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GaussianTalker: Real-Time High-Fidelity Talking Head Synthesis
with Audio-Driven 3D Gaussian Splatting

Anonymous Authors

ABSTRACT
This paper proposes GaussianTalker, a novel framework for real-
time generation of pose-controllable talking heads. It leverages the
fast rendering capabilities of 3D Gaussian Splatting (3DGS) while
addressing the challenges of directly controlling 3DGS with speech
audio. GaussianTalker constructs a single 3DGS representation of
the head and deforms it in sync with the audio. A key insight is to
encode the 3D Gaussian attributes into a shared implicit feature rep-
resentation, where it is merged with audio features to manipulate
each Gaussian attribute. This design exploits the spatial information
of the head and enforces interactions between neighboring points.
The feature embeddings are then fed to a spatial-audio attention
module, which predicts frame-wise offsets for the attributes of each
Gaussian. This method is more stable than previous concatena-
tion or multiplication approaches for manipulating the numerous
Gaussians and their intricate parameters. Overall, GaussianTalker
offers a promising approach for real-time generation of high-quality
pose-controllable talking heads.

CCS CONCEPTS
• Computing methodologies → Reconstruction; 3D imaging; •
Information systems→ Multimedia content creation.

KEYWORDS
Talking Head Generation, 3D Controllable Head, 3D Gaussian Splat-
ting

1 INTRODUCTION
Generating a talking head video driven by arbitrary speech audio is
a popular task that has various uses, including the generation of dig-
ital humans, virtual avatars, movie production, and teleconferenc-
ing [6, 20, 32, 35, 37, 39, 42, 53]. While various works [6, 20, 32, 42]
have successfully attempted to solve this task using generative
models, they do not focus on controlling head poses, limiting their
realism and applicability. Recently, numerous studies [16, 23, 26,
38, 47, 48] have applied neural radiance fields (NeRF) [30] for the
creation of pose controllable talking portraits. By directly condi-
tioning audio features in the multi-layer perceptron (MLP) of NeRF,
these methods can synthesize view-consistent 3D head structure
with its lips synced to the input audio. Although these NeRF-based
techniques achieve high-quality and consistent visual outputs, their
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Figure 1: Fidelity and inference time comparison between
existing 3D talking face synthesis models [16, 23, 38] and
ours. Our method, GaussianTalker, achieves on par with or
better results at much higher FPS. Note that we also include
GaussianTalker∗, a more efficient and faster variant. Size of
each bubble represents the training time of each method.

slow inference speed limits their practicality. Despite recent ad-
vancements [23, 38] achieving rendering speeds up to 30 frames
per second (fps) at 512 × 512 resolution, computational bottlenecks
must be overcome to be applied in real-world scenarios.

Addressing this limitation, an intuitive solution is to leverage
the fast rendering capabilities of 3D Gaussian Splatting (3DGS) [21].
Recently recognized as a viable alternative to NeRF, 3DGS offers
comparable rendering quality while significantly improving infer-
ence speeds. Although 3DGS was initially proposed for reconstruct-
ing static 3D scenes, subsequent works have extended it to dynamic
scenes [29, 43–45]. However, there has been little research on lever-
aging 3DGS to create dynamic 3D scenes with controllable inputs,
most of which focused on using an intermediate mesh representa-
tion to drive the 3D Gaussians [7, 18, 25, 27, 33]. However, relying
on an intermediate 3D mesh representation, such as FLAME [24],
for deformation often lacks fine details in hair and facial wrinkles.

We identify two major challenges in directly mapping the speech
audio to the deformation of 3D Gaussians. First, the 3DGS represen-
tation lacks shared spatial information among the adjacent points,
complicating its manipulation. The optimization process of 3DGS
does not consider relationships between neighboring Gaussians,
crucial for maintaining facial region cohesion during deformation.
Secondly, the extensive parameter space and a substantial number
of Gaussians pose a challenge to their manipulation. Unlike con-
trollable NeRF representations where the position and the number
of sampling points are fixed, the position, shape, and appearance
attributes of numerous Gaussian points need to be deformed per
frame, while also preserving the intricate facial details.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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In this paper, we present GaussianTalker, a novel framework
for real-time pose-controllable talking head synthesis. For the first
time, we leverage the 3D Gaussian representation to exploit its fast
scene modeling capability for audio-driven dynamic facial anima-
tion. We construct a static 3DGS representation of the canonical
head shape and deform this in sync with the audio. Specifically,
we employ a multi-resolution triplane to extract feature embed-
dings for each 3D Gaussian position, from which each Gaussian
attribute is directly estimated. This design ensures that the triplane
learns the spatial and semantic information of the 3D head, while
the interpolation mechanism of the 2D feature grids efficiently
enforces interactions between neighboring points. The feature em-
beddings are subsequently fed to the proposed spatial-audio at-
tention module, where they are merged with the audio features
to predict the frame-wise offsets for the attributes of each Gauss-
ian. This module successfully models the relevance between audio
features and the motions for each Gaussian primitive. The cross
attention offers a more stable approach of manipulating the sub-
stantial number of Gaussians and their intricate parameter space,
compared to concatenation [16, 38] or multiplication [23] as in pre-
vious works. Qualitative and quantitative experiments demonstrate
GaussianTalker’s superiority in facial fidelity, lip synchronization
accuracy, and rendering speed compared to previous methods. Ad-
ditionally, we conduct ablation studies to verify the effectiveness
of individual design choices within our model.

Our main contributions are summarized as follows:
• For the first time, we present a novel audio-conditioned 3D
Gaussian Splatting framework real-time 3D-aware talking
head synthesis.

• We reformulate the 3D Gaussian representation with a fea-
ture volume representation in order to enforce spatial con-
sistency among adjacent Gaussians.

• We integrate cross-attention mechanisms between audio
and spatial features to improve stability and ensure region-
specific deformation across a significant number of Gaus-
sians.

2 RELATEDWORK
2.1 Audio-driven talking portrait synthesis
Audio-driven talking portrait synthesis aims to create realistic facial
animationswith accurate lipmovements based on audio input. Early
2D GAN-based methods [32, 36, 50, 51, 57] achieved photorealism
but lacked control over head pose due to the absence of 3D geometry.
In order to control the head poses, some works [28, 39, 41, 53] utilize
model-based methods, where facial landmarks and 3D morphable
models reinforce the lip sync model with the ability to adjust the
orientation of the head. However, these approaches lead to new
problems such as extra errors from the intermediate representations,
and inaccuracies in identity preservation and realism.

Recently, Neural Radiance Fields (NeRF) [30] have been explored
for talking portraits due to their ability to capture complex scenes.
AD-NeRF [16] pioneered using NeRF’s implicit representation for
conditional audio input, but separate networks for head and torso
limited its flexibility. Subsequent NeRF-based methods [26, 34, 46]
achieved high quality but suffered from slow rendering speeds.
While RAD-NeRF [38] and ER-NeRF [23] improved efficiency and

quality with grid-based NeRF [31], real-time rendering of pose-
controllable 3D talking head remains challenging.

2.2 3D Gaussian splatting
3DGS [21] is a pioneering technique in point cloud rendering that
utilizes a multitude of ellipsoidal, anisotropic balls to precisely rep-
resent a scene. Each point embodies a 3D Gaussian distribution,
with its mean, covariance, opacity, and spherical harmonics pa-
rameters optimized to accurately capture the scene’s shapes and
appearances. This approach effectively resolves common issues in
point rendering, such as output gaps. Furthermore, combined with
a tile-based rasterization algorithm, it facilitates expedited training
and real-time rendering capabilities. Recently, 3DGS has gained
widespread application in 3D vision tasks such as object manipula-
tion [10, 13], reconstruction [11, 21], and perception [4, 29] within
3D environments.

2.3 Facial animation with 3DGS
Previous methods for facial reconstrution and animation primarily
relied on 3D Morphable Models(3DMM) [15, 22] or utilized neural
implicit representations [1, 14, 55]. Recent approaches [7, 8, 33, 40]
have shifted towards adopting the 3DGS representation, aiming
to leverage the benefits of rapid training and rendering while still
achieving competitive levels of photorealism. GaussianAvatars [33]
reconstructed head avatars by rigging 3D Gaussians on FLAME [24]
mesh. MonoGaussianAvatar [7] learned explicit head avatars by
shifting the mean position of 3D Gaussians from canonical to de-
formed space using Linear Blend Skinning (LBS) and simultane-
ously adjusts other Gaussian parameters through a deformation
field. GaussianHead [40] adopted a motion deformation field to
adapt to facial movements while preserving head geometry and
separately utilized a tri-plane to retain the appearance information
of individual 3D Gaussians. However, the aforementioned meth-
ods tend to depend on parametric models for facial animation. In
contrast to previous works, our audio-driven method is not only
free from the need for data beyond the speech sequence for facial
reenactment but also is readily applicable to novel audio.

3 PRELIMINARY: 3D GAUSSIAN SPLATTING
3D Gaussian splatting (3DGS) [21] employs anisotropioc 3D Gaus-
sians as geometric primitives for learning an explicit 3D represen-
tation. Each 3D Gaussian is defined by a center mean 𝜇 ∈ R3 and
covariance matrix Σ ∈ R3×3 in the 3D coordinate as follows:

𝑔(𝑥) = exp
(
−1
2
(𝑥 − 𝜇)𝑇Σ−1 (𝑥 − 𝜇)

)
, (1)

for a 3D coordinate 𝑥 ∈ R3. The covariance matrix Σ is further
decomposed into Σ = 𝑅𝑆𝑆𝑇𝑅𝑇 with a scaling matrix 𝑆 and a rota-
tion matrix 𝑅, defined by a scaling factor 𝑠 ∈ R3 and a learnable
quaternion 𝑟 ∈ R4, respectively. Additionally, to encode the ap-
pearance information, each 3D Gaussian contains a set of spherical
harmonics with degree 𝑘 such that 𝑆𝐻 ∈ R3(𝑘+1) (𝑘+1) , along with
an opacity value 𝛼 ∈ R. In summary, 3DGS represents a 3D scene
with a set of 3D Gaussians parameters, defined as:

G = {𝜇, 𝑟, 𝑠, 𝑆𝐻, 𝛼}, (2)
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Figure 2: Overview of our GaussianTalker framework. GaussianTalker utilizes a multi-resolution triplane to leverage different
scales of features depicting a canonical 3D head. These features are fed into a spatial-audio attention module along with the
audio feature to predict per-frame deformations, enabling fast and reliable talking head synthesis.

Given a novel viewing direction 𝜋 , a 2D image 𝐼 is rendered as:

𝐼 = R(G;𝜋), (3)

where R(·) is the differentiable rasterizer.
More specifically, for R(·), 3DGS employs differential splat-

ting [49] during novel view rendering. In order to project 3D Gaus-
sians to 2D for rendering, the covariance matrix in the 2D space,
Σ′ ∈ R2×2, is calculated by viewing transform𝑊 and the Jacobian
𝐽 of the affine approximation of the projective transformation [58],
such as:

Σ′ = 𝐽𝑊 Σ𝑊𝑇 𝐽𝑇 . (4)
Subsequently, the color of each pixel is computed by blending all
Gaussians that overlap the pixel and ordered by their depths as
follows:

𝐶 =
∑︁
𝑖=1

𝑐𝑖𝛼
′
𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 ′𝑗 ), (5)

where 𝑐𝑖 is the color of each point determined using the SH coeffi-
cient with view direction, and 𝛼 ′

𝑖
is computed by the multiplication

of the opacity 𝛼 of the 3D Gaussian and its projected covariance Σ′.

4 METHODOLOGY
4.1 Problem formulation and Overview
In this section, we describe themain components of GaussianTalker,
designed for the real-time synthesis of high-fidelity, pose-controllable
talking head images driven by audio input. Our model is trained
on a talking portrait video V = {𝐼𝑛} consisting of 𝑁 number of
image frames for an identity. Our objective is to reconstruct a set
of canonical 3D Gaussians that represent the mean shape of the
talking head, and learn a deformation module that deforms the 3D
Gaussians according to corresponding input audio. During infer-
ence, for the input audio 𝑎𝑛 , the deformation module predicts the

offsets of each Gaussian attribute, and the deformed Gaussians are
rasterized at the viewing point 𝜋𝑛 to output the novel image 𝐼𝑛 .

An overview of our proposed method is depicted in Fig. 2. We
first introduce the multi-resolution tri-plane that encodes the low-
dimensional features of the 3D Gaussians to represent the static
mean shape of the canonical head in Sec. 4.2. In Sec. 4.3, we in-
troduce the speech-motion cross-attention module that fuses 3D
Gaussians features and audio features to accurately model facial mo-
tion driven by input audio. Finally, Sec. 4.4 describes the stage-wise
training strategy and the utilized loss functions.

4.2 Learning canonical 3D Gaussians with
triplane representation

In this section, we introduce the details of learning the canonical
shape of the talking head with 3D Gaussian representation. The
vanilla implementation of 3DGS [21] does not inherently capture
the spatial relationships between neighboring and distant 3D Gaus-
sians. However, an ideal feature representation for a dynamic 3D
head should be analogous for proximal facial regions and distinct
for separated ones, as the close facial primitives would likely move
to the same direction.

To realize this, we modify the 3D Gaussian representation by
learning a low-dimensional feature representation, which can be
later merged with the audio features for per-Gaussian deformation.
We formulate the embedding space to encode information of the at-
tributes of the 3D Gaussians, in order to take into account the shape
and appearance of each Gaussian when predicting its deformation
offsets. More specifically, we adopt a hybrid 3D representation that
utilizes the explicit 3D representation of 3DGS, while also taking
advantage of the encoded spatial information of implicit neural
radiance fields [30]. For each of the canoncial 3D positions 𝜇𝑐 , we
extract feature embeddings 𝑓 (𝜇𝑐 ) from a multi-resolution triplane
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Figure 3: Visualization of the triplane feature grids. The
sequence displays a rendered image, followed by its ortho-
graphic projections: frontal (xy), overhead (yz), and side (zx)
views.

representation [3, 5, 12]. These feature embeddings are utilized to
calculate the scale 𝑠𝑐 , rotation 𝑟𝑐 , spherical harmonics 𝑆𝐻𝑐 , and
opacity 𝛼𝑐 of each point. These computed attributes make up the
canonical 3D Gaussian of the talking head, denoted as:

Gcan = {𝜇𝑐 , 𝑟𝑐 , 𝑠𝑐 , 𝑆𝐻𝑐 , 𝛼𝑐 }. (6)

During training, instead of directly updating the 3D Gaussian at-
tributes, the feature grids of the triplane and the attribute predic-
tion networks are optimized. This allows for the feature embedding
𝑓 (𝜇𝑐 ) to store the region-specific facial information of the canonical
3D head, while also enforcing spatial relationships between neigh-
boring Gaussians. In the following, we introduce the formulation
of each module in detail.

4.2.1 Triplane representation for 3D Gaussian. In order to encode
the spatial information of the canonical 3D head, we adopt a multi-
resolution triplane representation, constructed by three orthogonal
2D feature grids, 𝑃 = {𝑃xy, 𝑃yz, 𝑃zx}. Each of these planes has shape
𝐻 × 𝑅 × 𝑅, where 𝐻 stands for the hidden dimension of features,
and 𝑅 denotes the resolution of each dimension. For individual 3D
Gaussian with position 𝜇, each of its coordinate values is normalized
between [0, 𝑅), and its corresponding features are computed by
interpolating the point into a regularly spaced 2D grid for each
plane. These features are combined using the Hadamard product∏

for each plane, followed by concatenation
⋃

along the different
dimensions, to produce a final feature vector 𝑓 (𝜇) of length 𝐻 for
each of the canonical Gaussian position 𝜇𝑐 , such as:

𝑓 (𝜇) =
⋃∏

𝑝∈𝑃
interp

(
𝑝, 𝜁𝑝 (𝜇𝑐 )

)
, (7)

where 𝜁𝑝 (𝜇) denotes a projection of 𝜇 onto the 𝑝’th plane and
‘interp’ denotes bilinear interpolation of a point into the regularly
spaced 2D grid. The visualization of features in our multi-resolution
triplane is depicted in Fig. 3.

4.2.2 Attribute prediction of canonical 3D Gaussians. Unlike the
original 3DGS implementation shown in (2), we do not explicitly
store the shape information 𝑟 and 𝑠 , and the appearance infor-
mation 𝑆𝐻 and 𝛼 . Instead, these attributes are obtained from the
corresponding feature representation 𝑓 (𝜇). Specifically, we employ
a set of MLP layers, denoted as Fcan (·), to map the feature to the

mean scale 𝑠𝑐 , mean rotation 𝑟𝑐 , mean spherical harmonics 𝑆𝐻𝑐 ,
and mean opacity value 𝛼𝑐 from 𝑓 (𝜇), such as:

{𝑠𝑐 , 𝑟𝑐 , 𝑆𝐻𝑐 , 𝛼𝑐 } = Fcan
(
𝑓 (𝜇)

)
. (8)

Compared to the original 3DGS [21] where each Gaussian is opti-
mized independently, our hybrid representation conditioned on an
implicit feature volume enforces shared facial information between
adjacent points.

4.3 Learning audio-driven deformation of 3D
Gaussians

Previous works [16, 23, 26, 38] employ a conditional NeRF repre-
sentation, wherein the 3D coordinates of the sampling point along
each ray remain fixed, with only color and density conditioned to
input audio. However, in order to fully benefit from the explicit rep-
resentation of 3DGS, we choose to deform the 3D Gaussians, where
we manipulate not only the appearance information but also the
spatial positions and shape of each Gaussian primitive. While this
can more accurately capture the constantly fluctuating 3D shape
of the talking head, deformation of 3D Gaussians is a much more
complex task compared to controlling a NeRF representation. The
intricate nature of Gaussian primitives, coupled with their sheer
quantity, presents significant challenges for deformation due to
the extensive parameter space of 3D Gaussians. In addition, input
audio does not impact the whole facial image uniformly, making it
vital for the deformation module to understand how varying facial
regions respond to audio conditions for authentic facial animation.

In order to model the relations between the dynamic features
and the vast amount of 3D Gaussians, we fuse the input speech
audio 𝑎𝑛 with the encoded feature 𝑓 (𝜇𝑐 ) in an attention mecha-
nism, in order to produce the audio-aware feature ℎ𝑛 for the 𝑛-th
image frame. The deformation offsets of each Gaussian attribute
for subsequent frames are directly conditioned on the feature ℎ𝑛 .
Finally, the deformed set of 3D Gaussian for the 𝑛-th image frame
is defined as:

Gdeform,𝑛 = {𝜇𝑐 +Δ𝜇𝑛, 𝑟𝑐 +Δ𝑟𝑛, 𝑠𝑐 +Δ𝑠𝑛, 𝑆𝐻𝑐 +Δ𝑆𝐻𝑛, 𝛼𝑐 +Δ𝛼𝑛}, (9)

where Δ𝜇𝑛,Δ𝑠𝑛,Δ𝑟𝑛,Δ𝑆𝐻𝑛,Δ𝛼𝑛 are the deformation offsets at 𝑛-
th frame for 3D position, scale, rotation, spherical harmonics pa-
rameters and opacity, respectively. The details of each module is
introduced in the following paragraphs.

4.3.1 Spatial-audio cross-attention. Previous approaches to imple-
ment region-aware audio, like ER-NeRF [23], simply adjust the
weights for the audio features at each 3D point through elemen-
twise multiplication. However, it encounters a challenge in that,
regardless of the diverse audio inputs in a dynamic scene, a partic-
ular static 3D point consistently maintains the same audio weight.
This fails to acknowledge that a fixed 3D coordinate may not consis-
tently correspond to the same facial region as the scene progresses.
To address this issue and enhance the extraction of spatial-audio
features, we introduce spatial-audio cross-attention module, a
cross-attention mechanism that merges spatial feature embedding
𝑓 (𝜇𝑐 ) of the canonical 3D Gaussians with subsequent audio fea-
tures, capturing how the input speech audio affects the movement
of the 3D Gaussians. The spatial-audio cross-attention module com-
prises 𝐿 sets of cross-attention layer T𝐶𝐴 (·) and feed-forward layer
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𝐹𝐹𝑁 (·), each interconnected with skip connections. The module is
formulated as:

𝑧0𝑛 = 𝑓 (𝜇𝑐 ), (10)

𝑧′𝑛
𝑙
= T𝐶𝐴 (𝑧𝑙−1𝑛 , 𝑎𝑛) + 𝑧𝑙−1𝑛 , 𝑙 = 1...𝐿, (11)

𝑧𝑙𝑛 = 𝐹𝐹𝑁 (𝑧′𝑛
𝑙 ) + 𝑧′𝑛

𝑙
, 𝑙 = 1...𝐿, (12)

whereby the cross-attention between the spatial feature 𝑓 and the
audio feature 𝑎𝑛 of the 𝑛-th image frame is computed. As a re-
sult, the output feature 𝑧𝐿𝑛 successfully amalgamates audio features
with the rich facial details captured by each 3D Gaussian. This
cross-attention module offers a more nuanced and stable method of
feature combination than simple concatenation or multiplication,
as the module reforms the spatial-aware facial features with respect
to the subsequent audio features, taking into account the dynamic
variability inherent in each 3D Gaussian.

4.3.2 Disentanglement of speech-related motion. When synthesiz-
ing a talking head, the corresponding speech audio does not account
for all the intricate and diverse facial movements. Subtle expres-
sions like eye blinks and facial wrinkles, along with external factors
such as hair movement and variations in lighting, do not directly
correlate with input speech audio. Thereby, it is crucial to separate
the non-verbal motions and scene variations when mapping speech
audio to the 3D Gaussian deformation. In this section, we address
this challenge by introducing additional input conditions that cap-
ture non-verbal motions, allowing us to disentangle speech-related
motion from the monocular video.

Following previous works [23, 38], we first apply explicit eye
blinking control with the eye feature 𝑒 . Specifically, we employ
AU45 from the Facial Action Coding System [9] to describe the de-
gree of the eye blink, and utilize a sinusoidal positional encoding in
order to match the input dimensions. Additionally, we integrate the
camera viewpoint as an auxiliary input to disentangle non-verbal
scene variations. While we formulate the framewise camera 𝜋𝑛 as
facial viewpoints, the typical video is recorded with a static camera
while the head undergoes continuous movement. Consequently,
variations in the portrait image, such as hair displacement and
lighting changes, occur independently of the speech audio. Hence,
we employ a facial viewpoint embedding 𝜐 as an additional input
condition to disentangle these non-auditory scene fluctuations. 𝜐𝑛
is an embedding vector obtained by mapping the extrinsic camera
pose 𝜋𝑛 to a small MLP to have the same dimensionality as the
other inputs. Finally, we discovered that using a single null-vector
(∅) for all frames promotes consistency as a global feature across
video frames. We incorporate this null-vector as an additional input
for our cross-attention network. Thus, we reformulate (11) as:

𝑧′𝑛
𝑙 = T𝐶𝐴 (𝑧𝑙−1𝑛 , {𝑎𝑛, 𝑒𝑛, 𝜐𝑛, ∅}) + 𝑧𝑙−1𝑛 , 𝑙 = 1...𝐿. (13)

In Fig. 4, we visualize the attention scores for each input in order to
demonstrate the efficacy of disentangling audio-related motion. Fur-
ther details on the network structure and visualization procedure
are provided in the supplementary file.

4.3.3 Audio-conditioned deformation of 3D Gaussian. The final
deformation network takes the spatially-aware audio features en-
coded in each 3D Gaussians in order to compute the deformation of
position, rotation, and scaling. We define the set of MLP regressors

rendered audio eye blink viewpoint null

Figure 4: Illustration of attention score distributions across
different modalities for two individuals. From left to right:
the original rendered image, attention scores responsible
for audio cues, eye blink dynamics, head orientation (facial
viewpoint), and temporal consistency (null), respectively.

Fdeform (·) in order to predict the offsets of each Gaussian attributes,
such as:

{Δ𝜇𝑛,Δ𝑠𝑛,Δ𝑟𝑛,Δ𝑆𝐻𝑛,Δ𝛼𝑛} = Fdeform (𝑧𝐿𝑛 ) . (14)

4.4 Training
4.4.1 Stage-wise optimization. 3DGS [21] showed that the quality
of reconstruction is influenced by the initialization of 3D Gaussians.
Similarly, the training of the deformation field should also be con-
ducted using a proper initialization of the canonical facial shape.
To this end, we employ a two-stage training approach.

In the first stage, canonical stage, we first reconstruct the mean
shape of the talking face, by optimizing the positions of 3D Gaus-
sians and the multi-resolution triplane. Instead of the conventional
initialization using structure from motion (SFM) points, we opt to
utilize the 3D coordinates of the mesh vertices from fitting 3D mor-
phable models. Note that the 3DMM fitting of each frame involves
no extra preprocessing, as this is a necessary part of obtaining the
camera parameters of the talking face and is widely adopted in
NeRF-based talking face synthesis works [16, 23, 38]. The static
image of the canonical talking head is rasterized via:

𝐼can = 𝑅(Gcan;𝜋𝑛) . (15)

This is followed by the deformation stage, where we optimize
the whole network, from which we learn the cross-attention defor-
mation network. For each frame, the dynamic talking head video
frame can be rendered as:

𝐼𝑛 = 𝑅(Gdeform,𝑛 ;𝜋𝑛) . (16)

4.4.2 Loss Functions. For the canonical stage for a static shape
of talking head, we follow the original 3DGS implementation [21]
and utilize a combination of L1 color loss L1 and a D-SSIM term
LD−SSIM. Following previous audio-driven NeRF works [16, 23, 38],
we also utilize LPIPS [52] loss Llpips to capture sharp details. For
a given input frame 𝐼 , the overall loss function of the canonical
stage is denoted as Lcan = LL1 + 𝜆lpipsLlpips + 𝜆D−SSIMLD−SSIM.
During the deformation stage, we employ an additional loss func-
tion on the lip area of the talking head. Specifically, we apply a
reconstruction loss for the image patch obtained by cropping where
the lips are located based on the facial landmarks [2]. Thus, the
total loss function for the deformation stage can be formulated as
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Table 1: Quantitative comparison under the self-driven setting.

Methods PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ LMD ↓ AUE ↓ Sync ↑ CSIM ↑ Training
Time ↓ FPS↑

Ground Truth N/A 1 0 0 0 0 8.653 1 N/A N/A
Wav2Lip [32] 30.461 0.911 0.024 33.074 4.458 1.761 9.606 0.887 - 19
PC-AVS [56] 21.958 0.699 0.053 42.646 4.619 1.875 9.185 0.519 - 32
AD-NeRF [16] 30.341 0.906 0.026 20.243 5.692 2.331 4.939 0.908 13h 0.13
RAD-NeRF [38] 30.703 0.915 0.026 26.238 3.142 2.196 5.757 0.911 3h 32
ER-NeRF [23] 31.673 0.919 0.014 19.829 3.003 1.974 5.976 0.922 1h 34
GaussianTalker∗ 32.269 0.930 0.016 8.626 2.932 1.920 6.443 0.933 1h 121
GaussianTalker 32.423 0.931 0.018 8.626 2.932 1.920 6.554 0.932 1.5h 98

Table 2: Quantitative comparison under the cross-driven set-
ting. We extract two audio clips from SynObama demo [37]
to drive each method and compare lip synchronization.

Testset A Testset B

Methods Sync↑ LMD↓ AUE↓ Sync↑ LMD↓ AUE↓

Ground Truth 7.850 0 0 6.976 0 0
Wav2Lip [32] 8.272 7.102 2.023 7.907 5.591 3.164
PC-AVS [56] 8.408 7.731 2.212 7.592 6.230 3.123
AD-NeRF [16] 5.128 18.986 3.654 5.109 9.221 3.266
RAD-NeRF [38] 5.126 12.485 3.611 4.497 7.760 3.447
ER-NeRF [23] 4.694 12.477 3.779 4.822 7.698 3.287
GaussianTalker 5.356 12.702 3.663 5.413 7.812 3.265

Ldeform = Lcan+𝜆lipLlip. Note that the deformed 3D Gaussians are
directly splatted onto the combined background and torso image, in
order to render the head with the background and torso, a common
technique that prevents noise around the facial contours [23, 38].
A more detailed explanation of this technique can be found in the
supplementary file.

5 EXPERIMENTS
5.1 Experimental Settings
5.1.1 Dataset and pre-processing. For each target subject, we re-
quire several minutes of talking portrait video with a corresponding
audio track for training. Specifically, the datasets are obtained from
publicly-released video datasets utilized in previous NeRF-based
works [16, 26, 34, 48], averaging 6,000 frames for each video at 25
fps. We also perform experiments on selected video clips sourced
from the HDTF dataset. [54]. Each portrait video is cropped and
resized to 512 × 512, apart from the Obama video, which is of the
resolution 450 × 450. We split each video into train and test sets
at a ratio of 10:1, following the pre-processing steps introduced in
AD-NeRF [16].

5.1.2 Comparison baselines. We comparatively evaluate our pro-
posed GaussianTalker framework against recent NeRF-based ap-
proaches tackling the same task. We introduce two variants of
our method: the full model GaussianTalker with 𝐿 = 2 cross-
attention layers and a lightweight version, GaussianTalker∗, with
𝐿 = 1 layer. Our method is compared with the recent NeRF-based
approaches that address the same problem settings. We utilize

three models as baselines: AD-NeRF [16], RAD-NeRF [38], and
ER-NeRF [23]. For fair comparison, we implement each method by
utilizing the torso part from the ground-truth frames. Additionally,
we include a comparison with one-shot 2D talking head models,
such as Wav2Lip [32] and PC-AVS [56], to provide a wide range of
comparisons.

5.2 Quantitative Evaluation
5.2.1 Comparison settings andmetrics. Following previousworks [23,
38], our comparisons are structured into two distinct settings: self-
driven and cross-driven. In the self-driven setting, we evaluate
the accuracy of head reconstruction for a particular identity using
the test subset. We employ several reconstruction metrics includ-
ing peak signal-to-noise ratio (PSNR), structural similarity index
measure (SSIM), and learned perceptual image patch similarity
(LPIPS). Notably, these metrics are exclusively measured on the
facial region. We also measure realism of the reconstructed face
using Fréchet Inception Distance (FID) [17] and identity preser-
vation of the animated video using Cosine Similarity of Identity
Embedding (CSIM) [19].

For the cross-driven setting, all methods are driven by entirely
unrelated audio tracks to evaluate lip synchronization. The au-
dio clips used in this setup were extracted from demos of Syn-
Obama [37]. Due to the absence of ground-truth images, we assess
lip sync accuracy with landmark distance (LMD) and SyncNet con-
fidence score (Sync). We also employ action units error (AUE) to
measure the precision of facial movements. Finally, we compare
the training time and frames-per-second (FPS) as measures to
evaluate the efficiency of each method.

5.2.2 Self-driven evaluation. The self-driven evaluation results
are presented in Tab. 1. Note that Wav2Lip [32] scores for PSNR,
SSIM and LPIPS are not valid as it takes ground truth images as
input. While the one-shot 2D-based methods, Wav2Lip and PC-AVS
generate results with high synchronization scores, they fall short
in the faithful reconstruction, showing low PSNR and LPIPS scores.
Benefiting from the 3DGS representation, GaussianTalker achieves
comparable image fidelity with significantly faster rendering speeds
(over 120 fps for GaussianTalker*). Our method also shows the best
scores in most metrics while reaching higher score than other
NeRF-based baselines in Sync scores. The results show that our
method can synthesize high lip-sync accurate 3D heads in real time
rendering speeds.
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Ground
Truth
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Figure 5: Comparative visualization of lip synchronization across different audio-visual models. The sequence depicts the lip
shape conforming to specific phonemes in the spoken words ’country’, ’of’, ’crime’, ’we’, ’up’, ’especially’, ’like’, with the last
frame showing a closed mouth (’mute’).

5.2.3 Cross-driven evaluation. Results in Table 2 showcase suc-
cessful lip movement synthesis with general audio input. Gaus-
sianTalker consistently exhibits the highest Sync score among
NeRF-based methods, demonstrating its effectiveness in handling
unseen audio for lip synchronization. These results highlight Gaus-
sianTalker’s ability to generate high-fidelity 3D heads with real-
time rendering speeds and accurate lip synchronization even with
diverse audio inputs.

5.3 Qualitative Evaluation
In Fig. 5, we showcase results from self-driven and cross-driven
experiments. We choose four key frames from each of the two
experiment settings to compare the reconstruction quality and
lip-sync accuracy. While 2D-based methods (Wav2Lip, PC-AVS)
excel in lip synchronization, they for short of generating a faithful
and consistent face when the head is rotated. AD-NeRF suffers

from blurry reconstructions due to its lack of eye blink control.
RAD-NeRF and ER-NeRF, while demonstrating improved facial
consistency, can exhibit discrepancies in lip synchronization and
fail to capture hair movement during head rotations.

In contrast, GaussianTalker generates photorealistic images with
intricate details in non-rigid regions like eyes and wrinkles. Our
spatial-audio attentionmodule effectively disentangles audio-driven
motions from scene variations, enabling precise control of mouth
movements. This capability allows our model to capture hair move-
ment realistically when the head rotates, leading to superior overall
head reconstruction fidelity. In order to comprehensively visual-
ize the efficacy of our proposed method, we provide the rendered
videos in the supplementary file. The provided supplementary video
demonstrates impressive lip synchronization capabilities and high
fidelity head reconstruction with realistic motion.
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Table 3: Ablation study results comparing various attribute
configurations for embedding canonical 3D Gaussian at-
tributes.

Method PSNR ↑ LPIPS ↓ FID ↓ LMD ↓ Sync ↑
Ground Truth N/A 0 0 0 8.935
𝑠, 𝑟, 𝑆𝐻, 𝛼 33.195 0.016 9.976 2.873 6.927
𝑆𝐻, 𝛼 33.299 0.014 9.808 2.891 6.853
𝑟, 𝑠 33.056 0.016 11.775 2.873 6.892
random init. 33.040 0.017 11.915 2.996 6.543

Table 4: Ablation study on selection of deformed attributes.

Method PSNR ↑ LPIPS ↓ FID ↓ LMD ↓ Sync ↑
Ground Truth N/A 0 0 0 8.935
Δ𝑆𝐻,Δ𝛼 32.746 0.021 44.933 3.179 6.694
Δ𝜇,Δ𝑟,Δ𝑠 33.036 0.013 17.52 2.970 6.688
Δ𝜇,Δ𝑟,Δ𝑠,Δ𝑆𝐻Δ𝛼 33.299 0.013 9.808 2.890 6.928

5.4 Ablation Study
In this section, we provide ablation studies to validate the efficacy
of the design choices of our model. We also show detailed visual-
izations of the generated results in the supplementary material for
better comparison.

5.4.1 Attribute conditions for triplane. Our proposed triplane en-
codes the facial information of the canonical 3D head learned by
3D Gaussians. The mechanism also enforces spatial relationships
between Gaussians for better deformation. In Tab. 3, we demon-
strate the effectiveness of this approach by conducting quantita-
tive ablation on the selection of attributes that are conditioned on
the embedding 𝑓 (𝜇𝑐 ). We also provide results where all attributes
are optimized separately following the original implementation,
and the triplane is trained in the deformation stage. Utilizing only
subsets of the Gaussian attributes show lower performance in lip
synchronization and precision. Removing the attribute conditions
during training leads to loss of spatial information embedded in
the triplane embeddings, leading to a lack of facial cohesion during
inference time.

5.4.2 Selection of deformed attributes. A major challenge of ma-
nipulating the Gaussians is the magnitude of the parameters that
need to be controlled. While estimating offsets for only a subset
of attributes could reduce computational load, it may compromise
overall fidelity due to the lack of control. To address this, in Tab. 4,
we investigate different selections of Gaussian attributes for defor-
mation. Controlling only 𝑆𝐻 and 𝛼 makes the formulation similar
to conditional NeRF-based works [16, 23, 38]. Because 3DGS is an
explicit representation that specifies the 3D positions and shapes,
only controlling the appearance attributes leads to loss of over-
all fidelity. However, only controlling attributes that make up the
position and shape of 3D Gaussians show lower reconstruction
accuracy. Deformation of all Gaussian attribute is crucial for the
highest fidelity and superior lip synchronization.

5.4.3 Disentanglement of audio-unrelated motion. We also investi-
gate the significance of using augmented conditions, such as eye
blink, facial viewpoint, and null-vector. We evaluate the influence

Table 5: Ablation study on augmented input conditions.

Method PSNR ↑ LPIPS ↓ FID ↓ LMD ↓ Sync ↑
Ground Truth N/A 0 0 0 8.935
w/o null-vec 32.997 0.014 9.908 2.933 6.698
w/o eye feature 32.826 0.015 10.060 2.902 6.911
w/o viewpoint 31.866 0.019 13.231 3.052 6.563
All (Ours) 33.299 0.014 9.809 2.891 6.928

Table 6: Ablation study on the effectiveness of stage-wise
training.

Method iter. PSNR ↑ LPIPS ↓ FID ↓ LMD ↓ Sync ↑
Ground Truth - N/A 0 0 0 8.935

w/o stage-wise
500 26.063 0.072 66.629 3.446 1.348
1000 26.478 0.064 56.890 3.344 4.007
5000 32.676 0.016 14.026 2.971 6.602

w/ stage-wise
500 31.076 0.029 31.301 3.792 1.548
1000 31.923 0.024 20.366 3.245 4.449
5000 32.733 0.014 11.173 2.923 6.736

of additional conditions on image fidelity and lip synchronization
by selectively removing them during training (Table 5). The lower
reconstruction scores are attributed to the low lip-sync accuracy
due to entanglement of verbal motion and scene variations unre-
lated to audio. In the supplementary material, we also visualize
the attention scores of each comparison experiment for detailed
analysis.

5.4.4 Stagewise optimization. In Fig. 6, we investigate the impor-
tance of employing a separate canonical stage. We opt to optimize
the whole architecture by training each of the module simultane-
ously from scratch. While the final generated results show similar
performance, optimizing the coarse facial geometry before training
the deformation network results in faster optimization of the whole
methodology.

6 CONCLUSION
In this work, we have proposed GaussianTalker, a novel framework
for real-time pose-controllable 3D talking head synthesis, lever-
aging the 3D Gaussians for the head representation. Our method
enables precise control over Gaussian primitives by conditioning
features extracted from a multi-resolution triplane. Additionally,
the integration of a spatial-audio cross-attention module facilitates
the dynamic deformation of facial regions, allowing for nuanced
adjustments based on audio cues and enhancing verbal motion dis-
entanglement. Our method is distinguished from prior NeRF-based
methods by its superior inference speed and high-fidelity results
for out-of-domain audio tracks. The efficacy of our approach is val-
idated by quantitative and qualitative analyses. We look forward to
enriched user experiences, particularly in video game development,
where real-time rendering capabilities of GaussianTalker promise
to enhance interactive digital environments.
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