
A Other related work439

Imbalanced Learning in Vision Domain. Most real-world data is naturally imbalanced, presenting440

a significant challenge in training fair models that are not biased towards majority classes. To address441

this problem, various approaches have been commonly utilized. Ensemble learning [7, 18, 49, 38, 20,442

3] combines the outputs of multiple weak classifiers. Data re-sampling methods [5, 10, 29, 27, 14, 36]443

aim to adjust the label distribution in the training set by synthesizing or duplicating samples from444

the minority class. Another approach tackles the imbalance issue by modifying the loss function,445

assigning larger weights to minority classes or adjusting the margins between different classes446

[50, 32, 4, 31, 40, 26, 37]. Post-hoc correction methods compensate for the imbalanced classes during447

the inference step, after completing the model training [14, 33, 21, 12]. Although these techniques448

have been extensively applied to i.i.d. data, extending them to graph-structured data poses non-trivial449

challenges.450

Graph Contrastive Learning. Contrastive methods, which have proven effective for unsupervised451

learning in vision, have also been adapted for graph data. One notable approach is DGI [35],452

which presents a framework for unsupervised node-level representation learning that maximizes453

global mutual information. Other approaches, such as GRACE [51], GCA [52], and GraphCL454

[45], utilize augmented graphs to optimize the similarity between positive node pairs and minimize455

negative pairs. CCA-SSG [46] introduces an efficient loss function based on canonical correlation456

analysis, eliminating the need for negative samples. Incorporating community information, gCooL457

[17] enhances node representations and downstream task performance. GGD [48] simplifies the458

mutual information loss function by directly discriminating between two sets of node samples,459

resulting in faster computation and lower memory usage. These contrastive methods exhibit potential460

for improving unsupervised learning on graph data. However, it is important to note that our461

model operates within the context of semi-supervised learning, which significantly differs from the462

mechanisms employed by these models.463
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B Proofs464

B.1 Proofs of Theorem 1465

Theorem 1 Under the condition that
∑c

i=1 ni is a constant, the variance466 ∑c
i=1 Ex

[
1
ni
hT (x)Λih(x)

]
reach its minimum when all ni equal.467

Proof The expression
∑c

i=1 Ex

[
1
ni
hT (x)Λih(x)

]
can be equivalently expressed as468 ∑c

i=1
1
ni
Ex

[
hT (x)Λih(x)

]
. As previously assumed, the Ex[h

T (x)Λih(x)] is the same for dif-469

ferent i, which implies that our goal is to demonstrate that
∑c

i=1
1
ni

is minimized when all ni are470

equal.471

Let m be
∑c

i=1 ni. We wish to find the extremum of the sum of their reciprocals, which is given by472

S =
1

n1
+

1

n2
+ · · ·+ 1

nc
. (11)

Using the inequality of arithmetic and harmonic means, we have473

c
1
n1

+ 1
n2

+ · · ·+ 1
nc

≤ n1 + n2 + · · ·+ nc

c
, (12)

with equality if and only if n1 = n2 = · · · = nc. Rearranging, we get474

c2

n1 + n2 + · · ·+ nc
≤ S, (13)

with equality if and only if n1 = n2 = · · · = nc. Since m = n1 + n2 + · · ·+ nc, we have475

c2

m
≤ S, (14)

with equality if and only if n1 = n2 = · · · = nc =
m
c . Therefore, when all the c numbers are equal,476

the sum of their reciprocals is minimized and given by S = c2

m .477

We can also use the method of Lagrange multipliers. Let f(n1, n2, . . . , ac) =
1
n1

+ 1
n2

+ . . .+ 1
nc

478

be the function that we want to extremize. Then, the Lagrangian is:479

L(n1, n2, . . . , nc, λ) = f(n1, n2, . . . , nc) + λ(n1 + n2 + . . .+ nc −m). (15)

Taking the partial derivatives of L with respect to ai and λ, we get:480

∂L
∂ni

= − 1

n2
i

+ λ

∂L
∂λ

= n1 + n2 + . . .+ nc −m.

(16)

Setting these partial derivatives to zero, we get:481

n1 = n2 = . . . = nc =
m

c
, λ =

c2

m2
. (17)

Thus, when the c numbers are equal, their reciprocal sum is minimized and is equal to c2

m . Moreover,482

since S is a continuously differentiable function of n1, n2, . . . , nc, this extremum is a minimum.483

Therefore, we have shown that the reciprocal sum of c numbers with a sum of m is minimized and484

equal to c2

m when the c numbers are equal.485

□486
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B.2 Proofs of Lemma 1 and More Details for Estimating the Expectation with Unlabeled487

Nodes (Section 3.2)488

B.2.1 Proofs of Lemma 1489

Lemma 1 Under the above assumption for hi ∼ N(µi,Λi), Ci ∼ N
(
µi, 1

ni
Λi

)
, minimizing the490 ∑c

i=1 Ex [Var(x)] is equivalent to minimizing Equation 18:491

1

N

∑
x∈G

c∑
i=1

(
h(x)T

1√
2ni

(
hi
1 − hi

2

))2

=
1

N

nj∑
k=1

c∑
j=1

c∑
i=1

(
(µj

k + ϵjk)
T 1√

2ni

(
ϵi1 − ϵi2

))2

. (18)

Proof Let ϵi denote hi − µi, which follows the distribution ϵi ∼ N(0,Λi). Similarly, we denote492

ei = Ci − µi and it follows that ei ∼ N
(
0, 1

ni
Λi

)
.493

We know494

Var(x) =
c∑

i=1

ED

[(
hT (x)Ci − ED

[
hT (x)Ci

])2]
=

c∑
i=1

Eei

[(
hT (x)(µi + ei)− hT (x)µi

)2]
=

c∑
i=1

Eei

[(
hT (x)ei

)2]
=

c∑
i=1

1

ni
hT (x)Λih(x),

(19)

so we get495
c∑

i=1

Ex [Var(x)] =

c∑
i=1

Ex

[
1

ni
hT (x)Λih(x)

]
. (20)

Motivated by stochastic gradient descent, we opt to sample an ei on each occasion and compute, as496

opposed to directly calculating the expectation ED⊂G.497

At present, we remain uncertain about how to sample the noise term ei associated with the class498

center Ci. We put forth a proposition to estimate the class center noise e utilizing the feature noise ϵ.499

Under the supposition that when v ∈ Ck, the jth element of the feature f(v) adheres to a Gaussian500

distribution:501

ϵi ∼ N
(
0,Λi

)
, ei ∼ N

(
0,

1

ni
Λi

)
. (21)

Consequently, multiplying the noise term ϵi in Equation 21 by
1
√
ni

yields a random variable that502

exhibits an identical distribution to ei:503

1
√
ni

ϵi ∼ N

(
0,

1

ni
Λi

)
(22)

Moreover, how might we compute εi? In practical scenarios, we merely possess the feature h.504

However, we are able to calculate the disparity between two features, hi
1 and hi

2, originating from the505

same class i:506

1√
2ni

(
hi
1 − hi

2

)
=

1√
2ni

(ϵ1 − ϵ2) ∼ N

(
0,

1

ni
Λi

)
. (23)

Incorporating this into Equation 20, the loss is expressed as:507

1

N

∑
x∈G

c∑
i=1

(
h(x)T

1√
2ni

(
hi
1 − hi

2

))2

. (24)

□508
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B.2.2 More Details for Estimating the Expectation with Unlabeled Nodes (Section 3.2)509

Lemma 1 suggests that
∑c

i=1 Ex [Var(x)] can be estimated by sampling labeled node pairs (hi
1, h

i
2)510

from the same class i. However, due to the scarcity of data in the minority class, this can often511

be challenging. In Section 3.2, we address this issue by utilizing random data augmentation and512

defining nodes from different views as members of the same class, enabling us to sample node pairs513

for Equation 3 and perform embedding subtraction.514

However, as we mentioned, the pseudo node pairs lack information regarding their class membership,515

making it impossible to assign appropriate 1√
2ni

values for different i in Equation 3. These coefficients516

play a crucial role in compensating for the minority class, making it imperative to reintroduce517

information about the class number when constructing variance regularization. Therefore, in the518

second step, we replace h in Equation 3 with the class center Ci, as demonstrated in Equation 4.519

As Ci = µi + ei and the variance of ei is proportional to 1
ni

, using Equation 4 to estimate Lemma520

1 can provide similar compensatory effects for the minority class. We present the proof for the521

aforementioned propositions below.522

Proof Firstly, the
∑c

i=1 Ex [Var(x)] can be decomposed as follows:523

c∑
i=1

Ex [Var(x)] =
1

N

∑
x∈G

c∑
i=1

(
h(x)T

1√
2ni

(
hi
1 − hi

2

))2

=
1

N

nj∑
k=1

c∑
j=1

c∑
i=1

((
µj
k + ϵjk

)T 1√
2ni

(
hi
1 − hi

2

))2

=
1

N

nj∑
k=1

c∑
j=1

c∑
i=1

(
(µj

k)
T 1√

2ni

(
ϵi1 − ϵi2

)
+ (ϵjk)

T 1√
2ni

(
ϵi1 − ϵi2

))2

=
1

2N

nj∑
k=1

c∑
j=1

c∑
i=1

(
(µj

k)
T 1
√
ni

(
ϵi1 − ϵi2

)
+ (ϵjk)

T 1
√
ni

(
ϵi1 − ϵi2

))2

=
1

2N

nj∑
k=1

c∑
j=1

c∑
i=1

(
1

ni

[
(µj

k)
T

(
ϵi1 − ϵi2

)]2)
︸ ︷︷ ︸

T1

+
1

2N

nj∑
k=1

c∑
j=1

c∑
i=1

(
1

ni

[
(ϵjk)

T
(
ϵi1 − ϵi2

)]2)
︸ ︷︷ ︸

T2

+
1

N

nj∑
k=1

c∑
j=1

c∑
i=1

(
1

ni

[
(µj

k)
T

(
ϵi1 − ϵi2

)
(ϵjk)

T
(
ϵi1 − ϵi2

)])
︸ ︷︷ ︸

T3

(25)
The above Equation can be decomposed into three parts, namely T1, T2, and T3. Notably, each of524

these parts is associated with weight 1
ni

. This observation supports Theorem 1 and Lemma 1, which525

suggest that the variance of a model is highly dependent on the distribution of the dataset’s sample526

size, and that the extent of sample imbalance can significantly increase the model’s variance.527

Note that ϵi ∼ N(0,Λi), ei ∼ N
(
0, 1

ni
Λi

)
, and so 1√

ni
ϵi ∼ N

(
0, 1

ni
Λi

)
. So, if we use the class528

center Ci to replace h in Equation 3, then we can get the following expression,529
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1

N

∑
x∈G

c∑
i=1

(
(Ci)Th(x)− (Ci′)Th′(x)

)2

=
1

N

nj∑
k=1

c∑
j=1

c∑
i=1

(
(µi)T (ϵjk − ϵj

′

k ) + (ei)T ϵjk − (ei
′
)T ϵj

′

k

)2

=
1

N

nj∑
k=1

c∑
j=1

c∑
i=1

(
(µi)T (ϵjk − ϵj

′

k ) + (
1
√
ni

ϵi)T ϵjk − (
1
√
ni

ϵi)T ϵj
′

k

)2

=
1

N

ni∑
k=1

c∑
i=1

c∑
j=1

(
(µj)T (ϵik − ϵi

′

k ) + (
1
√
nj

ϵj)T ϵik − (
1
√
nj

ϵj)T ϵi
′

k

)2

=
1

N

ni∑
k=1

c∑
i=1

c∑
j=1

(
(µj)T (ϵik − ϵi

′

k ) + (
1
√
nj

ϵj)T (ϵik − ϵi
′

k )

)2

=
1

N

ni∑
k=1

c∑
i=1

c∑
j=1

([
(µj)T (ϵik − ϵi

′

k )
]2)

︸ ︷︷ ︸
L1

+
1

N

ni∑
k=1

c∑
i=1

c∑
j=1

(
1

nj

[
( ϵj)T (ϵik − ϵi

′

k )
]2)

︸ ︷︷ ︸
L2

+
2

N

ni∑
k=1

c∑
i=1

c∑
j=1

(
1
√
nj

[
(µj)T (ϵik − ϵi

′

k )( ϵ
j)T (ϵik − ϵi

′

k )
])

︸ ︷︷ ︸
L3

(26)

Like the previous Equation 25, Equation 26 can be decomposed into three parts: L1, L2, and L3. If530

we substitute the class center Ci for h, we can observe that even though L1 is insensitive to class531

imbalance, variables L2 and L3, which respectively incorporate weights 1
nj

and 1√
nj

, can still provide532

the following support: when optimizing the variance of the model, more attention can be given to533

the variance introduced by the minority classes, which also provides an innovative perspective for534

understanding class imbalance on graphs. □535
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C More Results536

C.1 More results Under Traditional Semi-supervised Settings537

In Table 3, we present the results of RVGNN and other algorithms on Cora-Semi (ρ=10). The experi-538

mental results demonstrate that TAM has a significant gain effect on all models (BalancedSoftmax,539

Renode, GraphENS), while GraphENS achieved the best performance among all current baselines540

on various models. By comparing with GraphSMOTE, we can conclude that addressing the node541

classification imbalance issue should focus on the topological characteristics of the graph. Finally,542

and most importantly, RVGNN achieved state-of-the-art results under all basic models, which also543

verifies the superiority of our model in traditional imbalanced segmentation.544

Table 3: Experimental results of our method RVGNN and other baselines on Cora-Semi. We report
averaged balanced accuracy (bAcc.,%) and F1-score (%) with the standard errors over 5 repetitions
on three representative GNN architectures. Highlighted are the top first and second. ∆∆∆ is the margin
by which our method leads state-of-the-art method.

Dataset(Cora-Semi) GCN GAT SAGE

Imbalance Ratio (ρ = 10) bAcc. F1 bAcc. F1 bAcc. F1

Vanilla 62.82 ± 1.43 61.67 ± 1.59 62.33 ± 1.56 61.82 ± 1.84 61.82 ± 0.97 60.97 ± 1.07

Re-Weight 65.36 ± 1.15 64.97 ± 1.39 66.87 ± 0.97 66.62 ± 1.13 63.94 ± 1.07 63.82 ± 1.30

PC Softmax 68.04 ± 0.82 67.84 ± 0.81 66.69 ± 0.79 66.04 ± 1.10 65.79 ± 0.70 66.04 ± 0.92

GraphSMOTE 66.39 ± 0.56 65.49 ± 0.93 66.71 ± 0.32 65.01 ± 1.21 61.65 ± 0.34 60.97 ± 0.98

BalancedSoftmax 69.98 ± 0.58 68.68 ± 0.55 67.89 ± 0.36 67.96 ± 0.41 67.43 ± 0.61 67.66 ± 0.69

+ TAM 69.94 ± 0.45 69.54 ± 0.47 69.16 ± 0.27 69.39 ± 0.37 69.03 ± 0.92 69.03 ± 0.97

Renode 67.03 ± 1.41 67.16 ± 1.67 67.33 ± 0.79 68.08 ± 1.16 66.84 ± 1.78 67.08 ± 1.75

+ TAM 68.26 ± 1.84 68.11 ± 1.97 67.50 ± 0.67 68.06 ± 0.96 67.28 ± 1.11 67.15 ± 1.11

GraphENS 70.89 ± 0.71 70.90 ± 0.81 70.45 ± 1.25 69.87 ± 1.32 68.74 ± 0.46 68.34 ± 0.33

+ TAM 71.69 ± 0.36 72.14 ± 0.51 70.15 ± 0.18 70.00 ± 0.40 70.45 ± 0.74 70.40 ± 0.75

RVGNN 72.92 ± 2.27 72.60 ± 2.26 74.56 ± 0.96 74.61 ± 0.96 73.32 ± 3.02 68.91 ± 3.13

∆∆∆ + 1.23 + 0.46 + 4.11 + 4.61 + 2.87 - 1.49

Table 4: Experimental results of our method RVGNN and other baselines on Computers-Random.
We report averaged balanced accuracy (bAcc.,%) and F1-score (%) with the standard errors over 5
repetitions on three representative GNN architectures. Highlighted are the top first and second. ∆∆∆ is
the margin by which our method leads state-of-the-art method.

Dataset(Computers-Random) GCN GAT SAGE

Imbalance Ratio (ρ = 25.50) bAcc. F1 bAcc. F1 bAcc. F1

Vanilla 78.43 ± 0.41 77.14 ± 0.39 71.35 ±1.18 69.60 ± 1.11 65.30 ± 1.07 64.77 ± 1.19

Re-Weight 80.49 ± 0.44 75.07 ± 0.58 71.95 ± 0.80 70.67 ± 0.51 66.50 ± 1.47 66.10 ± 1.46

PC Softmax 81.34 ± 0.55 75.17 ± 0.57 70.56 ± 1.46 67.26 ± 1.48 69.73 ± 0.53 67.03 ± 0.6

GraphSMOTE 80.50 ± 1.11 73.79 ± 0.14 71.98 ± 0.21 67.98 ± 0.31 72.69 ± 0.82 68.73 ± 1.01

BalancedSoftmax 81.39 ± 0.25 74.54 ± 0.64 72.09 ± 0.31 68.38 ± 0.69 73.80 ± 1.06 69.74 ± 0.60

+ TAM 81.64 ± 0.48 75.59 ± 0.83 74.00 ± 0.77 70.72 ± 0.50 73.77 ± 1.26 71.03 ± 0.69

Renode 81.64 ± 0.34 76.87 ± 0.32 72.80 ± 0.94 71.40 ± 0.97 70.94 ± 1.50 70.04 ± 1.16

+ TAM 80.50 ± 1.11 75.79 ± 0.14 71.98 ± 0.21 70.98 ± 0.31 72.69 ± 0.82 70.73 ± 1.01

GraphENS 82.66 ± 0.61 76.55 ± 0.17 75.25 ± 0.85 71.49 ± 0.54 77.64 ± 0.52 72.65 ± 0.53

+ TAM 82.83 ± 0.68 76.76 ± 0.39 75.81 ± 0.72 72.62 ± 0.57 78.98 ± 0.60 73.59 ± 0.55

RVGNN 85.00 ± 0.07 82.35 ± 0.08 81.94 ± 0.54 80.94 ± 0.25 80.61 ± 0.11 77.49 ± 0.09

∆∆∆ + 2.17 + 5.48 + 6.13 + 8.32 + 1.63 + 3.90

C.2 More results On Naturally Imbalanced Datasets545

One of our major highlights is testing our algorithms on naturally imbalanced datasets, which is more546

representative of real-world scenarios. This means that in a semi-supervised setting, our training547

set and unlabeled data are both imbalanced, which poses a significant challenge for oversampling548

methods. In Table 4, we present the results of RVGNN and all baselines on Computers-Random,549

19



demonstrating that our model still achieves state-of-the-art performance. In contrast, oversampling550

methods such as GraphSMOTE perform poorly on this dataset due to overfitting limitations. We551

believe that our model’s ability to regularize variance from a bottom-up perspective contributes to552

its superior performance on naturally imbalanced graphs, while also demonstrating its powerful553

generalization capabilities.554
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D More Analysis555

D.1 More Ablation Analysis for the Loss Function556
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Figure 4: More Ablation Analysis for the Loss Function.

Details of Experimental Setup. We conduct more experiments on imbalance ratio 10 (ρ = 10) for557

the datasets PubMed and Amazon-Computers. For each GNN network, we add one loss regularization558

at a time, i.e. for GCN, we gradually add LIR, LVR from the initial Lsup. The architecture we559

employed consisted of a 2-layers graph neural network (GNN) with 128 hidden dimensions, using560

GCN [16], GAT [34], and GraphSAGE [9]. The models were trained for 2000 epochs.561

Analysis. Figure 4 reports more experiments for each component in the loss function. As we have562

seen, each component of the loss function can bring an improvement in the training effect. It is worth563

noting that in most cases LVR has a larger effect boost than LIR. We believe that LVR plays a more564

important role in the loss function.565

D.2 More Experiments for Variance and Imbalance Ratio Correlation in Theorem 1566
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Figure 5: More experiments for variance and imbalance ratio correlation in Theorem 1.

Details of Experimental Setup. In this experiment, the classifier is not MLP, which means that567

the probability of a node v being classified into class i depends on the distance of this node from the568

center of class i. We classify half of the classes as majority classes and the other half as minority569

classes. Initially, each class in majority classes and minority classes has 200 labeled nodes. To570

generate different imbalance scenarios (ρ), we reduce the number of labeled nodes in the minority571

class by 1 and add 1 to the number of labeled nodes in the majority class each time, so as to keep the572

number of samples in the training set consistent and eliminate the effect of the sample size variance573

in the training set. To calculate the variance of the model under a certain imbalance ratio (ρ), we574

repeat 20 times to randomly select different but the same number of training sets, and train 2000575

epochs for each fixed training set. The architecture we employed consisted of a 2-layers graph neural576

network (GNN) with 128 hidden dimensions, using GCN [16], GAT [34], and GraphSAGE [9].577
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Analysis. Figure 5 reveals an intriguing pattern, as the majority of data points closely align along578

a regression curve exhibiting a positive slope. This observation provides substantial evidence that579

establishes a strong and direct linear relationship between the imbalance ratio (ρ) and the associated580

variance. Consequently, our findings provide compelling support for the hypothesis postulated in581

Theorem 1.582

D.3 More Experiments for Hyperparameter Sensitivity Analysis of RVGNN583
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Figure 6: More Experiments of Hyperparameter Sensitivity Analysis for RVGNN.

Details of Experimental Setup. We implemented experiments on the two datasets, CiteSeer and584

Amazon-Computers. In this experiment, we evaluate the F1 score when we fix one λ while the other585

changes. The architecture we employed consisted of a 2-layer graph neural network (GNN) with 128586

hidden dimensions, using GCN [16], GAT [34], and GraphSAGE [9]. The models were trained for587

2000 epochs.588

Analysis. In Figure 6, we present the sensitivity analysis of RVGNN to two weight hyperparameters589

(λ1, λ2) in the loss function on the CiteSeer and Amazon-Computers. It is evident that RVGNN590

exhibits varying degrees of sensitivity to hyperparameters on different datasets. Specifically, the591

model demonstrates lower sensitivity to a and b on CiteSeer, while the opposite is observed on592

Amazon-Computers. We postulate that the number of nodes (i.e., dataset size) may be a crucial593

factor in this discrepancy. Nevertheless, the optimal range of hyperparameter selection appears to be594

relatively narrow, indicating that significant efforts are not be required for model fine-tuning.595

D.4 More Results of loss curve and F1 score596
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Figure 7: More analysis of loss curve and F1 score.

Details of Experimental Setup. We implemented experiments on three datasets PubMed, CiteSeer597

and Amazon-Computers. We compare our method RVGNN and other vanilla models (only using598

cross-entropy and not using graph augmentation). The architecture we employed for RVGNN and599

vanilla model consisted of a 2-layer graph neural network (GNN) with 128 hidden dimensions, using600

GCN [16], GAT [34], and GraphSAGE [9]. The models were trained for 2000 epochs.601
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Analysis. We plot the loss curve and F1 score with epoch on the PubMed and Computers datasets.602

By analyzing the plotted loss curves, we observe that our model demonstrates notable advantages,603

including faster convergence of the loss curves and improved performance across multiple datasets.604

For the F1 score, our model consistently outperforms alternative approaches, showcasing its superior605

capability in effectively capturing the complex relationships within the data and making accurate606

predictions.607
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E Elaboration of the experimental setup608

In this section, we present our approach for constructing imbalanced datasets, describe our evaluation609

protocol, and provide comprehensive details on our algorithm as well as the baseline methods utilized610

in our study. To achieve this, we leverage sophisticated techniques and utilize advanced metrics to611

ensure the reliability and relevance of our results.612

E.1 Construction for Imbalanced datasets613

The detailed descriptions of the datasets are shown in Table 5. The details of label distribution in the614

training set of the five imbalanced benchmark datasets are in Table 7, and the label distribution of the615

full graph is provided in Table 7.

Table 5: Summary of the datasets used in this work.

Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3
Amazon-Computers 13,752 491,722 767 10
Coauthor-CS 18,333 163,788 6,805 15

616

Imbalanced datasets construction for Traditional Semi-supervised Settings. For each citation617

dataset, we adopt the "public" split and apply a random undersampling technique to make the class618

distribution imbalanced until the target imbalance ratio ρ is achieved. Specifically, we convert the619

minority class nodes to unlabeled nodes in a random manner. Regarding the co-purchased networks620

Amazon-Computers, we conduct replicated experiments by randomly selecting nodes as the training621

set in each trial. We create a random validation set that contains 30 nodes in each class, and the622

remaining nodes are used as the testing set.623

Imbalanced datasets construction for Naturally Imbalanced Datasets. For Computers-Random624

and CS-Random, we constructed a training set with equal proportions based on the label distribution of625

the complete graph (Amazon-Computers). The label distributions for the training sets of Computers-626

Random and CS-Random are presented in Table 7. To achieve this, we employed a stratified sampling627

approach that ensured an unbiased representation of all labels in the training set.628

Table 6: Label distributions in the training sets

Dataset C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14
Cora-Semi (ρ = 10) 23.26% 23.26% 23.26% 23.26% 2.32% 2.32% 2.32% - - - - - - - -
CiteSeer-Semi (ρ = 10) 30.30% 30.30% 30.30% 3.03% 3.03% 3.03% - - - - - - - - -
PubMed-Semi (ρ = 10) 47.62% 47.62% 4.76% - - - - - - - - - - - -
Computers-Semi (ρ = 10) 18.18% 18.18% 18.18% 18.18% 18.18% 1.82% 1.82% 1.82% 1.82% 1.82% - - - - -
Computers-Random (ρ = 25.50) 3.01% 15.79% 10.53% 3.76% 38.35% 2.26% 3.01% 6.02% 15.79% 1.50% - - - - -
CS-Random (ρ = 41.00) 3.98% 2.27% 11.36% 2.27% 7.39% 11.93% 1.70% 5.11% 3.98% 0.57% 7.95% 11.36% 2.27% 23.30% 4.55%

Table 7: Label distributions on the whole graphs

Dataset C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14
Cora (ρ ≈ 4.54) 351 217 418 818 426 298 180 - - - - - - - -
CiteSeer (ρ ≈ 2.66) 264 590 668 701 696 508 - - - - - - - - -
PubMed (ρ ≈ 1.91) 4103 7739 7835 - - - - - - - - - - - -
Amazon-Computers (ρ ≈ 17.73) 436 2142 1414 542 5158 308 487 818 2156 291 - - - - -
Coauthor-CS (ρ ≈ 35.05) 708 462 2050 429 1394 2193 371 924 775 118 1444 2033 420 4136 876

E.2 Architecture of GNNs629

We conducted evaluations using three classic GNN architectures, namely GCN [16], GAT [34],630

and GraphSAGE [9]. The GNN models were constructed with different numbers of layers, namely631

L = 1, 2, 3. To enhance the learning process, each GNN layer was accompanied by a BatchNorm layer632

with a momentum of 0.99, followed by a PRelu activation function [11]. For the GAT architecture,633

we employed multi-head attention with 8 heads. We search for the best model on the validation set.634

The available choices for the hidden unit sizes were 64, 128, and 256.635
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E.3 Evaluation Protocol636

We utilized the Adam optimizer [15] with an initial learning rate of 0.01 or 0.005. To manage the637

learning rate, we employed a scheduler based on the approach outlined in [30], which reduced the638

learning rate by half when there was no decrease in validation loss for 100 consecutive epochs.639

Weight decay with a rate of 0.0005 was applied to all learnable parameters in the model. In the640

initial training iteration, we trained the model for 200 epochs using the original training set for Cora,641

CiteSeer, PubMed, or Amazon-Computers. However, for Flickr, the training was extended to 2000642

epochs in the first iteration. Subsequently, in the remaining iterations, we trained the models for 2000643

epochs using the aforementioned optimizer and scheduler. The best models were selected based on644

validation accuracy, and we employed early stopping with a patience of 300 epochs.645

E.4 Technical Details of RVGNN646

For all datasets Cora-Semi, CiteSeer-Semi, PubMed-Semi, Computers-Semi, Computers-Random647

and CS-Random, the learning rate η is chosen from {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1}.648

The temperature hyperparameter τ is chosen from {0.05, 0.08, 0.13, 0.16, 0.21, 0.23, 0.26}. The649

threshold v is chosen from {0.6, 0.63, 0.66, 0.7, 0.8, 0.83, 0.9, 0.93, 0.96, 0.99}. The factor λ1 of650

LVR is chosen from {0.25, 0.35, 0.5, 0.85, 1, 1.5, 2, 2.15, 2.65, 3}. The factor λ2 of LIR is cho-651

sen from {0.35, 0.5, 1, 1.25, 1.5, 2.85, 3}. The factors of mask node properties and edges in G̃652

are chosen from {0.4, 0.45, 0.5, 0.6, 0.65, 0.7} and {0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7}. The fac-653

tors of mask node properties and edges in G̃′ are chosen from {0.1, 0.15, 0.2, 0.3, 0.4, 0.45} and654

{0.1, 0.15, 0.2, 0.3, 0.35, 0.4, 0.45}.655

E.5 Technical Details of Baselines656

For the GraphSMOTE method [47], we employed the branched algorithms whose edge predictions are657

discrete-valued, which have achieved superior performance over other variants in most experiments.658

Regarding the ReNode method [6], we search hyperparameters within the lower bound of cosine659

annealing, wmin ∈ 0.25, 0.5, 0.75, and the upper bound range, wmax ∈ 1.25, 1.5, 1.75, as suggested660

in [6]. The PageRank teleport probability was fixed at α = 0.15, which is the default setting in661

the released codes. As for TAM [30], we performed a hyperparameter search for the coefficient of662

the ACM term, α ∈ 1.25, 1.5, 1.75, the coefficient of the ADM term, β ∈ 0.125, 0.25, 0.5, and the663

minimum temperature of the class-wise temperature, ϕ ∈ 0.8, 1.2, following the approach described664

in [30]. The sensitivity to the imbalance ratio of the class-wise temperature, δ, was fixed at 0.4 for665

all the main experiments. Additionally, consistent with [30], we implemented a warmup phase for 5666

iterations, as we utilized model predictions for unlabeled nodes.667

E.6 Configuration668

All the algorithms and models are implemented in Python and PyTorch Geometric. Experiments are669

conducted on a server with an NVIDIA 3090 GPU (24 GB memory) and an Intel(R) Xeon(R) Silver670

4210R CPU @ 2.40GHz.671
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F Algorithm672

Algorithm 1 RVGNN
Input: Imbalanced Graph G = (V,E,VL), feature matrix X, adjacency matrix A, unlabeled set

VU = V −VL, label matrix Y, feature matrix of labeled nodes and unlabeled nodes XL and
XU, the number of classes k, the threshold v for determining whether a node has confident
prediction, temperature hyperparameter τ , GNN model fθ, the classifier hθ, learning rate η,
The total number T of epochs for model training. The sim(·, ·) computes the cosine similarity
between two vectors, CE represents the cross-entropy loss function, and I(·) is an indicator
function.

1: for t = 0, 1, . . . , T do
2: Generate two differently augmented views G̃ = (Ã, X̃) and G̃′ = (Ã′, X̃′) from original graph

G.
3: ÕL ← fθ(Ã, X̃L), ÕU ← fθ(Ã, X̃U )

4: Õ
′
L ← fθ(Ã

′, X̃′
L), Õ

′
U ← fθ(Ã

′, X̃′
U )

5: % Component 1: Supervised Loss
6: Lsup ← 1

2CE(hθ(ÕL),Y) + 1
2CE(hθ(Õ

′
U ),Y)

7: % Component 2: Intra-Class Aggregation Regularization
8: LIR ← − 1

NU

∑NU

i=1 sim(Õi, Õ
′
i) − 1

Nall
(
∑NL

i=1

∑NL
j=1

(i,j)∈same

sim(Õi, Õ
′
j) +∑NL

i=1

∑NL
j=1,j ̸=i

(i,j)∈same

sim(Õi, Õj)

9: % Component 3: Variance-constrained Optimization with Adaptive Regularization
10: for i = 1, 2, . . . , k do
11: Compute the class centers C̃i and C̃′

i for class i
12: end for
13: ▷ Obtain the Label Probability for Each Node
14: for i = 1, 2, . . . , |V| do

15: p̃i ← Softmax(Õi ·
[
C̃1, . . . , C̃k

]T
)

16: p̃′
i ← Softmax

(
Õ′

i · [C̃′
1, . . . , C̃′

k

]T
)

17: end for
18: ▷ Eliminate Nodes with Low Confidence.
19: Vconf ← {i | I (max (p̃′

i) > v) = 1,∀i ∈ VU}
20: ▷ Replace Labeled Node Prediction
21: for i = 1, 2, . . . , |VL| do
22: p̃′

i ← Yi

23: end for
24: LVR ← 1

|Vconf |
∑

i∈Vconf
CE (p̃′

i, p̃i) +
1

|VL|
∑

vi∈VL
CE (Yi, p̃i)

25: LTraining ← Lsup + λ1LV R + λ2LIR

26: θ ← θ − η (∇LTraining)
27: end for
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G Notations673

Table 8: Notation table.

Indices

n The number of nodes, n = |V|.
f The node feature dimension.
k The number of different classes.
D The dimension of the embedding space, or the dimension of the last layer of GNNs.

Parameters

G An undirected and unweighted graph.
V The node set of G.
E The edge set of G.
X The feature matrix of G, X ∈ Rn×f .
VL The set of labeled nodes of G.
A The adjacency matrix of G, A ∈ {0, 1}n×n.
N(v) The set of 1-hop neighbors for node v.
VU The set of unlabeled nodes, VU := V \VL.
Ci The labeled set for class i.
ρ Imbalance ratio of a dataset, ρ = maxi |Ci| /mini |Ci|.
G̃ A view from the original graph G , G̃ =

(
Ã, X̃

)
.

G̃′ Another view from the original graph G , G̃′ =
(
Ã′, X̃′

)
.

h Output of GNN network, h = fθ(A,X).
S The probability distribution reference matrix, S := [C1;C2; . . . ;Ck].
C The collection of class centers, C := (C1;C2; . . . ;Ck).
pi The probability distribution for node i.
yi The one-hot label vector for node i.
Lsup Supervised loss.
LIR Intra-class aggregation regularization.
LVR Variance-constrained optimization with adaptive regularization.
Lfinal The sum of all losses.
Vconf The set of nodes with confident predictions.
λ1 The weight for LVR.
λ2 The weight for LIR.
v The threshold for determining whether a node has confident prediction.
τ The temperature hyperparameter.
α The size threshold of nodes being added in each class per round.
η Learning rate of GNN model.

Functions

I (·) The indicater function.
sim (·) The function that computes the cosine similarity between two vectors.
CE (·) The cross-entropy function.
fθ GNN model.
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