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A DETAILED DESCRIPTION OF THE CCESA PROTOCOL

Algorithm 1: Communication-Computation Efficient Secure Aggregation (CCESA) Protocol

Input: Number of clients n, assignment graph G, privacy thresholds ¢; of all clients ¢ € [n], local models

0; of all clients i € [n], Diffie-Hellman key pairs (cZ %, ¢ %), (sF%, 575 of all clients i € [n]
and corresponding key agreement function f, pseudo -random generator PRG

Step 0. Advertise Keys
Client i:

Sends (i, ¢l ¥, sT5) to the server
Server:
Collects the messages from clients (denote this set of clients as V1)

Sends {(i,cl %, st)}ieAdj(j)mvl to all clients j € Vi;

w2

tep 1. Share Keys
Client <:
Generates a random element b;
Applies t;-out-of-(| Adj(i)| 4 1) secret sharing schemes to b; and s

(ts,|Adj(i)]4+1) (ts,|Adj(i)|4+1)
bi == bia)seaginutn; s S (5] ) jeadi oty
Encrypts [b;,;, s ] to [bs j, 55 g X1 using the authenticated encryption with key f (¢ PE 3K
Sends {(3, 5, bm, 575} jeaajiynvy to the server
Server:

Collects the messages from clients (denote this set of clients as V2)
Sends {(7, 5, bij, zsf)}ZEAd]( nv, to all clients j € V2

w2

tep 2. Masked Input Collection

Client i:
Computes s;,; = f(st, s7%) and

B = 0+ PRG(b) + 32, cvyagyiyics PRO(510) = ¥jcranag(oyisy PRG(s0)
Sends (i, 0;) to the server
Server:

Collects the messages from clients (denote this set of clients as V3)
Sends V3 to all clients j in V3

wn

tep 3. Unmasking
Client i:

Decrypts b; ] with key f(cP*, ;%) to obtain b; J forall j € Adj(i) N V3
Decrypts 57 5 with key f(c] P K 75 to obtain s7 K forall j € Adj(i) N (V2\V3)

Sends {b;,; }JeAdJ( )NV3» {Sm }JeAdJ(Z)ﬁ(Vz\Vs) to the server
Server:

Collects the messages from clients

Reconstructs b; from {b; ; }]eAdJ(Z)mV?, forall i € V3

Reconstructs 575 from {s5€ i Yieadi(n(va\vy) forall i € Va\V3

Computes s;,; = f(s; ™, s7%) forall j € Adj(i) N V3

Computes the aggregated sum of local models

Z’LGVS 0 = Z'LEV3 i — Zzev PRG(b') - ZiGVZ\V3,j€Adj(i)ﬂV3;i>j PRG(SZ‘J)
PRG(s; ;)

+ ZzEVQ\Vg, JEAdj (1) NV35i<j
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Figure B.1: Test accuracies of SA versus proposed CCESA(n, p) with various connection probability p, for
federated learning using the AT&T face dataset. Here, we set n = 40 and ¢ = 21. The suggested CCESA
achieves the ideal test accuracy by using only 70% of the communication/computational resources used in the
conventional SA.

Schemes \ Number of training data (nrain) 5000 | 10000 | 15000 50000
Federated Averaging (McMahan et al., 2017) 70.41% | 65.82% | 65.89% | 60.62%
Secure Aggregation (SA) (Bonawitz et al., 2017) | 49.78% | 49.97% | 49.91% | 49.10%
CCESA (Suggested) 49.48% | 50.07% | 49.16% | 50.00%

Table B.1: Precision of the membership inference attack on local models trained on CIFAR-10. The scheme
with a higher attack precision is more vulnerable to the inference attack. For the proposed CCESA, the attacker
is no better than the random guess with precision = 50%, showing the privacy-preserving ability of CCESA.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 RELIABILITY

In Fig. 4 of the main paper, we provided the experimental results on the reliaiblity of CCESA on
CIFAR-10 dataset. Similarly, Fig. B.1 shows the reliability of CCESA in AT&T Face dataset, where
the model is trained over n = 40 clients. We plotted the test accuracies of SA and the suggested
CCESA(n, p) for various p. In both settings of g1, selecting p = 0.7 is sufficient to achieve
the test accuracy performance of SA when the system is trained for 50 rounds. Thus, the required
communication/computational resources for guaranteeing the reliability, which is proportional to
np, can be reduced to 70% of the conventional wisdom in federated learning.

B.2 PRIVACY

In Section 5.3 and Fig. 2 of the main paper, we provided the experimental results on the AT&T Face
dataset, under the model inversion attack. In Fig. B.2, we provide additional experimental results on
the same dataset for different participants. Similar to the result in Fig. 2, the model inversion attack
successfully reveals the individuals identity in federated averaging (McMahan et al., 2017), while
the privacy attack is not effective in both SA and the suggested CCESA.

In the main manuscript, we have also considered another type of privacy threat called membership
inference attack (Shokri et al., 2017), where the attacker observes masked local model #; sent from
client ¢ to the server, and guesses whether a particular data is the member of the training set. We
measured three types of performance metrics of the attacker: accuracy (the fraction of the records
correctly estimated the membership), precision (the fraction of the responses inferred as members
of the training dataset that are indeed members) and recall (the fraction of the training data that the
attacker can correctly infer as members). Table 3 in the main manuscript summarizes the attack
accuracy result, while Table B.1 shows the attack precision for CIFAR-10 dataset. We also observed
that recall is close to 1 for all schemes. Similar to the results on the attack accuracy, Table B.1 shows
that the attack precision of federated averaging reaches near 70%, while that of SA and CCESA
remain around the baseline performance of random guess. This shows that both SA and CCESA do
not reveal any clue on the training set.
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Figure B.2: The result of model inversion attack to three schemes, (b) the suggested scheme (CCESA), (c)
SA (Bonawitz et al., 2017) and (d) federated averaging (McMabhan et al., 2017), for AT&T Face dataset. The
original training images at (a) can be successfully reconstructed by the attack only in federated averaging setup,
i.e., both SA and CCESA achieve the same level of privacy.
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C PROOFS

C.1 PROOF OF THEOREM 1

Proof. Note that the sum of masked local models obtained by the server is expressed as

> 0;=> 0;+> PRG(D

ieVs i€Vs i€Vs
where
z = E E PRG(s; ;) E E PRG(s; ;).
i€V3 jEVaNAdj(1);i<j i€V3 jEVaNAdj(i);i>]

Here, z can be rewritten as

z=> > PRG(s;i;))- Y. > PRG(s;;)

1€Vs jEVRNAL(i)5i<j 1€V3 jeVanAdj(i);i>]

=3 3> PRG(si))- Y. > PRG(s;;)
1€V3 jeVoNAd)j(1);i<j JEV2 ieV3NAdj(5);i>]

Wy S PRG(siy) - Y. > PRG(s;)
1€V3 jEVaNAd(i)5i<j 1€V jEV3NAL)(1)5i<j

=3 > PRG(sij)+ Y > PRG(s; ;)
1€Vs jEVRNA)(i);i<j 1€Vs je(Va\V3)NAdj(i);i<j
-3 Y RRGG)- > Y PRGGw)

1€V3 jeV3NAL)(i);i<j 1€V \Va jEV3NAL)(i);i<j

= Z Z PRG(SZJ) — Z Z PRG(SZ'J)
1€V je(Va\Va)NAdj(i);i<j JEVs ie(Va\V3)NAdj(5);i<]

23 3 PRG(s;;) — > > PRG(s; ;)
1€V3 je(V2\V3)NAdj(i);i<j 1€V3 je(V2\V3)NAdj(i);i>]

=> > PRG(s; ;) — Y > PRG (s; ;)
1€V3 je(V2\V3)NAdj(i);i<j 1€V3 je(V2\V3)NAdj(i);i>]

=3 > PRG(s; ;) — > > PRG (s, ),
1€V je (VM \Va)NAdj(i)5i<j PEVs e (V5T \Va)NAd) (1)1

where (a) and (b) come from s; ; = s;,. In order to obtain the sum of unmasked local models
> icy, 0i from the sum of masked local models >,y 0;, the server should cancel out all the ran-
dom terms in ) ;. PRG(b;) + z. In other words, the server should reconstruct b; for all i € V3
and SSK for all j € V;7\ V3. Since the server can obtain |(Adj(i) U {i}) N V4| secret shares of client
iin Step 3, |(Adj(i) U {i}) N V4| > t; for all i € V5" is a sufficient condition for reliability.

Now we prove the converse part by contrapositive. Suppose there exists 7 e V3 such that |(Adj(i)U
{i})NVy| < t;. In this case, note that the server cannot reconstruct both s7% and b; from the shares.
If i € V3, the server cannot subtract PRG(b;) from ), Vs 0;. As a result, the server cannot obtain
Yicv, 0i- If i € V57\ Vs, the server cannot subtract PRG(s; ;) for all j € V; since the server does

not have any knowledge of neither s¥% nor sJS K Therefore, the server cannot compute > ievs Ois
which completes the proof.

O

C.2 PROOF OF THEOREM 2

Proof. Let T C V3 be a set of compromised clients by eavesdropper satisfying 7 ¢ {@,V3}. It
is sufficient to prove the following statement: given a connected graph 3, an eavesdropper cannot
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obtain the partial sum of local models ), 6; from the sum of masked models }, 0;. Note that
the sum of masked local models ) _, - 6; accessible to the eavesdropper is expressed as

> 6= 6:i+> PRG(h) +z

€T i€T €T

where

2= Y PRG(s;;)->. > PRG(s;;)

i€T jEVaNAdj(1);i<j i€T jEVaNAdj(i);i>]
=> > PRG(sij)—>. > PRG(si)
i€T jeEVaNAdj(i);i<j JEV2 i€TNAdj(5);i>]
@S Y PRGGsi;) - Y PRG(s)
i€T jEVaNAdj(1);i<j i€Va jETNALj(1);1<j
i€T jETNALj(i);i<j 1€T je(Vo\T)NAL)(i);i<j
-Y Y PRGEy- Y Y PRG(sy)
€T FETNAL)(i);i<] 1€VL\T JETNAL](1);i<j
=y > PRG(s; ;) — > PRG (s; ;)
i€T je(Va\T)NA)(3);1<j JET i€ (Va\T)NAdj(5)i<j
b
2y 3 PRG(s;;) — 3 3 PRG(s; ;)
€T je(Vo\T)NAd] (3);i<j 1€T je(Vo\T)NAL)(i);i> 5
=S ) PRG(s:;) ~ > > PRG(si;)}
€T je(Va\Va)NAdj(i);i<j i€T je(Va\Va)NAdj(i);i>]
+{> > PRG(s; ;) — Y > PRG(s; ;) }.
i€T jE(Va\T)NAdj(i);i<yj 1€T jE(Va\T)NAd)(i);i>]

Here, (@) and (b) come from s; ; = s;,;. If G5 = (V3, E3) is connected, there exists an edge
e = {p,q} such that p € 7 and ¢ € (V5\T). As a consequence, there exists PRG(sp,q) term in

YT 0;. In order to unmask random term PRG(s, ). the eavesdropper need to know at least one
of the secret keys of clients p and q. However, the eavesdropper cannot obtain any shares of the
secret keys by eavesdropping links since the server requests the shares of b, and b, instead of 55 K

and sg K Therefore, the eavesdropper cannot reconstruct the partial sum of local models Y it bi
from the partial sum of masked local models .- 0;, which completes the proof. O
C.3 PROOF OF THEOREM 3

Proof. Consider Erd6s-Rényi assignment graph G € G(n,p). Let N; := |Adj(¢)| be the degree of

node 4, and X; := |Adj(i) N V4| be the number of clients (except client ) that successfully send the
shares of client ¢ to the server in Step 3. Then, IV; and X; follow the binomial distributions

N; ~B(n—1,p), Xi~B(N;,(1-¢q)*)=B(n—1,p(1—q)*),

respectively. By applying Hoeffding’s inequality on random variable X;, we obtain

P(X; < (n—=1)p(1 —q)* = v/(n—1)log(n — 1)) < 1/(n — 1)

Let E be the event that the system is not reliable, i.e., the sum of local models ),y 0; is not
reconstructed by the server, and E; be the event {|(Adj(i) U {i}) N V4| < t}, i.e., a secret of client

13
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.. . t —1) log(n—1 .
1 is not reconstructed by the server. For a given p > * (r(bri1)()1 i’i(; ) , we obtain

P(E) @P(Uiev;Ei) < PUiey{Xs <)) < Y P(Xs < 1)

i€Vt

<Y P(X; <t)=nP(X; <t)

i€[n]

<nP(X1 < (n—1)p(1—-¢q)* = /(n—1)log(n — 1)) <

n n—o0o 0
(n—1)? ’

where (a) comes from Theorem 1. Therefore, we conclude that CCESA(n, p) is asymptotically

almost surely (a.a.s.) reliable if p > s (7(17:)1()113%1(;71). Furthermore, based on the parameter

selection rule of ¢ in Section F, we obtain a lower bound on p as
» St v/ (n—1)log(n — 1) - (n=Dpt (ngl)log(nﬂ)ﬂ ++/(n—1)log(n —1) — 1
m-D1-g* — (n—1)(1—q)* :
Rearranging the above inequality with respect to p yields
3/ (n—1)log(n—1) -1
(n=1)21-¢g)*-1)

C.4 PROOF OF THEOREM 4

Proof. Let X := |V3] be the number of clients sending its masked local model in Step 2. Then, X
follows Binomial random variable B(n, (1—¢q)?). Given assignment graph G of CCESA(n, p), note
that the induced subgraph G3 = G — V'\Vj is an Erdés-Rényi graph G(X, p).

First, we prove

P(Gj3 is connected|| X — n(1 — ¢)°| < Vnlnn) 22251, (6)
ifp>p*= In([n(1-g)°~v/nInn]) (1 + €). The left hand side of (6) can be rewritten as

[n(1-¢)*—Vnlnn]
P(Gj3 is connected|| X — n(1 — ¢)°| < Vnlnn)
B D lein(1-qP—vaTnnn(—g3+vainn L (X =1)P(G(l, p) is connected)
a Zle[n(lfq)?’f\/m,n(lfq)?’#*\/W] P(X =1)
Here, we use a well-known property of Erd6s-Rényi graph: G(I, p) is asymptotically almost surely
(a.a.s.) connected if p > w for some € > (. Since lrl‘—l is a decreasing function, G(I, p) is a.a.s.

connected for all I € [n(1 —q)* — vnlnn,n(1 — q)3 + Vnlnn] when p > ln((Lr(LiiggivnﬁnnT).

Thus, for given p > p*, we can conclude

P(Gs is connected“X —n(l—¢)® < Vnhnn) =21,

Now, we will prove that CCESA(n,p) is a.a.s. private when p > p*. The probability that
CCESA(n, p) is private is lower bounded by

(@
P(CCESA(n,p) is private) > P(G3 is connected)
=P(|X —n(1 —q)* < Vnlnn)P(Gs is connected|| X — n(1 — 9)*| < Vnlnn)
+ P(IX —n(1 —¢)°| > Vnlnn)P(Gs is connected|| X — n(1 — ¢)*| > Vnlnn)
®) n
> (1—2/n?)P(Gj3 is connected|| X — n(1 — ¢)*| < Vnlnn) 27,
where (a) comes from Theorem 2 and (b) comes from Hoeffding’s inequality

P(IX —n(1—¢)% < Vnlnn) >1—2/n?
which completes the proof. O
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C.5 PROOF OF THEOREM 5

Proof. Consider an Erdés Rényi assignment graph G € G(n, p). Let N; := |Adj(i)| be the degree
of node i, and X; := |Adj(i) N V4| be the number of clients (except client ¢) that successfully send
the shares of client i to the server in Step 3. Then, IV; and X; follow the binomial distributions

N; ~ B(n—1,p), Xi~ B(N;,(1—¢)*) =B(n—-1,p(1-q)%),
respectively. Let E; be an event {|(Adj(:) U {i}) N V4| < t}, i.e., a secret of client 4 is not recon-
structed by the server. We obtain an upper bound on P(F;) as

t—1

P(E;,) < P(X; <t)= Z (n z_ 1> (1 = @)Y (1 — p(1 — g)t)(n=1-D

i=0
@), —(n-1)D(E=FIp(1-9)*)

where (a) comes from Chernoff bound on the binomial distribution. Thus, Pe(r) is upper bounded
by

e

ry ®)
P ZP(Uyey s Bi) < P(Ujey i AXi <t}) < Y P(Xi <)
ievyh

< Z (X; < t) = nP(X; < t) = ne- ("~ DPGIP0-0")

where (b) comes from Theorem 1. O

C.6 PROOF OF THEOREM 6

Proof. Let Py.(n, p) be the probability of an event that ErdGs-Rényi graph G € G(n, p) is discon-
nected. Then, Py.(n,p) is upper bounded as follows.

Pye(n,p) = P(G(n,p) is disconnected)

=P (U e / 2! {there exists a subset of k& nodes that is disconnected })
[n/2]

< Z P(there exists a subset of k nodes that is disconnected)
[n/2]

< Z (Z) P(a specific subset of k nodes is disconnected)
k=1

[n/2]
_ Z ( > k=)

Therefore, Pe(p ) is upper bounded by

(a)
PP < P(G3 =G — V\V; is disconnected)

n
Z P(G3 has m vertices) Py.(m, p)

m=0
n n ) L
=Y (M)a- ot - h - Putm)
m=0
" Lm/2] m
=Y (B)a-arma-a-gne S (F)a- e,
m
m=0 k=1
where (a) comes from Theorem 2. O
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D REQUIRED RESOURCES OF CCESA

D.1 COMMUNICATION COST

Here, we derive the additional communication bandwidth Bocopsa used at each client for running
CCESA, compared to the bandwidth used for running federated averaging (McMabhan et al., 2017).
We consider the worst-case scenario having the maximum additional bandwidth, where no client
fails during the operation.

The required communication bandwidth of each client is composed of four parts. First, in Step
0, each client ¢ sends two public keys to the server, and receives 2| Adj(7)| public keys from other
clients. Second, in Step 1, each client ¢ sends encrypted 2| Adj(4)| shares to other nodes, and re-
ceives 2| Adj(7)| shares from other nodes through the server. Third, in Step 2, each client ¢ sends a
masked data y; of mR bits. Here, m is the dimension of model parameters where each parameter
is represented in R bits. Fourth, in Step 3, each client ¢ sends |Adj(¢)| + 1 shares to the server.
Therefore, total communication bandwidth of client ¢ can be expressed as
(total communication bandwidth) = 2(|Adj(i)| + 1)ax + (5|Adj(i)| + 1)ag + mR,
where ax and ag are the number of bits required for exchanging public keys and the number of bits
in a secret share. Since each client 7 requires m R bits to send the private vector 6; in the federated
averaging (McMahan et al., 2017), we have
Bocpsa = 2(|Adj(i)| + Dax + (5|Adj(i)| + L)as.

If we choose the connection probability p = (1 + ¢)p* for a small € > 0, we have Boopsa =
O(v/nlogn), where p* is defined in (5). Note that the additional bandwidth Bg 4 required for SA
can be similarly obtained as Bs4 = 2nax + (5n — 4)ag having Bga = O(n). Thus, we have

Beocksa

Bsa

as n increases, showing the scalability of CCESA. These results are summarized in Table 1 in the
main manuscript.

— 0

D.2 COMPUTATIONAL COST

We evaluate the computational cost of CCESA. Here we do not count the cost for computing the
signatures since it is negligible. First, we derive the computational cost of each client. Given the
number of model parameters m and the number of clients n, the computational cost of client 7 is
composed of three parts: (1) computing 2| Adj(7)| key agreements, which takes O(|Adj(¢)|) time,
(2) generating shares of ¢;-out-of-| Adj(i)| secret shares of s7% and b;, which takes O(|Adj(i)|?)
time, and (3) generating masked local model 6;, which requires O(m|Adj(i)|) time. Thus, the total
computational cost of each client is obtained as O(|Adj(i)|*> + m|Adj(i)|). Second, the server’s
computational cost is composed of two parts: (1) reconstructing t;-out-of-| Adj(4)| secrets from
shares for all clients i € [n], which requires O(|Adj(i)|?) time, and (2) removing masks from
masked sum of local models Y-, 6;, which requires O(m|Adj(i)|?) time in the worst case. As a
result, the total computational cost of the server is O(m|Adj()|?). If we choose p = (1 + €)p* for
small e > 0, the total computational cost per each client is O(nlogn 4+ m+/nlogn), while the total
computation cost of the server is O(mnlogn). The computational cost of SA can be obtained in a
similar manner, by setting Adj(i) = n — 1; each client requires O(n? + mn) time while the server
requires O(mn?) time. These results are summarized in Table 1 in the main manuscript.

E RELIABILITY AND PRIVACY OF CCESA

Here, we analyze the asymptotic behavior of probability that a system is reliable/private. In our
analysis, we assume that the connection probability is set to p* and the parameter ¢ used in the
secret sharing is selected based on the rule in Section F. First, we prove that a system is reliable with
probability > 1 — O(ne~"!°8"). Using Theorem 5, the probability that a system is reliable can be
directly derived as

P(A system is reliable) =1 — P{")

>1 — e~ (DD (A=)

16
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Using the fact that Kullback-Leibler divergence term satisfies

t—1, . t—1 =L t—1 1— =1
DKL(n— 1||p (17(1)4) :n_ T log (p*(ll_lq)‘l) —+ (17 e 1)10g(1_p*(1L_1q)4)

=0(y/logn/n),
we conclude that CCESA(n, p*) is reliable with probablilty > 1 — O(ne~vnlogn),

Now we prove that a system is private with probability > 1 —O(n~) for an arbitrary C' > 0. Using
Theorem 6, the probability that a system is private can be obtained as

P(A system is private) =1 — P(?)

n
21 - Z ambm7
m=0

where a, = (")(1 — ¢)*"(1 — (1 — ¢@*)®™ ™ and b, = SE™2 (7)1 - pr)ktm—h),
Note that the summation term Z'm,:O by, can be broken up into two parts: > """ @by, and
Z:w:mm +1 @mbm, where my, = [n(1 — ¢)®/2]. In the rest of the proof, we will prove two lem-
mas, showing that 3" @by, = O(e™™)and 30 _ ) amby = O(n~ Y, respectively.

Lemma 1.
Mth

Zamm—O ™)

Proof. Since b,,, < 1 for all m, we have

min Mip

Z Ambm < Z A -
m=0 m=0

Note that a,,, = P(X = m) holds for binomial random variable X = B(n, (1 — ¢)?). By utilizing
Hoeffding’s inequality, we have

men

S am = P(X < myp) < 20007 ma)* < om0’/
m=0

Therefore, we conclude that """ amby, = O(e™"). O

Lemma 2.

Z ambym = O(n~= %)

m=myp+1

Proof. Since a,,, < 1 for all m, we have

n n

Z am bm < Z bm .

m=myp+1 m=mgp+1

Let C' > 0 be given. Then, the upper bound on b,,, can be obtained as

/2, oy T N
_ *\k(m—k —k(m—k)p*
D IV (LD SN (4
k=1 k=1
[m/2]
= Z <m> 7)\k(m k)/m = C/"L + d?n
k=1 k
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where \ = p*n/ log n, Cm = (717;) Zk;l m—/\k(7n—k)/7rL7dm — (k:) ]Eméfj —/\k(m—k)/m, and
k* = [m(1 — <t2)] for some C > 0. The first part of summation is upper bounded by
B k* k*
Cop = Z <k>m)\k(mk)/m < Z mfk[/\(mfk)/mflj < Z m—k:p\(m—k*)/m—lj
k=1 k=1 k=1
m— A (m=k*)/m—1] m—(C+1)

< =
—1 — m~—A(m=k*)/m—1] 1 —m—(C+1)°

The second part of summation, we will use the bound (}) < (52)*. Using this bound, d,,, is upper
bounded by

Lm/2] Lm/2] 1=A(m—k)/m Lm/2] 1=A(m—Fk)/m

— M\ —Xk(m—k)/m em VT em TR G
dm_z()m < Y (s Y ()

k=k*+1 k=k*+1 k=k*+1
V”z/:% em—Am—k)/m Lm/2] em—>2 .
< ) < ()
_ )1 _\—1
WA LA (C+2) W LA (C+2)

For sufficiently large )\, we have em~=*/2/(1 — A=1(C + 2)) < ¢ for some § < 1. Therefore, d,y, is
upper bounded by
dm < Z oF =

k=k*+1
where ¢’ = (1 — A7}(C + 2)) > 0. Combining upper bounds on ¢, and d,,, we obtain b,, =
O(m~(€+1), Since b,,, is a decreasing function of 1,

5’“*

=0(™)

n n

Z bm < Z bmth"rl = (n - mth)bmth"l‘l (;) O(n_c)

m=mg¢p+1 m=my¢p+1
holds where (a) comes from my;, = |n(1 — q)3/2].
O

Combining the above two lemmas, we conclude that CCESA(n, p*) is private with probability >
1 — O(n~Y%) for arbitrary C' > 0. These results on the reliability and the privacy are summarized in
Table 1 of the main manuscript.

F DESIGNING THE PARAMETER ¢ FOR THE SECRET SHARING

Here we provide a rule for selecting parameter ¢ used in the secret sharing. In general, setting ¢ to
a smaller number is better for tolerating dropout scenarios. However, when ¢ is excessively small,
the system is vulnerable to the unmasking attack of adversarial server; the server may request shares
of b; and s?¥ to disjoint sets of remaining clients simultaneously, which reveals the local model
0, to the server. The following proposition provides a rule of designing parameter ¢ to avoid such
unmasking attack.

(n—=1)p++/(n— 1)10g(n 1)+1 be given.

Proposition 1 (Lower bound on t). For CCESA(n, p), lett >
Then, the system is asymptotically almost surely secure against the unmasktng attack.

Proof. Let E be the event that at least one of local models are revealed to the server, and F; be the
event that i local model 6; is revealed to the server. Note that 0; is revealed to the server if ¢ clients
send the shares of b; and other ¢ clients send the shares of sf Kin Step 3. Therefore,

P(BY < PUAG() 0 01Vl = 2)
P(|(Adj(3) U {i})] > 2t) = P(|(Adj(i)| > 2t - 1)
(a) 1
(n— 12’

< P(|Adj(i)] > (n — D)p++/(n — 1) log(n — 1)) <
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where (a) comes from Hoeffding’s inequality of binomial random variable. As a result, we obtain

n n— 00
[n]

which completes the proof. O

As stated above, setting ¢ to a smaller number is better to tolerate the dropout of multiple clients.
Thus, as in the following remark, we set ¢ to be the minimum value avoiding the unmasking attack.

Remark 4 (Design rule for t). Throughout the paper, we set t = 5
CCESA(n, p), in order to secure a system against the unmasking attack and provide the maximum
tolerance against dropout scenarios.

n—1)p+ n—1)log(n—1)+1
(( )P ( ) log( ) Wf()r

G DETAILED EXPERIMENTAL SETUP

G.1 AT & T FACE DATASET

AT&T Face dataset contains images of 40 members. We allocated the data to n = 40 clients
participating in the federated learning, where each client contains the images of a specific member.
This experimental setup is suitable for the practical federated learning scenario where each client has
its own image and the central server aggregates the local models for face recognition. Following the
previous work (Fredrikson et al., 2015) on the model inversion, we used softmax regression for the
classification. Both the number of local training epochs and the number of global aggregation rounds
are set to Kjocai = Egiopar = 50, and we used the SGD optimizer with learning rate v = 0.05.

G.2 CIFAR-10 DATASET
G.2.1 RELIABILITY EXPERIMENT IN FIG. 4

We ran experiments under the federated learning setup where 50000 training images are allocated
to n = 100 clients. Here, we considered two scenarios for data allocation: one is partitioning the
data in the i.i.d. manner (i.e., each client randomly obtains 500 images), while the other is non-i.i.d.
allocation scenario. For the non-i.i.d. scenario, we followed the procedure of (McMahan et al.,
2017). Specifically, the data is first sorted by its category, and then the sorted data is divided into
200 shards. Each client randomly chooses 2 shards for its local training data. Since each client
has access to at most 2 classes, the test accuracy performance is degraded compared with the i.i.d.
setup. For training the classifier, we used VGG-11 network and the SGD optimizer with learning
rate v = 0.1 and momentum 3 = 0.5. The local training epoch is set to Fjocq; = 3.

G.2.2 PRIVACY EXPERIMENTS IN TABLE 3 AND TABLE B.1

We conducted experiments under the federated learning setup where n,i, training images are as-
signed to n = 10 clients. We considered i.i.d. data allocation setup where each client randomly
obtains nygin/10 training images. The network architecture, the optimizer, and the number of local
training epochs are set to the options used in Sec. G.2.1.

G.3 CONNECTION PROBABILITY SETUP IN FIG. 3

In Fig. 3, connection probability p is chosen as p > p* where p* is the minimum connection proba-
bility for achieving both reliability and privacy. Recall that p* is a function of n and gtar as in (5).
We select different p values for various n in a way that each value of p is slightly above the threshold
value p* for all g, . The detailed values of p with respect to n are provided in Table G.2.

n | 100 200 300 400 500 600 700 800 900 1000
p |08 063 053 046 042 039 037 035 033 032

Table G.2: Connection probability setup in Fig. 3
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