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GaussianTalker: Real-Time High-Fidelity Talking Head Synthesis
with Audio-Driven 3D Gaussian Splatting

- Supplementary Materials -
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In the supplementary document, we describe the implementation
details and further analyses of GaussianTalker. Specifically, we
first introduce the details of our network design and hyperparame-
ter settings in Sec. A. We also provide details of our analysis on the
proposed method that was conducted in the main paper in Sec. B. In
Sec. C, we validate our methodology with more qualitative results
from our experiments, and also conduct a user study. Then, more
ablation studies are conducted in Sec. D. To further demonstrate
the robustness and effectiveness of our framework, we also provide
a supplementary video (Sec. E). Finally, we discuss the limitations
and ethical considerations of our research in Sec. F.

A IMPLEMENTATION DETAILS
A.1 Network architecture
A.1.1 Multi-resolution Triplane. Our multi-resolution triplane con-
sists of three orthogonal grids, with the hidden feature dimension
of 𝐻 = 64, and its base resolution of 𝑅 = 64, which is further
upsampled by 2.

A.1.2 Canonical 3D Gaussian attribute predictor. The employed
network that predicts the attributes of canoncial 3D Gaussians is
made up of MLPs, such as: Fcan = {𝜙shared, 𝜙𝑟 , 𝜙𝑠 , 𝜙𝑆𝐻 , 𝜙𝛼 }. Specif-
ically, a tiny MLP 𝜙shared encodes the triplane embedding 𝑓 (𝜇𝑐 )
and outputs a shared feature 𝜅 for all attributes. The following MLP
regressors maps this feature to each 3D Gaussian attribute such as:

𝜅 = 𝜙shared (𝑓 (𝜇)),
𝑟𝑐 = 𝜙𝑟 (𝜅), 𝑠𝑐 = 𝜙𝑠 (𝜅), 𝑆𝐻𝑐 = 𝜙𝑆𝐻 (𝜅), 𝛼𝑐 = 𝜙𝛼 (𝜅) .

(A1)

A.1.3 Deformation offset predictor. Similar to Fcan, the deforma-
tion prediction network, Fcan = {𝜓𝜇 ,𝜓𝑟 ,𝜓𝑠 ,𝜓𝑆𝐻 ,𝜓𝛼 }, that esti-
mates the deformation offsets of each Gaussian attribute for each
frame consists of several small MLP regressors. For the 𝑛-th frame,
the final output embedding from the cross-attention module, 𝑧𝐿𝑛 , is
mapped to each attribute offset such that

Δ𝜇𝑛 = 𝜓𝜇 (𝑧𝐿𝑛 ), Δ𝑟𝑛 = 𝜓𝑟 (𝑧𝐿𝑛 ), Δ𝑠𝑛 = 𝜓𝑠 (𝑧𝐿𝑛 ),

Δ𝑆𝐻𝑛 = 𝜓𝑆𝐻 (𝑧𝐿𝑛 ), Δ𝛼𝑛 = 𝜓𝛼 (𝑧𝐿𝑛 ).
(A2)

A.2 Hyperparameter Configuration
During the canonical stage, we conduct training over 8, 000 itera-
tions for a specific identity. We set the weights for the loss functions
as follows: 𝜆1 = 0.8, 𝜆lpips = 0.01, and 𝜆D−SSIM = 0.2. The initial
learning rate for the multi-resolution triplane is set to 0.0016, grad-
ually decaying to 0.00016. Similarly, the learning rate for Fcan starts
at 0.0001 and diminishes to 0.00001. We cap the maximum number
of 3D Gaussians at 50,000, and we abstain from utilizing the opacity
reset operation from the original implementation [3], as we found
it does not yield discernible benefits in our experiments.

Subsequently, in the deformation stage, we proceed with train-
ing the network for 8,000 iterations. We maintain the same weight-
ing scheme for the loss functions: 𝜆1 = 0.8, 𝜆lpips = 0.01, 𝜆D−SSIM =

0.2, and 𝜆lip = 0.8. All modules are trained with an initial learning
rate of 0.0001, gradually decreasing to 0.00001.

While our spatial-audio cross-attention module primarily em-
ploys 𝐿 = 2 cross-attention layers, our modified GaussianTalker∗
with 𝐿 = 1 can achieve comparable results with even faster infer-
ence speeds.

A.3 Splatting on the background image
Initially, our research followed the method outlined in the original
implementation [3], where faces were generated on a white back-
ground. However, we encountered limitations with this approach.
To render images containing only faces on a white background, cor-
responding ground truth images with similar characteristics were
required, necessitating the use of a segmentation model. However,
due to the inherent inaccuracies of the segmentation model, the
obtained facial masks tended to encompass larger areas, including
the background. Additionally, the disproportionate emphasis of loss
terms such as SSIM and perceptual loss on imperfect facial con-
tours relative to mouth and eye movements hindered the learning
process.

As a solution, we opted to generate faces against GT backgrounds
instead. This approach allowed for the accurate learning of Gaussian
presence boundaries by distributing loss across the entire image.
Similar to preprocessing techniques employed in previous NeRF-
based works [2, 4, 6], we interpolated the human form from the
background image to create an image with the person removed.
Subsequently, faces were directly rendered using Gaussian methods,
enabling comparisons with GT videos. By adopting this strategy,
our GaussianTalker is trained without the need for facial mask,
facilitating the faithful representation of intricate details such as
hair.

B DETAILED ANALYSIS AND VISUALIZATION
B.1 Analysis of attention
We demonstrate the effectiveness of our spatial-audio cross at-
tention module, by presenting more visualization of attention
scores for different input conditions. These visualizations highlight
which input features most influence the deformations of specific 3D
Gaussians. As observed, speech audio attention scores are primarily
concentrated around the lip and mouth regions, indicating their
dominance in controlling lip movements. In contrast, the eye blink
feature 𝑒 focuses its attention on the eye region, as expected. The
viewpoint condition 𝜐 represents head orientation and influences
facial shadows and wrinkles distributed across the entire head.
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B.2 Visualization of Attention
In our spatial-audio cross-attention module, the computation of the
attention score is formalized by the following equation:

(A𝑛)𝑙 =
softmax(𝑞𝑘⊺𝑛 )𝑙√︁

𝑑𝑘

, (A3)

where 𝑙 denotes the index of {𝑎𝑛, 𝑒𝑛, 𝜐𝑛, ∅} and (A𝑛)𝑙 corresponds
to its calculated attention score. A𝑛 denotes the concatenation of all
(A𝑛)𝑙 , resulting in a shape of 𝐵 × 𝐻 × 𝑁 × 𝑑𝑘 , which respectively
indicate batch size, number of heads, number of Gaussians, and
number of features per Gaussian.

For each attention score (A𝑛)𝑙 , we visualize the attention by
assigning the score to RGB values. Thereby we obtain attention
visualization colors 𝑐𝑎𝑡𝑡 for each Gaussian. The overall visualization
of attention is then calculated such as:

𝐶 =
∑︁
𝑖=1

𝑐𝑖𝛼
′
𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 ′𝑗 ), (A4)

where 𝑐𝑖 represents the color associated with each Gaussian, de-
termined by 𝑐𝑎𝑡𝑡 along the view direction. 𝛼 ′

𝑖
is derived from the

multiplication of the opacity 𝛼 of the 3D Gaussian and its projected
covariance Σ′. This mathematical formulation allows us to visually
interpret the model’s focus within the generated representations,
effectively highlighting the areas of greatest feature impact.

B.3 Visualization of triplane
Fig. 3 of the main paper visualizes the PCA analysis result of our
multi-resolution triplane, showing the efficacy of using triplane
to embed Gaussian features. We perform PCA on each triplane
with dimensions 𝐻 × 𝑅 × 𝑅, linearly transforming the first dimen-
sion down to three principal components, resulting in dimensions
3 × 𝑅 × 𝑅. Subsequently, the values of the first dimension are nor-
malized between [0, 255] to denote RGB values. As a result, in
all xy, yz, and zx triplanes, semantically close facial regions are
consistently represented with similar colorations.

C ADDITIONAL EXPERIMENTS
C.1 Additional qualitative experiments.
We present additional attention map visualization on Fig. A1, and
also present additional visualization of generated keyframes from
comparison experiments in the self-driven setting and the cross-
driven setting in Fig. A2 and Fig. A3 respectively. These experi-
ments showcase the stability of our method and its applicability to
various identities.

C.2 User study
Following previous works [4, 6], we conducted a user study in or-
der to better judge the visual quality of the generated talking head
videos. 21 participants with an age range of 20-40 years old were
solicited to evaluate the rendered results in the head reconstruction
setting. For accurate judgments, we combine all generated videos
into a single high-resolution video, enabling simultaneous obser-
vation of all movements by the participants. To ensure fairness in
the comparison process, we assign a number to each generated re-
sult instead of identifying them by their method. Participants were

asked to evaluate the three perspectives of the generated portraits:
(1) Lip-sync Accuracy; (2) Video Realness; and (3) Image Quality.
The results are shown in Tab. A1.
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Figure A1: More results comparison on the self-driven setting.
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Figure A2: More results comparison on the self-driven setting.
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Figure A3: More results comparison on the cross-driven setting.
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Methods Lip-sync Accuracy Image Quality Video Realness Lip-sync Accuracy Image Quality Video Realness

Wav2Lip [5] 3.167 2.665 2.459 2.678 2.313 2.135
PC-AVS [7] 2.625 1.896 1.921 1.958 1.292 1.229
AD-NeRF [2] 2.031 2.492 2.396 2.574 3.042 2.365
RAD-NeRF [6] 2.417 2.750 2.541 2.938 3.146 2.604
ER-NeRF [4] 2.354 3.042 2.771 2.792 3.458 3.146
GaussianTalker 3.083 3.667 3.188 3.250 3.729 3.208

Table A1: User study results. The rating is of scale 1-5, the higher the better. The top, second-best, and third-best results are
shown in red, orange, and yellow, respectively.
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D ABLATION STUDIES
D.1 Initialization of 𝜇𝑐
Our study explores the impact of initialization on canonical 3D
Gaussian optimization. In the default setting, we leverage a pre-
optimized Basel Face Model [1] to obtain camera parameters during
preprocessing. These optimized mesh vertices are used to initialize
the 3D positions, 𝜇𝑐 of the 3D Gaussians.

To investigate the impact of the proposed 3DMM-based initial-
ization, we conduct an ablation study by comparing it to random
initialization from a sphere. In Fig. A4, we visually analyze the op-
timization process of the canonical stage under both initialization
settings. Our experiments demonstrate that utilizing 3DMM-based
initialization leads to faster convergence, attributed to the facial
depth information encoded in the initialized points.

D.2 Selection of attributes inferred for triplane
embeddings.

In Fig. A5, we support the quantitative comparison in the main pa-
per by presenting key frames of the rendered results. Conditioning
the triplane embeddings on the structure information such as 𝑟 and
𝑠 tends to show less accurate facial details such as wrinkles in facial
muscle. In contrast, while conditioning on appearance information
𝑆𝐻 and 𝛼 produce accurate reconstructions of the canonical head,
the facial motion appears less dynamic compared to the ground
truth, and does not correlate well with input speech audio.

D.3 Selection of deformed attributes.
We also provide qualitative comparisons from our ablation study
on selection of Gaussian attributes to be deformed. Utilizing the
same comparison settings from Sec.5.4.2, we visualize the rendered
results in Fig. A6. Only deforming 𝑆𝐻 and 𝛼 show blurry results
with unrealistic deformations, while only manipulating

D.4 Disentanglement of audio-unrelated motion
Finally, we reinforce the insights drawn from the quantitative anal-
ysis in Section 5.4.3. We elucidate the disentanglement of speech-
related motion in Fig. A7 by presenting visualizations of the atten-
tion scores for the input conditions across the ablation experiment
settings. Notably, the attention scores of the input speech audio
become more widely distributed across other facial regions, indi-
cating inadequate disentanglement of speech-related motion when
solely provided with speech as the input condition.
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Figure A4: Ablation study on initialization of the canonical position 𝜇𝑐 . We evaluate the effectiveness of the 3DMM-based
initalization by visualizing the optimization process of the reconstructed canonical 3D head, and compare it to random
initialization. Our experiments demonstrate that utilizing 3DMM-based initialization leverages the depth information of the
human face, leading to significantly faster convergence. In contrast, optimizing from randomly sampled points prolongs
training duration and fails to completely resolve artifacts, particularly around the eyes and hair regions.
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Figure A5: Ablation study on the selection of attributes inferred from the triplane embedding 𝑓 (𝜇). We compare the generated
results from
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Figure A6: Deforming only spherical harmonics and opacity resulted in a significant loss of facial detail and blurry recon-
structions. Notably, this led to unrealistic deformations in lip regions, where the lips and teeth appeared merged. Conversely,
deforming only structural information (𝜇, 𝑟, 𝑠) produced much less dynamic lip movements. In addition, the generated results
show the inside of the mouth, such as teeth and tongue less frequently.
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Figure A7: Ablation study on disentanglement effect of each input conditions. We assess the effectiveness of each input
condition by alternatively turning them on and off, and visualizing the attention scores of each condition.
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E SUPPLEMENTARY VIDEO
To comprehensively visualize the efficacy of our proposed method
in the domain of talking facial video synthesis, we prepared a sup-
plementary video. This video encompasses the results and analysis
of our experiments presented in the main paper and the supplemen-
tary document. We showcase talking head videos generated under
both the self-driven and cross-driven settings and compare them
with previous NeRF-based works [2, 4, 6]. We also demonstrate the
effectiveness of our spatial-audio cross attention module by
showing how the attention scores of each condition evolve as the
scene progresses. Lastly, the video includes a set of ablation studies
that systematically examine the impact of each component of our
proposed method.

F FURTHER DISCUSSIONS
F.1 Ethical Considerations
Our goal with GaussianTalker is to create realistic talking 3D heads
for practical real-world applications like digital assistants and video
production. However, its photorealism raises ethical concerns, as
it’s difficult to distinguish real from synthetic videos. This can be
used to create deepfakes, which are manipulated videos that can be
used to spread misinformation or damage someone’s reputation. To
address this, we propose several measures: 1) informing users about
video authenticity, 2) sharing our results with deepfake detection
communities to improve detection algorithms, and 3) advocating for
digital watermarks in real videos to deter misuse. Finally, we believe
responsible use requires clear regulations to govern deepfakes on
social media, protecting users from potential manipulation.

F.2 Limitations and future work
GaussianTalker shares a common limitation with previous NeRF-
based talking head synthesis methods: per-identity training. This
restricts the model’s ability to generalize to new identities, mak-
ing data preparation for audio and eye features time-consuming.
Additionally, free-viewpoint rendering remains a challenge due to
the lack of multi-view training data. While the deformation stage
achieves high fidelity and generalizes well to out-of-domain audio,
it struggles with extreme viewpoints. Our current approach uses
limited canonical training for coarse structure, leading to inconsis-
tencies when synthesizing from very different angles.

Future work will focus on overcoming these limitations. We
aim to explore techniques for multi-identity training and efficient
data pre-processing. Additionally, we will investigate methods for
free-viewpoint rendering using techniques like multi-view data
acquisition or neural rendering approaches.
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