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A DETAILED DESCRIPTION OF THE CCESA PROTOCOL

Algorithm 1: Communication-Computation Efficient Secure Aggregation (CCESA) Protocol
Input: Number of clients n, assignment graph G, privacy thresholds ti of all clients i ∈ [n], local models

θi of all clients i ∈ [n], Diffie-Hellman key pairs (cPK
i , cSK

i ), (sPK
i , sSK

i ) of all clients i ∈ [n]
and corresponding key agreement function f , pseudo-random generator PRG

Step 0. Advertise Keys
Client i:

Sends (i, cPK
i , sPK

i ) to the server
Server:

Collects the messages from clients (denote this set of clients as V1)
Sends {(i, cPK

i , sPK
i )}i∈Adj(j)∩V1

to all clients j ∈ V1;

Step 1. Share Keys
Client i:

Generates a random element bi
Applies ti-out-of-(|Adj(i)|+ 1) secret sharing schemes to bi and sSK

i

bi
(ti,|Adj(i)|+1)−−−−−−−−−→ (bi,j)j∈(Adj(i))∪{i}, sSK

i

(ti,|Adj(i)|+1)−−−−−−−−−→ (sSK
i,j )j∈Adj(i)∪{i}

Encrypts [bi,j , sSK
i,j ] to [b̄i,j , s̄SK

i,j ] using the authenticated encryption with key f(cPK
j , cSK

i )

Sends {(i, j, b̄i,j , s̄SK
i,j )}j∈Adj(i)∩V1

to the server
Server:

Collects the messages from clients (denote this set of clients as V2)
Sends {(i, j, b̄i,j , s̄SK

i,j )}i∈Adj(j)∩V2
to all clients j ∈ V2

Step 2. Masked Input Collection
Client i:

Computes si,j = f(sPK
j , sSK

i ) and
θ̃i = θi + PRG(bi) +

∑
j∈V2∩Adj(i);i<j PRG(si,j)−

∑
j∈V2∩Adj(i);i>j PRG(si,j)

Sends (i, θ̃i) to the server
Server:

Collects the messages from clients (denote this set of clients as V3)
Sends V3 to all clients j in V3

Step 3. Unmasking
Client i:

Decrypts b̄i,j with key f(cPK
j , cSK

i ) to obtain bi,j for all j ∈ Adj(i) ∩ V3

Decrypts s̄SK
i,j with key f(cPK

j , cSK
i ) to obtain sSK

i,j for all j ∈ Adj(i) ∩ (V2\V3)

Sends {bi,j}j∈Adj(i)∩V3
, {sSK

i,j }j∈Adj(i)∩(V2\V3) to the server
Server:

Collects the messages from clients
Reconstructs bi from {bi,j}j∈Adj(i)∩V3

for all i ∈ V3

Reconstructs sSK
i from {sSK

i,j }j∈Adj(i)∩(V2\V3) for all i ∈ V2\V3

Computes si,j = f(sPK
j , sSK

i ) for all j ∈ Adj(i) ∩ V3

Computes the aggregated sum of local models∑
i∈V3

θi =
∑

i∈V3
θ̃i −

∑
i∈V3

PRG(bi)−
∑

i∈V2\V3,j∈Adj(i)∩V3;i>j PRG(si,j)

+
∑

i∈V2\V3,j∈Adj(i)∩V3;i<j PRG(si,j)
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(a) qtotal = 0 (b) qtotal = 0.1

Figure B.1: Test accuracies of SA versus proposed CCESA(n, p) with various connection probability p, for
federated learning using the AT&T face dataset. Here, we set n = 40 and t = 21. The suggested CCESA
achieves the ideal test accuracy by using only 70% of the communication/computational resources used in the
conventional SA.

Schemes \ Number of training data (ntrain) 5000 10000 15000 50000

Federated Averaging (McMahan et al., 2017) 70.41% 65.82% 65.89% 60.62%
Secure Aggregation (SA) (Bonawitz et al., 2017) 49.78% 49.97% 49.91% 49.10%

CCESA (Suggested) 49.48% 50.07% 49.16% 50.00%

Table B.1: Precision of the membership inference attack on local models trained on CIFAR-10. The scheme
with a higher attack precision is more vulnerable to the inference attack. For the proposed CCESA, the attacker
is no better than the random guess with precision = 50%, showing the privacy-preserving ability of CCESA.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 RELIABILITY

In Fig. 4 of the main paper, we provided the experimental results on the reliaiblity of CCESA on
CIFAR-10 dataset. Similarly, Fig. B.1 shows the reliability of CCESA in AT&T Face dataset, where
the model is trained over n = 40 clients. We plotted the test accuracies of SA and the suggested
CCESA(n, p) for various p. In both settings of qtotal, selecting p = 0.7 is sufficient to achieve
the test accuracy performance of SA when the system is trained for 50 rounds. Thus, the required
communication/computational resources for guaranteeing the reliability, which is proportional to
np, can be reduced to 70% of the conventional wisdom in federated learning.

B.2 PRIVACY

In Section 5.3 and Fig. 2 of the main paper, we provided the experimental results on the AT&T Face
dataset, under the model inversion attack. In Fig. B.2, we provide additional experimental results on
the same dataset for different participants. Similar to the result in Fig. 2, the model inversion attack
successfully reveals the individuals identity in federated averaging (McMahan et al., 2017), while
the privacy attack is not effective in both SA and the suggested CCESA.

In the main manuscript, we have also considered another type of privacy threat called membership
inference attack (Shokri et al., 2017), where the attacker observes masked local model θ̃i sent from
client i to the server, and guesses whether a particular data is the member of the training set. We
measured three types of performance metrics of the attacker: accuracy (the fraction of the records
correctly estimated the membership), precision (the fraction of the responses inferred as members
of the training dataset that are indeed members) and recall (the fraction of the training data that the
attacker can correctly infer as members). Table 3 in the main manuscript summarizes the attack
accuracy result, while Table B.1 shows the attack precision for CIFAR-10 dataset. We also observed
that recall is close to 1 for all schemes. Similar to the results on the attack accuracy, Table B.1 shows
that the attack precision of federated averaging reaches near 70%, while that of SA and CCESA
remain around the baseline performance of random guess. This shows that both SA and CCESA do
not reveal any clue on the training set.
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Figure B.2: The result of model inversion attack to three schemes, (b) the suggested scheme (CCESA), (c)
SA (Bonawitz et al., 2017) and (d) federated averaging (McMahan et al., 2017), for AT&T Face dataset. The
original training images at (a) can be successfully reconstructed by the attack only in federated averaging setup,
i.e., both SA and CCESA achieve the same level of privacy.
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C PROOFS

C.1 PROOF OF THEOREM 1

Proof. Note that the sum of masked local models obtained by the server is expressed as∑
i∈V3

θ̃i =
∑
i∈V3

θi +
∑
i∈V3

PRG(bi) + z

where
z =

∑
i∈V3

∑
j∈V2∩Adj(i);i<j

PRG(si,j)−
∑
i∈V3

∑
j∈V2∩Adj(i);i>j

PRG(si,j).

Here, z can be rewritten as

z =
∑
i∈V3

∑
j∈V2∩Adj(i);i<j

PRG(si,j)−
∑
i∈V3

∑
j∈V2∩Adj(i);i>j

PRG(si,j)

=
∑
i∈V3

∑
j∈V2∩Adj(i);i<j

PRG(si,j)−
∑
j∈V2

∑
i∈V3∩Adj(j);i>j

PRG(si,j)

(a)
=
∑
i∈V3

∑
j∈V2∩Adj(i);i<j

PRG(si,j)−
∑
i∈V2

∑
j∈V3∩Adj(i);i<j

PRG(si,j)

=
∑
i∈V3

∑
j∈V3∩Adj(i);i<j

PRG(si,j) +
∑
i∈V3

∑
j∈(V2\V3)∩Adj(i);i<j

PRG(si,j)

−
∑
i∈V3

∑
j∈V3∩Adj(i);i<j

PRG(si,j)−
∑

i∈V2\V3

∑
j∈V3∩Adj(i);i<j

PRG(si,j)

=
∑
i∈V3

∑
j∈(V2\V3)∩Adj(i);i<j

PRG(si,j)−
∑
j∈V3

∑
i∈(V2\V3)∩Adj(j);i<j

PRG(si,j)

(b)
=
∑
i∈V3

∑
j∈(V2\V3)∩Adj(i);i<j

PRG(si,j)−
∑
i∈V3

∑
j∈(V2\V3)∩Adj(i);i>j

PRG(si,j)

=
∑
i∈V3

∑
j∈(V2\V3)∩Adj(i);i<j

PRG(si,j)−
∑
i∈V3

∑
j∈(V2\V3)∩Adj(i);i>j

PRG(si,j)

=
∑
i∈V3

∑
j∈(V +

3 \V3)∩Adj(i);i<j

PRG(si,j)−
∑
i∈V3

∑
j∈(V +

3 \V3)∩Adj(i);i>j

PRG(si,j),

where (a) and (b) come from si,j = sj,i. In order to obtain the sum of unmasked local models∑
i∈V3

θi from the sum of masked local models
∑
i∈V3

θ̃i, the server should cancel out all the ran-
dom terms in

∑
i∈V3

PRG(bi) + z. In other words, the server should reconstruct bi for all i ∈ V3
and sSKj for all j ∈ V +

3 \V3. Since the server can obtain |(Adj(i)∪{i})∩V4| secret shares of client
i in Step 3, |(Adj(i) ∪ {i}) ∩ V4| ≥ ti for all i ∈ V +

3 is a sufficient condition for reliability.

Now we prove the converse part by contrapositive. Suppose there exists i ∈ V +
3 such that |(Adj(i)∪

{i})∩V4| < ti. In this case, note that the server cannot reconstruct both sSKi and bi from the shares.
If i ∈ V3, the server cannot subtract PRG(bi) from

∑
i∈V3

θ̃i. As a result, the server cannot obtain∑
i∈V3

θi. If i ∈ V +
3 \V3, the server cannot subtract PRG(si,j) for all j ∈ V3 since the server does

not have any knowledge of neither sSKi nor sSKj . Therefore, the server cannot compute
∑
i∈V3

θi,
which completes the proof.

C.2 PROOF OF THEOREM 2

Proof. Let T ⊂ V3 be a set of compromised clients by eavesdropper satisfying T /∈ {∅, V3}. It
is sufficient to prove the following statement: given a connected graph G3, an eavesdropper cannot
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obtain the partial sum of local models
∑
i∈T θi from the sum of masked models

∑
i∈T θ̃i. Note that

the sum of masked local models
∑
i∈T θ̃i accessible to the eavesdropper is expressed as∑

i∈T
θ̃i =

∑
i∈T

θi +
∑
i∈T

PRG(bi) + z,

where

z =
∑
i∈T

∑
j∈V2∩Adj(i);i<j

PRG(si,j)−
∑
i∈T

∑
j∈V2∩Adj(i);i>j

PRG(si,j)

=
∑
i∈T

∑
j∈V2∩Adj(i);i<j

PRG(si,j)−
∑
j∈V2

∑
i∈T ∩Adj(j);i>j

PRG(si,j)

(a)
=
∑
i∈T

∑
j∈V2∩Adj(i);i<j

PRG(si,j)−
∑
i∈V2

∑
j∈T ∩Adj(i);i<j

PRG(si,j)

=
∑
i∈T

∑
j∈T ∩Adj(i);i<j

PRG(si,j) +
∑
i∈T

∑
j∈(V2\T )∩Adj(i);i<j

PRG(si,j)

−
∑
i∈T

∑
j∈T ∩Adj(i);i<j

PRG(si,j)−
∑

i∈V2\T

∑
j∈T ∩Adj(i);i<j

PRG(si,j)

=
∑
i∈T

∑
j∈(V2\T )∩Adj(i);i<j

PRG(si,j)−
∑
j∈T

∑
i∈(V2\T )∩Adj(j);i<j

PRG(si,j)

(b)
=
∑
i∈T

∑
j∈(V2\T )∩Adj(i);i<j

PRG(si,j)−
∑
i∈T

∑
j∈(V2\T )∩Adj(i);i>j

PRG(si,j)

=
{∑
i∈T

∑
j∈(V2\V3)∩Adj(i);i<j

PRG(si,j)−
∑
i∈T

∑
j∈(V2\V3)∩Adj(i);i>j

PRG(si,j)
}

+
{∑
i∈T

∑
j∈(V3\T )∩Adj(i);i<j

PRG(si,j)−
∑
i∈T

∑
j∈(V3\T )∩Adj(i);i>j

PRG(si,j)
}
.

Here, (a) and (b) come from si,j = sj,i. If G3 = (V3, E3) is connected, there exists an edge
e = {p, q} such that p ∈ T and q ∈ (V3\T ). As a consequence, there exists PRG(sp,q) term in∑
i∈T θ̃i. In order to unmask random term PRG(sp,q), the eavesdropper need to know at least one

of the secret keys of clients p and q. However, the eavesdropper cannot obtain any shares of the
secret keys by eavesdropping links since the server requests the shares of bp and bq instead of sSKp
and sSKq . Therefore, the eavesdropper cannot reconstruct the partial sum of local models

∑
i∈T θi

from the partial sum of masked local models
∑
i∈T θ̃i, which completes the proof.

C.3 PROOF OF THEOREM 3

Proof. Consider Erdős-Rényi assignment graph G ∈ G(n, p). Let Ni := |Adj(i)| be the degree of
node i, and Xi := |Adj(i)∩ V4| be the number of clients (except client i) that successfully send the
shares of client i to the server in Step 3. Then, Ni and Xi follow the binomial distributions

Ni ∼ B(n− 1, p), Xi ∼ B(Ni, (1− q)4) = B(n− 1, p(1− q)4),

respectively. By applying Hoeffding’s inequality on random variable Xi, we obtain

P (Xi < (n− 1)p(1− q)4 −
√

(n− 1) log(n− 1)) ≤ 1/(n− 1)2.

Let E be the event that the system is not reliable, i.e., the sum of local models
∑
i∈V3

θi is not
reconstructed by the server, and Ei be the event {|(Adj(i) ∪ {i}) ∩ V4| < t}, i.e., a secret of client
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i is not reconstructed by the server. For a given p > t+
√

(n−1) log(n−1)
(n−1)(1−q)4 , we obtain

P (E)
(a)
=P (∪i∈V +

3
Ei) ≤ P (∪i∈V +

3
{Xi < t}) ≤

∑
i∈V +

3

P (Xi < t)

≤
∑
i∈[n]

P (Xi < t) = nP (X1 < t)

≤nP (X1 < (n− 1)p(1− q)4 −
√

(n− 1) log(n− 1)) ≤ n

(n− 1)2
n→∞−−−−→ 0,

where (a) comes from Theorem 1. Therefore, we conclude that CCESA(n, p) is asymptotically

almost surely (a.a.s.) reliable if p >
t+
√

(n−1) log(n−1)
(n−1)(1−q)4 . Furthermore, based on the parameter

selection rule of t in Section F, we obtain a lower bound on p as

p >
t+
√

(n− 1) log(n− 1)

(n− 1)(1− q)4
≥

(n−1)p+
√

(n−1) log(n−1)+1

2 +
√

(n− 1) log(n− 1)− 1

(n− 1)(1− q)4
.

Rearranging the above inequality with respect to p yields

p >
3
√

(n− 1) log(n− 1)− 1

(n− 1)(2(1− q)4 − 1)
.

C.4 PROOF OF THEOREM 4

Proof. Let X := |V3| be the number of clients sending its masked local model in Step 2. Then, X
follows Binomial random variableB(n, (1−q)3). Given assignment graphG of CCESA(n, p), note
that the induced subgraph G3 = G− V \V3 is an Erdős-Rényi graph G(X, p).

First, we prove
P (G3 is connected

∣∣|X − n(1− q)3| ≤
√
n lnn)

n→∞−−−−→ 1, (6)

if p > p? = ln(dn(1−q)3−
√
n lnne)

dn(1−q)3−
√
n lnne (1 + ε). The left hand side of (6) can be rewritten as

P (G3 is connected
∣∣|X − n(1− q)3| ≤

√
n lnn)

=

∑
l∈[n(1−q)3−

√
n lnn,n(1−q)3+

√
n lnn] P (X = l)P (G(l, p) is connected)∑

l∈[n(1−q)3−
√
n lnn,n(1−q)3+

√
n lnn] P (X = l)

.

Here, we use a well-known property of Erdős-Rényi graph: G(l, p) is asymptotically almost surely
(a.a.s.) connected if p > (1+ε) ln l

l for some ε > 0. Since ln l
l is a decreasing function,G(l, p) is a.a.s.

connected for all l ∈ [n(1− q)3 −
√
n lnn, n(1− q)3 +

√
n lnn] when p > ln(dn(1−q)3−

√
n lnne)

dn(1−q)3−
√
n lnne .

Thus, for given p > p?, we can conclude

P (G3 is connected
∣∣|X − n(1− q)3| ≤

√
n lnn)

n→∞−−−−→ 1.

Now, we will prove that CCESA(n, p) is a.a.s. private when p > p?. The probability that
CCESA(n, p) is private is lower bounded by

P (CCESA(n, p) is private)
(a)

≥ P (G3 is connected)

= P (|X − n(1− q)3| ≤
√
n lnn)P (G3 is connected

∣∣|X − n(1− q)3| ≤
√
n lnn)

+ P (|X − n(1− q)3| >
√
n lnn)P (G3 is connected

∣∣|X − n(1− q)3| >
√
n lnn)

(b)

≥ (1− 2/n2)P (G3 is connected
∣∣|X − n(1− q)3| ≤

√
n lnn)

n→∞−−−−→ 1,

where (a) comes from Theorem 2 and (b) comes from Hoeffding’s inequality

P (|X − n(1− q)3| ≤
√
n lnn) ≥ 1− 2/n2,

which completes the proof.
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C.5 PROOF OF THEOREM 5

Proof. Consider an Erdős-Rényi assignment graph G ∈ G(n, p). Let Ni := |Adj(i)| be the degree
of node i, and Xi := |Adj(i) ∩ V4| be the number of clients (except client i) that successfully send
the shares of client i to the server in Step 3. Then, Ni and Xi follow the binomial distributions

Ni ∼ B(n− 1, p), Xi ∼ B(Ni, (1− q)4) = B(n− 1, p(1− q)4),

respectively. Let Ei be an event {|(Adj(i) ∪ {i}) ∩ V4| < t}, i.e., a secret of client i is not recon-
structed by the server. We obtain an upper bound on P (Ei) as

P (Ei) ≤ P (Xi < t) =

t−1∑
i=0

(
n− 1

i

)
(p(1− q)4)i(1− p(1− q)4)(n−1−i)

(a)
= e−(n−1)D( t−1

n−1 ||p(1−q)
4)

where (a) comes from Chernoff bound on the binomial distribution. Thus, P (r)
e is upper bounded

by

P (r)
e

(b)
=P (∪i∈V +

3
Ei) ≤ P (∪i∈V +

3
{Xi < t}) ≤

∑
i∈V +

3

P (Xi < t)

≤
∑
i∈[n]

P (Xi < t) = nP (X1 < t) = ne−(n−1)D( t−1
n−1 ||p(1−q)

4),

where (b) comes from Theorem 1.

C.6 PROOF OF THEOREM 6

Proof. Let Pdc(n, p) be the probability of an event that Erdős-Rényi graph G ∈ G(n, p) is discon-
nected. Then, Pdc(n, p) is upper bounded as follows.

Pdc(n, p) = P (G(n, p) is disconnected)

= P (∪bn/2ck=1 {there exists a subset of k nodes that is disconnected})

≤
bn/2c∑
k=1

P (there exists a subset of k nodes that is disconnected)

≤
bn/2c∑
k=1

(
n

k

)
P (a specific subset of k nodes is disconnected)

=

bn/2c∑
k=1

(
n

k

)
(1− p)k(n−k)

Therefore, P (p)
e is upper bounded by

P (p)
e

(a)

≤ P (G3 = G− V \V3 is disconnected)

=

n∑
m=0

P (G3 has m vertices)Pdc(m, p)

=

n∑
m=0

(
n

m

)
(1− q)3m(1− (1− q)3)(n−m) · Pdc(m, p)

=

n∑
m=0

(
n

m

)
(1− q)3m(1− (1− q)3)(n−m)

bm/2c∑
k=1

(
m

k

)
(1− p)k(m−k),

where (a) comes from Theorem 2.
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D REQUIRED RESOURCES OF CCESA

D.1 COMMUNICATION COST

Here, we derive the additional communication bandwidth BCCESA used at each client for running
CCESA, compared to the bandwidth used for running federated averaging (McMahan et al., 2017).
We consider the worst-case scenario having the maximum additional bandwidth, where no client
fails during the operation.

The required communication bandwidth of each client is composed of four parts. First, in Step
0, each client i sends two public keys to the server, and receives 2|Adj(i)| public keys from other
clients. Second, in Step 1, each client i sends encrypted 2|Adj(i)| shares to other nodes, and re-
ceives 2|Adj(i)| shares from other nodes through the server. Third, in Step 2, each client i sends a
masked data yi of mR bits. Here, m is the dimension of model parameters where each parameter
is represented in R bits. Fourth, in Step 3, each client i sends |Adj(i)| + 1 shares to the server.
Therefore, total communication bandwidth of client i can be expressed as

(total communication bandwidth) = 2(|Adj(i)|+ 1)aK + (5|Adj(i)|+ 1)aS +mR,

where aK and aS are the number of bits required for exchanging public keys and the number of bits
in a secret share. Since each client i requires mR bits to send the private vector θi in the federated
averaging (McMahan et al., 2017), we have

BCCESA = 2(|Adj(i)|+ 1)aK + (5|Adj(i)|+ 1)aS .

If we choose the connection probability p = (1 + ε)p? for a small ε > 0, we have BCCESA =
O(
√
n log n), where p? is defined in (5). Note that the additional bandwidth BSA required for SA

can be similarly obtained as BSA = 2naK + (5n− 4)aS having BSA = O(n). Thus, we have
BCCESA
BSA

→ 0

as n increases, showing the scalability of CCESA. These results are summarized in Table 1 in the
main manuscript.

D.2 COMPUTATIONAL COST

We evaluate the computational cost of CCESA. Here we do not count the cost for computing the
signatures since it is negligible. First, we derive the computational cost of each client. Given the
number of model parameters m and the number of clients n, the computational cost of client i is
composed of three parts: (1) computing 2|Adj(i)| key agreements, which takes O(|Adj(i)|) time,
(2) generating shares of ti-out-of-|Adj(i)| secret shares of sSKi and bi, which takes O(|Adj(i)|2)

time, and (3) generating masked local model θ̃i, which requires O(m|Adj(i)|) time. Thus, the total
computational cost of each client is obtained as O(|Adj(i)|2 + m|Adj(i)|). Second, the server’s
computational cost is composed of two parts: (1) reconstructing ti-out-of-|Adj(i)| secrets from
shares for all clients i ∈ [n], which requires O(|Adj(i)|2) time, and (2) removing masks from
masked sum of local models

∑n
i=1 θ̃i, which requires O(m|Adj(i)|2) time in the worst case. As a

result, the total computational cost of the server is O(m|Adj(i)|2). If we choose p = (1 + ε)p? for
small ε > 0, the total computational cost per each client is O(n log n+m

√
n log n), while the total

computation cost of the server is O(mn log n). The computational cost of SA can be obtained in a
similar manner, by setting Adj(i) = n− 1; each client requires O(n2 +mn) time while the server
requires O(mn2) time. These results are summarized in Table 1 in the main manuscript.

E RELIABILITY AND PRIVACY OF CCESA

Here, we analyze the asymptotic behavior of probability that a system is reliable/private. In our
analysis, we assume that the connection probability is set to p? and the parameter t used in the
secret sharing is selected based on the rule in Section F. First, we prove that a system is reliable with
probability ≥ 1 − O(ne−n logn). Using Theorem 5, the probability that a system is reliable can be
directly derived as

P (A system is reliable) =1− P (r)
e

≥1− ne−(n−1)DKL( t−1
n−1 ||p

?(1−q)4).
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Using the fact that Kullback-Leibler divergence term satisfies

DKL

( t− 1

n− 1
||p?(1− q)4

)
=
t− 1

n− 1
log
( t−1

n−1
p?(1− q)4

)
+
(
1− t− 1

n− 1

)
log
( 1− t−1

n−1
1− p?(1− q)4

)
=Θ(

√
log n/n),

we conclude that CCESA(n, p?) is reliable with probablilty ≥ 1−O(ne−
√
n logn).

Now we prove that a system is private with probability≥ 1−O(n−C) for an arbitrary C > 0. Using
Theorem 6, the probability that a system is private can be obtained as

P (A system is private) =1− P (p)
e

≥1−
n∑

m=0

ambm,

where am =
(
n
m

)
(1 − q)3m(1 − (1 − q)3)(n−m) and bm =

∑bm/2c
k=1

(
m
k

)
(1 − p?)k(m−k).

Note that the summation term
∑n
m=0 ambm can be broken up into two parts:

∑mth

m=0 ambm and∑n
m=mth+1 ambm, where mth = bn(1 − q)3/2c. In the rest of the proof, we will prove two lem-

mas, showing that
∑mth

m=0 ambm = O(e−n) and
∑n
m=mth+1 ambm = O(n−C), respectively.

Lemma 1.
mth∑
m=0

ambm = O(e−n)

Proof. Since bm ≤ 1 for all m, we have

mth∑
m=0

ambm ≤
mth∑
m=0

am.

Note that am = P (X = m) holds for binomial random variable X = B(n, (1− q)3). By utilizing
Hoeffding’s inequality, we have

mth∑
m=0

am = P (X ≤ mth) ≤ e−2(n(1−q)
3−mth)

2

≤ e−n(1−q)
6/2.

Therefore, we conclude that
∑mth

m=0 ambm = O(e−n).

Lemma 2.
n∑

m=mth+1

ambm = O(n−C)

Proof. Since am ≤ 1 for all m, we have

n∑
m=mth+1

ambm ≤
n∑

m=mth+1

bm.

Let C > 0 be given. Then, the upper bound on bm can be obtained as

bm =

bm/2c∑
k=1

(
m

k

)
(1− p?)k(m−k) ≤

bm/2c∑
k=1

(
m

k

)
e−k(m−k)p

?

=

bm/2c∑
k=1

(
m

k

)
m−λk(m−k)/m = cm + dm
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where λ = p?n/ log n, cm =
(
m
k

)∑k?

k=1m
−λk(m−k)/m, dm =

(
m
k

)∑bm/2c
k=k?+1m

−λk(m−k)/m, and
k? = bm(1− C+2

λ )c for some C > 0. The first part of summation is upper bounded by

cm =

k?∑
k=1

(
m

k

)
m−λk(m−k)/m ≤

k?∑
k=1

m−kbλ(m−k)/m−1c ≤
k?∑
k=1

m−kbλ(m−k
?)/m−1c

≤ m−bλ(m−k
?)/m−1c

1−m−bλ(m−k?)/m−1c
=

m−(C+1)

1−m−(C+1)
.

The second part of summation, we will use the bound
(
n
k

)
≤ ( enk )k. Using this bound, dm is upper

bounded by

dm =

bm/2c∑
k=k?+1

(
m

k

)
m−λk(m−k)/m ≤

bm/2c∑
k=k?+1

(
em1−λ(m−k)/m

k
)k ≤

bm/2c∑
k=k?+1

(
em1−λ(m−k)/m

k? + 1
)k

≤
bm/2c∑
k=k?+1

(
em−λ(m−k)/m

1− λ−1(C + 2)
)k ≤

bm/2c∑
k=k?+1

(
em−λ/2

1− λ−1(C + 2)
)k.

For sufficiently large λ, we have em−λ/2/(1− λ−1(C + 2)) < δ for some δ < 1. Therefore, dm is
upper bounded by

dm ≤
∞∑

k=k?+1

δk =
δk

?

1− δ
= O(δmC

′
)

where C ′ = (1 − λ−1(C + 2)) > 0. Combining upper bounds on cm and dm, we obtain bm =
O(m−(C+1)). Since bm is a decreasing function of m,

n∑
m=mth+1

bm ≤
n∑

m=mth+1

bmth+1 = (n−mth)bmth+1
(a)
= O(n−C)

holds where (a) comes from mth = bn(1− q)3/2c.

Combining the above two lemmas, we conclude that CCESA(n, p?) is private with probability ≥
1−O(n−C) for arbitrary C > 0. These results on the reliability and the privacy are summarized in
Table 1 of the main manuscript.

F DESIGNING THE PARAMETER t FOR THE SECRET SHARING

Here we provide a rule for selecting parameter t used in the secret sharing. In general, setting t to
a smaller number is better for tolerating dropout scenarios. However, when t is excessively small,
the system is vulnerable to the unmasking attack of adversarial server; the server may request shares
of bi and sSKi to disjoint sets of remaining clients simultaneously, which reveals the local model
θi to the server. The following proposition provides a rule of designing parameter t to avoid such
unmasking attack.

Proposition 1 (Lower bound on t). For CCESA(n, p), let t > (n−1)p+
√

(n−1) log(n−1)+1

2 be given.
Then, the system is asymptotically almost surely secure against the unmasking attack.

Proof. Let E be the event that at least one of local models are revealed to the server, and Ei be the
event that ith local model θi is revealed to the server. Note that θi is revealed to the server if t clients
send the shares of bi and other t clients send the shares of sSKi in Step 3. Therefore,

P (Ei) ≤ P (|(Adj(i) ∪ {i}) ∩ V4| ≥ 2t)

≤ P (|(Adj(i) ∪ {i})| ≥ 2t) = P (|(Adj(i)| ≥ 2t− 1)

≤ P (|Adj(i)| > (n− 1)p+
√

(n− 1) log(n− 1))
(a)

≤ 1

(n− 1)2
,
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where (a) comes from Hoeffding’s inequality of binomial random variable. As a result, we obtain

P (E) = P (∪i∈[n]Ei) ≤
∑
i∈[n]

P (Ei) = nP (E1) =
n

(n− 1)2
n→∞−−−−→ 0,

which completes the proof.

As stated above, setting t to a smaller number is better to tolerate the dropout of multiple clients.
Thus, as in the following remark, we set t to be the minimum value avoiding the unmasking attack.

Remark 4 (Design rule for t). Throughout the paper, we set t = d (n−1)p+
√

(n−1) log(n−1)+1

2 e for
CCESA(n, p), in order to secure a system against the unmasking attack and provide the maximum
tolerance against dropout scenarios.

G DETAILED EXPERIMENTAL SETUP

G.1 AT & T FACE DATASET

AT&T Face dataset contains images of 40 members. We allocated the data to n = 40 clients
participating in the federated learning, where each client contains the images of a specific member.
This experimental setup is suitable for the practical federated learning scenario where each client has
its own image and the central server aggregates the local models for face recognition. Following the
previous work (Fredrikson et al., 2015) on the model inversion, we used softmax regression for the
classification. Both the number of local training epochs and the number of global aggregation rounds
are set to Elocal = Eglobal = 50, and we used the SGD optimizer with learning rate γ = 0.05.

G.2 CIFAR-10 DATASET

G.2.1 RELIABILITY EXPERIMENT IN FIG. 4

We ran experiments under the federated learning setup where 50000 training images are allocated
to n = 100 clients. Here, we considered two scenarios for data allocation: one is partitioning the
data in the i.i.d. manner (i.e., each client randomly obtains 500 images), while the other is non-i.i.d.
allocation scenario. For the non-i.i.d. scenario, we followed the procedure of (McMahan et al.,
2017). Specifically, the data is first sorted by its category, and then the sorted data is divided into
200 shards. Each client randomly chooses 2 shards for its local training data. Since each client
has access to at most 2 classes, the test accuracy performance is degraded compared with the i.i.d.
setup. For training the classifier, we used VGG-11 network and the SGD optimizer with learning
rate γ = 0.1 and momentum β = 0.5. The local training epoch is set to Elocal = 3.

G.2.2 PRIVACY EXPERIMENTS IN TABLE 3 AND TABLE B.1

We conducted experiments under the federated learning setup where ntrain training images are as-
signed to n = 10 clients. We considered i.i.d. data allocation setup where each client randomly
obtains ntrain/10 training images. The network architecture, the optimizer, and the number of local
training epochs are set to the options used in Sec. G.2.1.

G.3 CONNECTION PROBABILITY SETUP IN FIG. 3

In Fig. 3, connection probability p is chosen as p > p? where p? is the minimum connection proba-
bility for achieving both reliability and privacy. Recall that p? is a function of n and qtotal as in (5).
We select different p values for various n in a way that each value of p is slightly above the threshold
value p? for all qtotal. The detailed values of p with respect to n are provided in Table G.2.

n 100 200 300 400 500 600 700 800 900 1000
p 0.80 0.63 0.53 0.46 0.42 0.39 0.37 0.35 0.33 0.32

Table G.2: Connection probability setup in Fig. 3
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