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B Implementation Details

B.1 Transformer network architecture

The input consists of a sequence of observations, returns, actions and rewards. Observations are
images in the format B × T ×W ×H × C. We use 84× 84 grayscale images (i.e., W = 84, H =
84, C = 1). Similar to ViT [19], we extract M non-overlapping image patches, perform a linear
projection and then rasterise them into dmodel-dimensional 1D tokens. We define each patch to be
14× 14 pixels (i.e., M = 6× 6 = 36). A learned positional embedding is added to each of the patch
tokens o1, ...,oM to retain positional information as in ViT. As described in Section 3.2, returns
are discretized into 120 buckets in {−20, ..., 100}, and rewards are converted to ternary quantities
{−1, 0,+1}.

For the whole sequence 〈...,ot1, ...,otM , R̂t, at, rt, ...〉, we learn another positional embedding at each
position and add to each token embedding. We experimented with rotary position embedding [72],
but did not find a significant benefit from them in our setting. On top of the token embeddings, our
transformer models use a standard transformer decoder architecture.

A standard transformer implementation for sequence modeling would employ a sequential causal
attention masking to prevent positions from attending to subsequent positions [77]. However, for
the sequence 〈...,ot1, ...,otM , R̂t, at, rt, ...〉 that we consider, we do not want to prevent the position
corresponding to observation token otm from accessing subsequent observation tokens {otm′ : m′ >
m} within the same timestep, since there is no clear sequential causal relation between image patches.
Therefore, we change the sequential causal masking to allow observation tokens within the same
timestep to access each other, but not subsequent positions after otM , i.e.R̂t, at, rt,ot+1

1 , ...,ot+1
M , ...

Table 1 summarizes the transformer configurations we use for each model size. We train these
models on an internal cluster, each with 64 TPUv4. Due to prohibitively long training times, we only
evaluated one training seed. For the 40M DT model, we perform four additional runs with different
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seeds to investigate the sensitivity to random seeds. The mean and standard deviation of the median
score across 5 random seeds are 0.79 and 0.06; the mean and standard deviation of IQM scores are
0.95 and 0.05. Compared to the differences to the baseline results and the results of other DT model
sizes, we consider the variance to be relatively small.

Model Layers Hidden size D (dmodel) Heads Params Training Time on 64 TPUv4
DT-10M 4 512 8 10M 1 day
DT-40M 6 768 12 40M 2 days
DT-200M 10 1280 20 200M 8 days

Table 1: Multi-Game Decision Transformer Variants

We performed hyperparameter search on DT-40M, and directly applied to DT-200M. With the set
of hyperparameters working the best for smaller models, it still manifests a clear scaling trend of
multi-game and transfer learning performance.

B.2 Fine-tuning protocol for Atari games

In the fine-tuning experiments, we reserved five games (Alien, MsPacman, Pong, Space Invaders and
Star Gunner) to be used only for fine-tuning. These games were selected due to their varied gameplay
characteristics. Each game was fine-tuned separately to measure the model’s transfer performance for
a fixed game. We use 1% of the original dataset (corresponding to roughly 500 000 transitions) to
specifically test fine-tuning in low-data regimes.

B.3 Action and return sampling during in-game evaluation

We sample actions from the model with a temperature of 1. Inspired by Nucleus sampling (Holtzman
et al. [32]), we only sample from the top 85th percentile action logits for all Decision Transformer
models and Behavioral Cloning models (this parameter was selected to give highest performance for
both models). While we train the model to predict actions for all timesteps in the sequence, during
in-game evaluation, we execute the last predicted action in the sequence (conditioned on all past
observations, and past generated actions, rewards, and target returns).

To generate target returns as discussed in Section 3.4, we sample them from the model with the
temperature of 1 and the top 85th percentile logits. We use κ = 10 in all our experiments. To avoid
storing the history of previously generated target returns (which may be difficult to incorporate into
some RL frameworks), we experimented with autoregressively regenerating all target returns in the
sequence, and found that to work well without requiring any special recurrent state maintenance
outside of the model. Algorithm 1 has pseudocode for our expert return and action inference.

As an alternative way to generate expert-but-likely returns, we also experimented with simply
generating N return samples from the model according to log-probability logPθ(R

t|...), and picking
the highest one. We then generate the action conditioned on this largest picked return as before. This
avoids needing the hyperparameter κ. In this setting, we found N = 128, inverse temperature of
0.75 for return sampling, no percentile cutoff for return sampling, and sampling from the top 50th
percentile action logits with a temperature of 1 to work similarly well.

B.4 Evaluation protocol and Atari environment details

Our environment is the Atari 2600 Gym environment with pre-processing performed as in Agarwal
et al. [1]. Our Atari observations are 84× 84 grayscale images. We compress observation images
to jpeg in the dataset (to keep dataset size small) and during in-game evaluation. All games use the
same shared set of 18 discrete actions. For all methods, each game score is calculated by averaging
over 16 model rollout episode trials. To reduce inter-trial variability, we do not use sticky actions
during evaluation.

B.5 Image augmentation

All models were trained with image augmentations. We investigate training with the following
augmentation methods: random cropping, random channel permutation, random pixel permutation,
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Algorithm 1 Pseudocode for Expert Return and Action Inference (Section 3.4)

Given an environment E, the current time step t. κ = 10, the return upper bound Rhigh = 100,
the return lower bound Rlow = −20
Initialize a context window 〈..., rt−2,ot−11 , ...,ot−1M , R̂t−1, at−1, rt−1,ot1, ...,o

t
M 〉, abbreviated

as . . . in the following.
# Autoregressive return and action generation
while terminal state not reached yet do

Compute 121 logits (Rt = −20, . . . , 100) for the categorical return distribution P (Rt|...)
# Increase logits proportionally to return magnitudes to prefer high magnitude
Define logP (Rt|expertt, ...) = logP (Rt|...) + κ(Rt −Rlow)/(Rhigh −Rlow)
# Sample a return
Rt ∼ P (Rt|expertt, ...)
Compute logits for the categorical action distribution P (at|Rt, ...)
# Sample an action
at ∼ P (at|Rt, ...)
# Interact with the environment
ot+1
1 , ...,ot+1

M , rt ∼ Estep(at)
t = t+ 1 and shift the context window accordingly

end while

horizontal flip, vertical flip, and random rotations. We found random cropping and random rotations
to work the best. (In our random cropping implementation, images of size 84× 84 are padded on
each side with 4 zero-value pixels, and then randomly cropped to 84× 84.) In general, we aim to
expand the domain of problems solved during training to similar kinds that we hope to generalize
to by encoding useful inductive biases. We maintain the same random augmentation parameters for
each window sequence. We apply data augmentation in both pre-training and fine-tuning.

C Baseline Implementation Details

BC Our BC model is effectively the same as our DT model but removing the return token R̂t from
the training sequence:

x = 〈...,ot1, ...,otM , at, rt, ...〉

Instead of predicting a return token (distribution) given observation tokens ot1, ...,o
t
M and the

previous part of the sequence, we directly predict an action token (distribution), which also means
that we remove return conditioning for the BC model. During evaluation, we sample actions with a
temperature of 1, and sample from the top 85th percentile logits (as discussed in Appendix B.3). All
other implementation details and configurations are identical to DT.

C51 DQN For single-game experiments, our implementation and training followed the details
in [11] except for using multi-step learning with n = 4. For multi-game experiments we trained using
the details provided in the main text; we ran the algorithm for 15M gradient steps (≈ 4B environment
steps ≈ 16B Atari frames).

CQL For CQL we use the same optimizer and learning rate as for C51 DQN. We use a per-replica
batch size of 32 and run for 1M gradient steps on a TPU pod with 32 cores, yielding a global batch
size of 256. During finetuning for each game, we copy the entire Q-network trained with CQL,
and apply an additional 100k gradient steps of batch size 32 on a single CPU, where each batch
is sampled exclusively from the offline dataset of the finetuned game. We also experimented with
smaller learning rates (0.00003 instead of the default 0.00025) and larger batch sizes (1024, 4096)
but found the results largely unchanged. We also tried using offline C51 and double DQN as opposed
to CQL, and found performance to be worse.

CPC For the CPC baseline [56], we apply a contrastive loss between φ(ot), φ(ot+1) using the
objective function

− φ(ot+1)
>Wφ(ot) + logEs̃∼ρ[exp{φ(õ)>Wφ(ot)}], (1)
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where W is a trainable matrix and ρ is a non-trainable prior distribution; for mini-batch training we
set ρ to be the distribution of states in the mini-batch. The state representations φ(o) is parametrized
by CNNs followed by two MLP layers with 512 units each interleaved with ReLU activation. For
the CNN architecture, we used the C51 implementation with an Impala neural network architecture
of three blocks using 16, 32, and 32 channels respectively, and trained with a batch size of 256
and learning rate of 0.00025 both during pretraining and downstream BC adaptation. We conduct
representation learning for a total of 1M gradient steps, and finetune on 1% data for 100k steps every
50k steps of representation learning and report the best finetuning results.

BERT and ACL Our BERT and ACL baselines are based on the representation learning objectives
described in [80]. For the BERT [18] state representation learning baseline, we (1) take a sub-
trajectory ot:t+k, at:t+k, rt:t+k from the dataset (without special tokenization as in DT), (2) randomly
mask a subset of these, (3) pass the masked sequence into a transformer, and then (4) for each masked
input state ot+i, apply a contrastive loss between its representation φ(ot+i) and the transformer
output Transformer[i] at the corresponding sequence position:

− φ(ot+i)>W Transformer[i] + logEõ∼ρ[exp{φ(õ)>W Transformer[i]}], (2)

where ρ is the distribution over states in the mini-batch. For attentive contrastive learning (ACL) [80],
we apply an additional action prediction loss to the output of BERT at the sequence positions of the
action inputs.

To parameterize φ, we use the same CNN architecture as in CPC, while the transformer is parameter-
ized by two self-attention layers with 4 attention heads of 256 units each and feed-forward dimension
512. The transformer does not apply any additional directional masking to its inputs. We used
k = 16.

Pretraining and finetuning is analogous to CPC. Namely, when finetuning we take the pretrained
representation φ and use a BC objective for learning a neural network (two MLP layers with 512
units each) policy on top of this representation.

D Comparisons between transformers and convolution networks
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Figure 10: Performance scaling with model
size for UDRL and CQL (Impala architecture)
compared to Decision Transformer.

Decision Transformer is an Upside-Down RL
(UDRL) [68, 71] implementation that uses the trans-
former architecture and considers RL as a sequence
modeling problem. To understand the benefit of the
transformer architecture, we compare to a UDRL im-
plementation that uses feed-forward, convolutional
Impala networks [20]. Specifically, we use the
same return, action, and reward tokenizers as in
DT, and only replace the observation (four consec-
utive Atari frames stacked together) encoding to
use the Impala architecture. Similar to what we do
for CQL, we also experiment with different sizes
of the Impala architecture by varying the number
of blocks and channels in each block of the Im-
pala network: the number of blocks and channels
is one of (5 blocks, 128 channels) ≈ 5M params,
(10 blocks, 256 channels) ≈ 30M params,
(5 blocks, 512 channels) ≈ 60M params. We use
a (768, 768) 2-layer fully-connected head to predict
the next return token from observation embedding;
another (768, 768) head to predict the next action
token from a concatenation of observation embedding and return token embedding; and another
(768, 768) head to predict the next reward token from a concatenation of observation embedding,
return token embedding, and action token embedding.

The input to the model is slightly different from what we have for DT: Instead of considering a
T -timestep sub-trajectory (T = 4) where each timestep contains ot, Rt, at, rt, we stack T image
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frames (as common in [53]), and only consider Rt, at, rt from the last timestep. All other design
choices and evaluation protocols are the same as DT.

Figure 10 shows clear advantages of Decision Transformer over UDRL with the Impala architecture.
In the comparison between UDRL (Impala) and CQL that uses the same Impala network at each
model size we evaluated, we observe that UDRL (Impala) outperforms CQL. The results show that
the benefits of our method come not only from using network architectures, but also from the UDRL
formulation. While the reasons for the benefits of transformer architecture over other neural networks
are still an open question in general (see e.g., [64]), our hypothesis is that transformers allow for
easier discovery of correlations between components of the input and output, due to the fact that
transformers process the input as a flat sequence with attention allowed between any patch, action,
or return token. Although it is not feasible to compare transformer with all possible convolutional
architectures due to the broad design space, we believe these empirical results still show a clear trend
favoring both UDRL and transformer architectures.

E Comparisons between methods using median human normalized scores

We used inter-quartile mean (IQM) to aggregate performance over individual games in Figure 1.
Median is another metric commonly used to aggregate scores (although it has issues as discussed in
[2]: it has high variability, and in the most extreme case, the median is unaffected by zero performance
on nearly half of the tasks.). For completeness, we report the median scores for all methods:
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Figure 11: Median human-normalized score across 41 Atari games. Grey bars are single-game
specialist models while blue are generalists. Single-game BCQ results are from Gulcehre et al. [25].

For expert-filtering experiments in Section 4.8, we also provide the plot of expert filtering effects
with median human-normalized scores in Figure 12. We note that ranking of various configurations
do not change across aggregate metrics.
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Figure 12: Median human-normalized scores of 40M transformer models trained on full data and
only expert data.

For Upside-Down RL comparison experiments Appendix D, we also provide median human-
normalized scores in Figure 13.

21



Number of Model Parameters

H
um

an
-N

or
m

al
iz

ed
 M

ed
ia

n 
S

co
re

0%

25%

50%

75%

100%

6M 10
M

40
M

80
M

20
0M

Decision 
Transformer

UDRL (Impala)

CQL (Impala)

Figure 13: How UDRL (Impala architecture) median human-normalized score scales with model size
on training set games, in comparisons with Decision Transformer and CQL (Impala architecture).

F Details of Expert Dataset Generation

To generate the expert dataset for experiments in Section 4.8, we we filter our training data [1] from
each game by episodic returns and only preserve top 10% trajectories to produce an expert dataset.
We plot of return histograms for reference in Figure 14.
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Figure 14: Histograms of rollout performance from [1] used to generate the expert dataset, with
(unnormalized) score-density on the vertical axis, and game score (rewards are clipped) on the
horizontal axis. We indicate the 90th percentile performance cutoff with a red vertical line for each
game. Rollouts that exceeded this score threshold were included in the expert dataset.

G Effect of Model Size on Training Speed

It is believed that large transformer-based language models train faster than smaller models, in the
sense that they reach higher performance after observing a similar number of tokens [38, 15]. We
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find this trend to hold in our setting as well. Figure 15 shows an example of performance on two
example games as multi-game training progresses. We see that larger models reach higher scores per
number of training steps taken (thus tokens observed).

# of training steps

H
um

an
-n

or
m

al
iz

ed
 s

co
re

0.0

0.5

1.0

1.5

0M 3M 5M 8M 10M

Asterix

# of training steps

H
um

an
-n

or
m

al
iz

ed
 s

co
re

0.000

0.035

0.070

0M 3M 5M 8M 10M

10M

40M

200M

Seaquest

Figure 15: Example game scores for different model sizes as multi-game training progresses.

H Qualitative Attention Analysis

We find that the Decision Transformer model consistently attends to observation image patches that
contain meaningful game entities. Figure 16 visualizes selected attention heads and layers for various
games. We find heads consistently attend to entities such as player character, player’s free movement
space, non-player objects, and environment features.

(a) Asterix: player (b) Frostbite: player (c) Breakout: ball

(d) Breakout: no paddle (e) Breakout: unbroken blocks (f) Asterix: non-players

Figure 16: Example image patches attended (red) for predicting next action by Decision Transformer.
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I Raw Atari Scores

We report full raw scores of 41 training Atari games for best performing sizes of multi-game models
in Table 2.

Game Name DT (200M) BC (200M) Online DQN (10M) CQL (60M)
Amidar 101.5 101.0 629.8 4.0
Assault 2,385.9 1,872.1 1,338.7 820.1
Asterix 14,706.3 5,162.5 2,949.1 950.0
Atlantis 3,105,342.3 4,237.5 976,030.4 16,800.0
BankHeist 5.0 63.1 1,069.6 20.0
BattleZone 17,687.5 9,250.0 26,235.2 5,000.0
BeamRider 8,560.5 4,948.4 1,524.8 3,246.4
Boxing 95.1 90.9 68.3 100.0
Breakout 290.6 185.6 32.6 62.0
Carnival 2,213.8 2,986.9 2,021.2 440.0
Centipede 2,463.0 2,262.8 4,848.0 2,904.0
ChopperCommand 4,268.8 1,800.0 951.4 400.0
CrazyClimber 126,018.8 123,350.0 146,362.5 139,300.0
DemonAttack 23,768.4 7,870.6 446.8 1,202.0
DoubleDunk -10.6 -1.5 -156.2 -2.0
Enduro 1,092.6 793.2 896.3 729.0
FishingDerby 11.8 5.6 -152.3 18.4
Freeway 30.4 29.8 30.6 32.0
Frostbite 2,435.6 782.5 2,748.4 408.0
Gopher 9,935.0 3,496.3 3,205.6 700.0
Gravitar 59.4 12.5 492.5 0.0
Hero 20,408.8 13,850.0 26,568.8 14,040.0
IceHockey -10.1 -8.3 -10.4 -10.5
Jamesbond 700.0 431.3 264.6 500.0
Kangaroo 12,700.0 12,143.8 7,997.1 6,700.0
Krull 8,685.6 8,058.8 8,221.4 7,170.0
KungFuMaster 15,562.5 4,362.5 29,383.1 13,700.0
NameThisGame 9,056.9 7,241.9 6,548.8 3,700.0
Phoenix 5,295.6 4,326.9 3,932.5 1,880.0
Pooyan 2,859.1 1,677.2 4,000.0 330.0
Qbert 13,734.4 11,276.6 4,226.5 11,700.0
Riverraid 14,755.6 9,816.3 7,306.6 3,810.0
RoadRunner 54,568.8 49,118.8 25,233.0 50,900.0
Robotank 63.2 44.6 9.2 17.0
Seaquest 5,173.8 1,175.6 1,415.2 643.0
TimePilot 2,743.8 1,312.5 -883.1 2,400.0
UpNDown 16,291.3 10,454.4 8,167.6 5,610.0
VideoPinball 1,007.7 1,140.8 85,351.0 0.0
WizardOfWor 187.5 443.8 975.9 500.0
YarsRevenge 28,897.9 20,738.9 18,889.5 19,505.4
Zaxxon 275.0 50.0 -0.1 0.0

Table 2: Raw scores of 41 training Atari games for best performing multi-game models.
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