5. We implement different backbones, i.e., ResNet-50 (He et al.| |2016)),
VOV (Lee et al}|2019), and Swin-B (Liu et al.| 2021} for feature extraction. The number of output
channels is set to C'=256. For lane detection, the C5 feature is upsampled and fused with C4 feature
using FPN. For traffic detection, the C3, C4, and C5 features are used as the feature pyramid.

Lane Detector. The lane query number is set to Nz, = 300, and the number of control points is 4.
During training, the control points are transformed into 11 lane points for calculating loss. We set
the region to [—51.2m, 51.2m] on the X-axis, [—25.6m, 25.6m] on the Y-axis, and [—8m, 4m] on
the Z-axis. The lane detection head is composed of 6 transformer decoder layers. The MLP heads
contain two fully connected layers with ReLU activation. For lane detection loss Lg.¢,, the weight
of the classification part is 1.5, and the weight of the regression part is 0.2.

Traffic Detector. The decoder architecture follows the original designs of Deformable DETR (Zhu
et al.;2021). The number of random queries in the traffic decoder is 100. The detection results from
YOLOV are stored in advance. The weight of the classification loss is 1.0, the weight of L1 loss
is 2.5, and the weight of GIoU loss is 1.0.

Topology Head. The MLP network used in two topology heads consists of three linear layers with
ReLU activation. We represent the lane-lane topology loss with L1 loss and classification loss as
Liopy, = Ap1Lr1 + AcisLes, where Apg = 0.1 and Ay = 5. The loss coefficient of lane-traffic
topology loss Lyop,, is 0.5.

Training and Inference. The overall model TopoMLP is trained by AdamW optimizer (Loshchilov
& Hutter, [2017) with a weight decay of 0.01. The learning rate is initialized with 2.0x10~% and
decayed with cosine annealing policy (Loshchilov & Hutter,[2016). We adopt the HSV augmentation
and grid mask strategy for training. All the experiments are trained for 24 epochs on 8 Tesla A100

"The official codes we adopt are available at https://github.com/ultralytics/ultralytics|
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Figure 3: Qualitative results for lane detection and lane-lane topology of TopoMLP. Given the
multi-view images, our method can predict the most lanes and connect them correctly under various
challenges, like occluded lanes and complicated intersections. The green lanes are ground-truth and
the red lanes are predictions, which are projected into images and BEV map.

GPUs with a batch size of 8 if not specified. During the inference time, our model outputs at most
300 lanes for evaluation. Other post-processing techniques are not implemented.

4.3  STATE-OF-THE-ART COMPARISON

We compare TopoMLP with the state-of-the-art approaches, such as STSU 2021}, Vec-
torMapNet 2023a), MapTR 2022), TopoNet 2023). Table|[I|shows
the results on subset_A of OpenLane-V2. Without bells and whistles, our method achieves 38.2
OLS using ResNet-50 backbone, surpassing other state-of-the-art methods. Compared to TopoNet,
our approach shows a much better topology reasoning accuracy (7.2 v.s. 4.1 on TOP;;, 22.8 v.s. 20.8
on TOP;;) while also achieves decent detection accuracy (28.3 v.s. 28.5 on DET;, 50.0 v.s. 48.1
on DET,). For a better performance, we apply a more powerful backbone and more training time:
when using Swin-B for training 48 epochs, the OLS score rises to 43.7.

Table 2| shows the performance comparison on OpenLane-V2 subset_B. Our proposed TopoMLP
exceeds other models in all metrics when using the same ResNet-50 backbone. Particularly in terms
of topology performance, it surpasses TopoNet by a large margin (7.6 v.s. 2.5 on TOP;;, 17.8 v.s.
14.2 on TOP;;). Moreover, the performance boost is also observed when integrating more powerful
backbones. Overall, these results significantly highlight the efficacy of our TopoMLP model.

4.4 ABLATION STUDY

In this section, we study several important components of our method and conduct ablation experi-
ments on OpenLane-V2 subset_A.

Analysis on Lane Detection. We investigate the effect of different settings in lane detection. i) In
Table 3] (a), the improvement in lane detection and lane-lane topology performance is clear when
the lane query increases from 200 to 300. However, it is observed that any further increase does
not contribute to additional improvement. To balance the model efficiency and performance, the
number of lane query is set to 300. ii) Table[3|(b) illustrates the influence of a control point in Bézier
modeling. Empirically, we choose 4 control points for better performance.

YOLOVS Proposal on Traffic Detection. To study the benefit of using YOLOVS8 proposals, we
test its effect under two settings: using ResNet-50 and Swin-B backbone. The main results are
shown in Table[I] marked by “*”. It is well seen that using YOLOVS predictions as proposal queries
consistently improves the detection performance, indicating the effectiveness of YOLOv8 proposals.
Moreover, it is worth noticing that TopoMLP without YOLOVS still achieves higher traffic detection
scores than other counterparts.

Representation Way in Topology Reasoning. It is also of interest to analyze the impact of different
lane and traffic element representation methods in topology reasoning. i) We first analyze the lane
representation in lane-lane topology, which additionally integrates lane coordinates. As shown in
Table[3](c), removing it leads to a minor performance degradation on TOPy;, which indicates that the
explicit lane position is useful for topology reasoning. Moreover, abandoning L1 loss for intersection
point supervision also causes a score decrease. ii) Table 3] (d) explores the impact of incorporating
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Prediction y Ground-Truth < Prediction
Figure 4: Traffic detection and lane-traffic topology from TopoMLP. Our method can detect the
traffic elements in the front view and associate them with lanes. The green represents GT, while the
red means our prediction. Traffic predictions are grounded by different colors in terms of category.

+ . Ground-Truth

Lane Queries\DETl DET: TOP;; TOP;; OLS Control Points\DETl DET: TOP;; TOP;; OLS

200 282 499 6.1 202 369 3 266 499 7.0 215 373
300 283 500 7.2 228 382 4 283 50.0 7.2 228 382
500 279 496 173 224 380 5 27.8 485 6.6 215 37.1

(a) Different number of lane queries. (b) Different number of control points.
LL Topo ‘ DET, DET; TOP;; TOP;; OLS LT Topo ‘DET; DET: TOP;; TOP;; OLS
Ours | 283 500 7.2 228 382 Ours | 283 500 7.2 228 382
w/o position | 27.9 509 69 21.6 379 w/o transform| 28.4 493 7.2 214 377
w/oLlloss | 26.6 509 6.5 221 375 wonly box | 282 496 7.1 220 37.8

(c) LL Topo is the short name for lane-lane topol- (d) LT Topo is the short name for lane-traffic

ogy. “ w/o position” means removing lane coordi-  topology. “transform” means using view transfor-
nate embedding. “w/o L1 loss” means removing  mation matrix on lane feature. “only box” means
the supervision of interaction points. using bounding box as traffic representation.

Table 3: The ablation studies of different components in the proposed TopoMLP. The experiments
are conducted on OpenLane-V2 subset_A. We bold the best scores.

the view transformation matrix into the lane feature for lane-traffic topology. It suggests that the
integration of this matrix into lane representation improves the reasoning of lane-traffic topology
(22.8 v.s. 21.4 on TOPy,). iii) Using the bounding boxes of traffic elements to replace traffic features
results in a drop on TOP;; (22.8 v.s. 22.0), as shown in the last row of TableE| (d). This is because
only adopting boxes lacks category information. Despite the advantages of position embedding, a
single MLP network proves sufficient for achieving high-performance topology reasoning.

4.5 VISUALIZATION

We visualize the lane detection and lane-lane topology reasoning results in Fig. [3] by projecting 3D
lanes into images. Despite potential challenges like intricate intersections or occluded centerlines,
TopoMLP well predicts the centerlines and constructs a lane graph in BEV. Fig.[]displays the results
of traffic detection as well as lane-traffic topology reasoning. As clearly shown, TopoMLP identifies
the majority of traffic elements, even small objects, and allocates them to the appropriate lanes.

4.6 MORE DISCUSSION

Before stepping into our thorough analysis, let’s revisit the definition of the topology metric. Given
the ground-truth graph G = (V, E)) and the predicted one G = (V, F'), we establish a projection on
the vertices such that V =V’ CV. This projection utilizes the Fréchet and IoU distances to measure

similarity among lane centerlines and traffic elements respectively. Within the predicted V', we
consider two vertices as being connected if the confidence of the edge surpasses 0.5. Subsequently,

the TOP score is derived by averaging vertice mAP between (V, E) and (V’, E) overall all vertices:
P(ﬁ/)lcondition(ﬁl S N(U))
[N (v)] ’

TOP = i Z Zﬁ’e}\?’(v)
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Figure 5: The illustration of loophole on TOP metric. Enhancing the prediction scores leads to
true positives prior to some false positives from unmatched instances, further improving precision.

Enhance Prediction
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Original Prediction Enhanced Prediction

Method ‘ DET, DET;

TOP; TOP; OLS ‘ TOP;; TOP;, OLS
TopoNet 2023 27.1 44.8 4.0 20.6 34.4 11.5(+7.5)  21.6(+1.0)  38.1(+3.7)
TopoMLP (Ours 283 500 7.2 228 382 | 19.0(+11.8) 23.4(+0.6) 42.2(+4.0)
Method | DET, DET, | TOP, TOP], OLS' | TOP] TOP], OLST
TopoNet 2023 27.1 44.8 2.0 20.4 32.8 1.0 20.9 32.0
TopoMLP (Ours 283 500 45 22.1 36.3 1.9 225 345

Table 4: The comparison on the original TOP metric and our adjusted TOP (marked by t)
when using enhanced prediction or not. TopoNet is reimplemented by ours using the same backbone
ResNet-50 with our TopoMLP. The experiments are conducted on OpenLane-V2 subset_A.

where N (v) is the ordered list of neighbors of vertex v ranked by confidence and P(v) is the preci-
sion of the i-th vertex v in the ordered list.

We provide a toy example of the important loophole in Fig.[5] A crucial point hinges on the precision
of the ordered list. For those unmatched instances that our detector cannot identify, their confidence
scores are defaulted to 1.0. That is, there are lots of false positives with high confidence. Suppose
we push the prediction confidence into 1.0/0.0 in terms of 0.5, our prediction with true positives
will have a higher confidence, hence, leading to enhanced precision. The quantitative results are
shown in the first two rows of Table[d] Using this strategy to enhance prediction leads to consistent
performance improvement, including TopoNet and our method TopoMLP.

To tackle this issue, we suggest a novel TOP metric incorporated with a correctness factor. Let’s

symbolize the enhanced precision as P(v)'. The adjusted TOP metric TOP! is formulated as:

. . Nrp
Ale N/ P ! ]-con ition- ! N 2V Y
Zn eN’(v) (’I’L ) dit (n € (’U)) (NTP ¥ NFP)

IN(v)] ’

P 1
TOP' = % > ®)

veV

where N p is the number of true positives and N p is the number of false positives. In the last two
rows of Table[d] we evaluate TopoNet and TopoMLP on the adjusted topology metric, demonstrating
its capability to effectively shield against the “attack”. Despite the alteration in the metric, TopoMLP
still surpasses other methods such as TopoNet in performance.

5 CONCLUSION

In this paper, we propose a simple yet strong pipeline for driving scene topology, named TopoMLP.
It starts a significant observation that the reasoning performance is limited by the detection scores.
Therefore, we first focus on designing two powerful detectors for 3D lane detection and 2D traffic
detection, respectively. As for topology reasoning, combining the appreciated position embedding
and an elegant MLP network is enough to achieve impressive performance. TopoMLP is the 1st
solution for 1st OpenLane Topology in Autonomous Driving Challenge. We hope our work opens
up new insights into exploring driving topology reasoning.



Published as a conference paper at ICLR 2024

REFERENCES

José M Alvarez Alvarez and Antonio M Lopez. Road detection based on illuminant invariance.
IEEE T-ITS, 2010.

Wele Gedara Chaminda Bandara, Jeya Maria Jose Valanarasu, and Vishal M Patel. Spin road map-
per: Extracting roads from aerial images via spatial and interaction space graph reasoning for
autonomous driving. In ICRA, 2022.

Anil Batra, Suriya Singh, Guan Pang, Saikat Basu, CV Jawahar, and Manohar Paluri. Improved
road connectivity by joint learning of orientation and segmentation. In CVPR, 2019.

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. In CVPR, 2020.

Yigit Baran Can, Alexander Liniger, Danda Pani Paudel, and Luc Van Gool. Structured bird’s-eye-
view traffic scene understanding from onboard images. In /CCV, 2021.

Yigit Baran Can, Alexander Liniger, Danda Pani Paudel, and Luc Van Gool. Topology preserving
local road network estimation from single onboard camera image. In CVPR, 2022.

Yigit Baran Can, Alexander Liniger, Danda Pani Paudel, and Luc Van Gool. Improving online lane
graph extraction by object-lane clustering. In ICCV, 2023.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In ECCV, 2020.

Sergio Casas, Abbas Sadat, and Raquel Urtasun. Mp3: A unified model to map, perceive, predict
and plan. In CVPR, 2021.

Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir Anguelov. Multipath: Multiple prob-
abilistic anchor trajectory hypotheses for behavior prediction. In CoRL, 2020.

Yu-Wei Chao, Yunfan Liu, Xieyang Liu, Huayi Zeng, and Jia Deng. Learning to detect human-object
interactions. In WACYV, 2018.

Li Chen, Chonghao Sima, Yang Li, Zehan Zheng, Jiajie Xu, Xiangwei Geng, Hongyang Li, Conghui
He, Jianping Shi, Yu Qiao, et al. Persformer: 3d lane detection via perspective transformer and
the openlane benchmark. In ECCV, 2022.

Hang Chu, Daiqing Li, David Acuna, Amlan Kar, Maria Shugrina, Xinkai Wei, Ming-Yu Liu, An-
tonio Torralba, and Sanja Fidler. Neural turtle graphics for modeling city road layouts. In ICCV,
2019.

Wenjie Ding, Limeng Qiao, Xi Qiu, and Chi Zhang. Pivotnet: Vectorized pivot learning for end-to-
end hd map construction. In /CCV, 2023.

Chen Gao, Yuliang Zou, and Jia-Bin Huang. ican: Instance-centric attention network for human-
object interaction detection. In BMVC, 2018.

Noa Garnett, Rafi Cohen, Tomer Pe’er, Roee Lahav, and Dan Levi. 3d-lanenet: end-to-end 3d
multiple lane detection. In /CCV, 2019.

Yuliang Guo, Guang Chen, Peitao Zhao, Weide Zhang, Jinghao Miao, Jingao Wang, and Tae Eun
Choe. Gen-lanenet: A generalized and scalable approach for 3d lane detection. In ECCV, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Songtao He and Hari Balakrishnan. Lane-level street map extraction from aerial imagery. In WACV,
2022.

Songtao He, Favyen Bastani, Satvat Jagwani, Mohammad Alizadeh, Hari Balakrishnan, Sanjay
Chawla, Mohamed M Elshrif, Samuel Madden, and Mohammad Amin Sadeghi. Sat2graph: Road
graph extraction through graph-tensor encoding. In ECCV, 2020.

10



Published as a conference paper at ICLR 2024

Namdar Homayounfar, Wei-Chiu Ma, Justin Liang, Xinyu Wu, Jack Fan, and Raquel Urtasun.
Dagmapper: Learning to map by discovering lane topology. In ICCV, 2019.

Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du,
Tianwei Lin, Wenhai Wang, et al. Planning-oriented autonomous driving. In CVPR, 2023.

M Kalfaoglu, Halil Ibrahim Ozturk, Ozsel Kilinc, and Alptekin Temizel. Topomask: Instance-
mask-based formulation for the road topology problem via transformer-based architecture. arXiv
preprint arXiv:2306.05419, 2023.

Tristan Langenberg, Timo Liiddecke, and Florentin Worgoétter. Deep metadata fusion for traffic light
to lane assignment. /EEE RA-L, 2019.

Youngwan Lee, Joong-won Hwang, Sangrok Lee, Yuseok Bae, and Jongyoul Park. An energy and
gpu-computation efficient backbone network for real-time object detection. In CVPRW, 2019.

Qi Li, Yue Wang, Yilun Wang, and Hang Zhao. Hdmapnet: An online hd map construction and
evaluation framework. In ICRA, 2022a.

Tianyu Li, Li Chen, Huijie Wang, Yang Li, Jiazhi Yang, Xiangwei Geng, Shengyin Jiang, Yuting
Wang, Hang Xu, Chunjing Xu, Junchi Yan, Ping Luo, and Hongyang Li. Graph-based topology
reasoning for driving scenes. arXiv preprint arXiv:2304.05277, 2023.

Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Yu Qiao, and Jifeng
Dai. Bevformer: Learning bird’s-eye-view representation from multi-camera images via spa-
tiotemporal transformers. In ECCV, 2022b.

Bencheng Liao, Shaoyu Chen, Xinggang Wang, Tianheng Cheng, Qian Zhang, Wenyu Liu, and
Chang Huang. Maptr: Structured modeling and learning for online vectorized hd map construc-
tion. arXiv preprint arXiv:2208.14437, 2022.

Bencheng Liao, Shaoyu Chen, Bo Jiang, Tianheng Cheng, Qian Zhang, Wenyu Liu, Chang Huang,
and Xinggang Wang. Lane graph as path: Continuity-preserving path-wise modeling for online
lane graph construction. arXiv preprint arXiv:2303.08815, 2023.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense object
detection. In ICCV, 2017.

Yicheng Liu, Tianyuan Yuan, Yue Wang, Yilun Wang, and Hang Zhao. Vectormapnet: End-to-end
vectorized hd map learning. In ICML, 2023a.

Yingfei Liu, Tiancai Wang, Xiangyu Zhang, and Jian Sun. Petr: Position embedding transformation
for multi-view 3d object detection. In ECCV, 2022.

Yingfei Liu, Junjie Yan, Fan Jia, Shuailin Li, Aqi Gao, Tiancai Wang, Xiangyu Zhang, and Jian Sun.
Petrv2: A unified framework for 3d perception from multi-camera images. In ICCV, 2023b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In /CCV, 2021.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Mingjie Lu, Yuanxian Huang, Ji Liu, Jinzhang Peng, Lu Tian, and Ashish Sirasao. Separated road-
topoformer. arXiv preprint arXiv:2307.01557, 2023.

Lina Maria Paz, Pedro Piniés, and Paul Newman. A variational approach to online road and path
segmentation with monocular vision. In /ICRA, 2015.

Limeng Qiao, Wenjie Ding, Xi Qiu, and Chi Zhang. End-to-end vectorized hd-map construction
with piecewise bezier curve. In CVPR, 2023.

11



Published as a conference paper at ICLR 2024

Ceryen Tan, Tsai Hong, Tommy Chang, and Michael Shneier. Color model-based real-time learning
for road following. In IEEE ITS, 2006.

Huijie Wang, Tianyu Li, Yang Li, Li Chen, Chonghao Sima, Zhenbo Liu, Yuting Wang, Shengyin
Jiang, Peijin Jia, Bangjun Wang, Feng Wen, Hang Xu, Ping Luo, Junchi Yan, Wei Zhang, and
Hongyang Li. Openlane-v2: A topology reasoning benchmark for scene understanding in au-
tonomous driving. arXiv preprint arXiv:2304.10440, 2023.

Tiancai Wang, Rao Muhammad Anwer, Muhammad Haris Khan, Fahad Shahbaz Khan, Yanwei
Pang, Ling Shao, and Jorma Laaksonen. Deep contextual attention for human-object interaction
detection. In ICCV, 2019.

Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Siddhesh Khandel-
wal, Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes, et al. Argoverse
2: Next generation datasets for self-driving perception and forecasting. In NeurIPS, 2021.

Dongming Wu, Fan Jia, Jiahao Chang, Zhuoling Li, Jianjian Sun, Chunrui Han, Shuailin Li, Yingfei
Liu, Zheng Ge, and Tiancai Wang. The l1st-place solution for cvpr 2023 openlane topology in
autonomous driving challenge. arXiv preprint arXiv:2306.09590, 2023.

Zhenhua Xu, Yuxuan Liu, Yuxiang Sun, Ming Liu, and Lujia Wang. Centerlinedet: Road lane
centerline graph detection with vehicle-mounted sensors by transformer for high-definition map
creation. In ICRA, 2023.

Fan Yan, Ming Nie, Xinyue Cai, Jianhua Han, Hang Xu, Zhen Yang, Chaoqiang Ye, Yanwei Fu,
Michael Bi Mi, and Li Zhang. Once-3dlanes: Building monocular 3d lane detection. In CVPR,
2022.

Yuang Zhang, Tiancai Wang, and Xiangyu Zhang. Motrv2: Bootstrapping end-to-end multi-object
tracking by pretrained object detectors. In CVPR, 2023.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. In /CLR, 2021.

12



	Introduction
	Related Works
	Lane Detection Method
	Lane Topology Learning
	HD Map Perception

	Method
	Lane Detector
	Traffic Element Detector
	Lane-Lane Topology Reasoning
	Lane-Traffic Topology Reasoning
	Loss Function

	Experiments
	Dataset and Metric
	Implementation Details
	State-of-the-art Comparison
	Ablation Study
	Visualization
	More Discussion

	Conclusion

