
A Details in α-MDF435

This section provides a detailed overview of the previously mentioned α-MDF modules, and de-436

scribes differentiable Ensemble Kalman filters as the underlying DFs framework for α-MDF.437

A.1 Model Initialization and Embedding Functions438

An auxiliary model A is supplied in the filtering process to support training by starting the filter439

via projecting the actual state xxxt−N :t−1 from low-dimensional space to latent space. The model is440

implemented using stochastic neural networks (SNNs) [42],441

xit−N :t−1 ∼ A(xit−N :t−1|xxxt−N :t−1), ∀i ∈ E, (7)

where xit−N :t−1 is one latent state, the latent state ensemble is obtained by samplingA for E times.442

During inference, we employ the trained sensor encoders’ output, which is the latent representation443

of RGB, depth, or proprioception, as the initial state to initiate the filtering process.444

Regarding the prediction step of α-MDF, we apply positional embedding layers (sinusoidal func-445

tions) [32] in the transformer process model (Eq. 3) to generate eeet−N :t−1 as the embedding for446

time-series data, eeet−N :t−1 = fL(Xt−N :t−1) ∈ Rdx×(N−1). The positional embedding layer is uti-447

lized to label the state by index it with time t. When activating the action at in the process model,448

eeet−N :t−1 is passed through a type embedding layer that indexes eeet−N :t−1 and at with 0 and 1,449

and then fed to sinusoidal functions. Subsequently, the outputs obtained from the aforementioned450

procedures serve as input to the transformer process model for further processing.451

A.2 Differentiable Ensemble Kalman Filter452

Unlike prior proposals for differentiable filters, such as dEKF [9] and DPF [24], Differentiable En-453

semble Kalman Filter [6] leverages recent advancements in stochastic neural networks (SNNs) [42].454

Specifically, we draw inspiration from the work in [43], which established a theoretical connection455

between the Dropout training algorithm and Bayesian inference in deep Gaussian processes. As a456

result, we can use stochastic forward passes to produce empirical samples from the predictive poste-457

rior of a neural network trained with Dropout. Hence, for the purposes of filtering, we can implicitly458

model the process noise by sampling state from a neural network trained on the transition dynamics,459

i.e., xt ∼ fθθθ(xt−1). In contrast to previous approaches [24, 9], the transition network fθθθ(·) models460

the system dynamics, as well as the inherent noise model in a consistent fashion without imposing461

diagonality.462

Prediction Step: Similar to α-MDF, we use an initial ensemble of E members to represent the463

initial state distribution X0 = [x1
0, . . . ,x

E
0 ], E ∈ Z+. We leverage the stochastic forward passes464

from a trained state transition model to update each ensemble member:465

xit|t−1 ∼ fθθθ(x
i
t|t−1|x

i
t−1|t−1), ∀i ∈ E. (8)

Matrix Xt|t−1 = [x1
t|t−1, · · · ,x

E
t|t−1] holds the updated ensemble members which are propagated466

one step forward through the state space. Note that sampling from the transition model fθθθ(·) (using467

the SNN methodology described above) implicitly introduces a process noise.468

Update step: Given the updated ensemble members Xt|t−1, a nonlinear observation model hψψψ(·) is469

applied to transform the ensemble members from the state space to observation space. Following our470

main rationale, the observation model is realized via a neural network with weightsψψψ. Accordingly,471

the update equations become:472

HtAt = HtXt −

[
1

E

E∑
i=1

hψψψ(x
i
t), · · · ,

1

E

E∑
i=1

hψψψ(x
i
t)

]
, (9) ỹit ∼ s(ỹit|yt), ∀ i ∈ E. (10)473

HtXt is the predicted observation, and HtAt is the sample mean of the predicted observation at t.474

Traditional Ensemble Kalman Filter treats observations as random variables. Hence, the ensemble475

13



can incorporate a measurement perturbed by a small stochastic noise to reflect the error covariance476

of the best state estimate [6]. In differentiable Ensemble Kalman Filter, we incorporate a Bayesian477

sensor encoder s(·). Sensor encoder serves to learn projections from observation space to latent478

space as in Eq. 10, where yt represents the noisy sensor observation. Sampling from sensor encoder479

yields latent observations Ỹt = [ỹ1
t , · · · , ỹ

E)
t ]. The KF update step can then be continued by using480

the learned observation and predicted observation:481

Kt =
1

E − 1
At(HtAt)

T (
1

E − 1
(HtAt)(HtAt)

T +R)−1. (11)

The measurement noise model R is implemented using a multilayer perceptron (MLP), similar482

to the implementation in [9]. The MLP takes a learned observation Ỹt at time t and produces483

a noise covariance matrix. The final estimate of the ensemble X̂t is obtained by performing the484

measurement update step, given by:485

X̂t = Xt +Kt(Ỹt −HtXt). (12)

In inference, the ensemble mean x̄t|t =
1
E

∑E
i=1 x

i
t|t is used as the updated state.486

A.3 Baselines487

In our study, we examine two categories of baselines: (a) DFs baselines, which consist of existing488

methods such as those proposed in [9, 24, 22], and (b) sensor fusion strategies, as proposed in [18].489

Table 4: Dimensions pertinent to each of the robot state estimation tasks.

Method Visual Odometry UR5 Manipulation Soft Robot
State Observation State Observation State Observation Action

dEKF [9] 5 2 10 10 7 7 40
DPF [24] 5 2 10 10 7 7 40

dPF-M-lrn [9] 5 2 10 10 7 7 40

Feature Fusion [18] - - 10/13 10/13 7 7 40
Unimodal [18] - - 10/13 10/13 7 7 40

Crossmodal [18] - - 10/13 10/13 7 7 40
α-MDF 256 256 256 256 256 256 40

Dimensionality: Table 4 presents the dimensions for the state, observations, and actions utilized490

for each of the tasks. To ensure consistency, we opt for a dimension of 256 for α-MDF in all tasks,491

thus, enabling filtering over high-dimensional spaces. Unlike the baseline methods, which use low-492

dimensional state definitions, we filter over higher dimension spaces with α-MDF.493

Differentiable Filters: To maintain consistency in the comparison of results against the DFs base-494

lines, we train α-MDF with a single modality. The baselines in this category include the differen-495

tiable Extended Kalman filter (dEKF) [9], differentiable particle filter (DPF) [24], and the modified496

differentiable particle filter (dPF-M-lrn) [9], which uses learned process and process noise models.497

For dEKF, the Jacobian matrix in the prediction step can either be learned end-to-end or supplied if498

the motion model is known. DPF employs 100 particles for both training and testing and also in-499

corporates an observation likelihood estimation model l. This module takes in an image embedding500

and produces a likelihood that updates each particle’s weight. Unlike DPF, dPF-M-lrn implements501

a learnable process noise model. It also adopts a Gaussian Mixture Model for calculating the like-502

lihood for all particles. It is worth noting that all the baseline methods perform Kalman filtering503

on low-dimensional actual state space, whereas α-MDF executes the filtering process in the latent504

space.505

Sensor Fusion: Regarding sensor fusion baselines, we use three strategies discussed in [18], namely,506

Feature Fusion, Unimodal Fusion, and Crossmodal Fusion. The Feature Fusion strategy aims to507

process each modality individually and subsequently merge the modalities to generate a multimodal508

feature set using neural networks, which is then used for state estimation. The Unimodal Fusion509
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treats each modality N ∼ (µµµM1
t ,ΣΣΣM1

t ) and N ∼ (µµµM2
t ,ΣΣΣM2

t ) as distributions and fuse two uni-510

modal distribution as one normally distributed multimodal distribution N ∼ (µµµt,ΣΣΣt):511

µµµt =
(ΣΣΣM1

t )−1µµµM1
t + (ΣΣΣM2

t )−1µµµM2
t

(ΣΣΣM1
t )−1 + (ΣΣΣM2

t )−1
, ΣΣΣt = ((ΣΣΣM1

t )−1 + (ΣΣΣM2
t )−1)−1, (13)

where the associative property can be used for fusing more than two modalities. For Crossmodal512

Fusion, information from one modality can be used to determine the uncertainty of the other ones,513

two coefficients are proposed as βββM1
t and βββM2

t , where each coefficient has the same dimension of514

the state, the fused distribution is:515

µµµt =
βββM1
t ◦µµµM1

t + βββM2
t ◦µµµM2

t

βββM1
t + βββM2

t

, ΣΣΣt =
BBBM1
t ◦ΣΣΣM1

t +BBBM2
t ◦ΣΣΣM2

t

BBBM1
t +BBBM2

t

, (14)

where BBBMt = (βββMt )TβββMt . As mentioned in [18], each sensor encoder was independently trained516

and subsequently used for end-to-end training with DFs. We adopt a similar approach, but with a517

differentiable Ensemble Kalman Filter backbone in place instead. The resampling procedure from518

the fused distribution in this scenario is achieved by using the reparematerization trick [44].519

B Additional Experiments520

This section presents supplementary experimental results for each task. For (1) Visual Odometry521

Tasks, we offer full detailed experiments; however, for (2) Multimodal Manipulation Tasks and (3)522

Soft Robot Modeling Tasks, we concentrate mainly on ablation studies.523

B.1 Visual Odometry Tasks524

In this experiment, we investigate the performance of α-MDF on the popular KITTI Visual Odom-525

etry dataset [34]. We only consider RBG images as the input modality in order to make a fair com-526

parison with the baselines [9, 24, 22]. Following the same evaluation procedure as our baselines, we527

define the actual state of the moving vehicle as a 5-dimensional vector xxx = [x, y, θ, v, θ̇]T , including528

the position and orientation of the vehicle, and the linear and angular velocity w.r.t. the current head-529

ing direction θ. The raw observation y corresponds to the RGB camera image of the current frame530

and a difference image between the current frame and the previous frame, where y ∈ R150×50×6 as531

shown in Fig. 8. The learned observation ỹ is defined as ỹ = [v, θ̇]T , since only the relative changes532

of position and orientation can be captured between two frames. We use the latent state x ∈ R256533

for α-MDF.534
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Figure 8: KITTI visual inputs.

Data: The KITTI Visual Odometry dataset in-535

cludes 11 trajectories capturing the ground truth536

pose (translation and rotation matrices) of a ve-537

hicle navigating urban areas at a data collec-538

tion rate of approximately 10Hz. To facilitate539

the learning process, we standardize the data by540

normalizing each dimension to have a mean of541

0 and a standard deviation of 1 during training.542

To process the provided pose data, we convert543

them to quaternions to capture the minimal changes between consecutive quaternion pairs. Subse-544

quently, the results are converted back to radians to represent the angular velocity θ̇. This conversion545

ensures that the angular velocity remains minimal and falls within the range of [−π, π].546

Results: The performance of state estimation is evaluated using an 11-fold cross-validation,547

whereby 1 trajectory is withheld at each time. The standard KITTI benchmark metrics, namely548

the translational error (m/m) and rotational error (deg/m), are reported in Table 5. The error met-549

rics are computed from the test trajectory over all subsequences of 100 timesteps, as well as all550

subsequences of 100, 200, 400, and 800 timesteps. Figure 9 presents the performance of α-MDF551

and other differentiable filtering techniques. It is important to note that incorporating domain- and552
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Table 5: Result evaluations on KITTI Visual Odometry task measured in m/m and deg/m denote the
translational error and the rotational error.

Method Test 100 Test 100/200/400/800
m/m deg/m m/m deg/m

dEKF [9] 0.2646±0.004 0.1386±0.002 0.3159±0.002 0.0923±0.005
DPF [24] 0.1344±0.002 0.1203±0.007 0.2255±0.001 0.0716±0.004

dPF-M-lrn [9] 0.1720±0.010 0.0974±0.009 0.1848±0.004 0.0611±0.003
α-MDF 0.0718±0.001 0.0954±0.001 0.0379±0.002 0.0328±0.001

Means±standard errors.

data-specific information, such as using stereo images [45], integrating LiDAR [46, 47], or applying553

SLAM and loop-closure related assumptions [45, 48], can yield lower error metrics. However, to554

ensure fair and comparable evaluations, we utilize the most commonly used setup when comparing555

filtering techniques in a task-agnostic fashion (as performed in [9, 24, 22]).556
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Figure 9: Visual Odometry results with different differen-
tiable filters: the error rate for LSTM and BKF are reported
from [22], dEKF, DPF, and dPF-M are reproduced.

Table 5 presents the outcomes of our pro-557

posed method in comparison with the ex-558

isting state-of-the-art DFs, namely dEKF,559

DPF, and dPF-M-lrn. In order to pro-560

vide a fair comparison, we do not include561

unstructured LSTM models as baselines562

since prior works [22, 9] have shown that563

they do not achieve comparable results.564

The pre-trained sensor encoder with the565

same visual inputs is used and integrated566

into all the DF frameworks evaluated. In567

this experiment, the motion model of the568

vehicle is known, and the only unknown569

part of the state is the velocities. In light of the above, we adopt a learnable process model to update570

state variables alongside an established motion model to update the (x, y, θ) variables. While the571

computed Jacobian matrix is supplied in training and testing for dEKF, our α-MDF demonstrates572

significant improvements compared to dEKF, DPF, and dPF-M-lrn. Specifically, we observed a re-573

duction in the translational error of approximately 88%, 83%, and 79% for Test 100/200/400/800.574

The results also reflect a considerable reduction in rotational error of approximately 64%, 54%, and575

46% as compared to each of the baselines. Our analysis of α-MDF reveals that conducting filtering576

on high-dimensional observations in the latent space yields better results than conducting filtering577

on the actual state space.578

B.2 Multimodal Manipulation Tasks579

Task Setup: For α-MDF, we define the latent state x ∈ R256 for all the manipulation tasks. The580

actual state of the UR5 robot is described by xxxR, which consists of the seven joint angles (J1-J7)581

and the Cartesian coordinates (x, y, z) of the robot’s end-effector. This Cartesian coordinate sys-582

tem is centered at the manipulation platform’s origin point (0, 0, 0). On the other hand, the state of583

the object being manipulated is represented by xxxO, which only includes the Cartesian coordinates584

(x, y, z) of the object. The input modalities for each of the three tasks differ. In task (1), input is585

given through three modalities: y1, y2, and y3. The first modality y1 ∈ R224×224×3 is a camera im-586

age captured from a frontal angle. The second modality y2 ∈ R224×224×1 depicts depth maps from587

the same camera view. Lastly, y3 is a proprioceptive input source with dimensions R7, representing588

the joint angles’ values. In this task, the proprioceptive input specifically refers to the joint angles589

as the source. In task (2), input is given by only two modalities: y1 and y3, but from a real-world590

perspective. In task (3), input is received from four modalities: y1, y2, y3, and y4. y4 contains591

the Force/torque (F/T) sensor readings from the robot gripper, where y4 ∈ R6, while the first two592

modalities are identical to task (1).593
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Pick up the red can Put down the Pepsi Push the red can to the left 

(a) Task 1 (b) Task 2 (c) Task 3 

Figure 10: The multimodal manipulation experiment involves the following subtasks: (a) Task 1 utilizing RGB,
depth, and joint modalities, (b) Task 2 utilizing only RGB and joint modality, and (c) Task 3 utilizing RGB,
depth, joint, and Force/torque (F/T) sensor modalities. The F/T sensor is mounted on the grabber, as depicted
by the orange box.

Table 6: Ablation study on UR5 manipulation task with different combination of the modalities.

RGB Depth Joint F/T Joint (deg) EE (cm) Obj (cm)

Task (1)

✓ 2.78±0.09 1.06±0.01 -
✓ 3.65±0.10 1.38±0.05 -

✓ 9.53±0.20 3.22±0.14 -
✓ ✓ 2.39±0.11 1.01±0.02 -

✓ ✓ 2.69±0.01 1.09±0.03 -
✓ ✓ 1.91±0.08 0.64±0.03 -
✓ ✓ ✓ 2.19±0.09 0.75±0.01 -

Task (2)
✓ 7.49±0.06 3.81±0.17 -

✓ 5.47±0.08 3.32±0.04 -
✓ ✓ 5.24±0.04 3.04±0.01 -

Task (3)

✓ ✓ ✓ 2.93±0.01 2.26±0.02 3.26±0.01
✓ ✓ ✓ 3.16±0.20 2.34±0.04 3.66±0.30
✓ ✓ ✓ 1.42±0.08 0.93±0.01 1.47±0.02
✓ ✓ ✓ 1.37±0.02 0.94±0.01 1.78±0.06
✓ ✓ ✓ ✓ 1.41±0.04 0.90±0.01 1.65±0.01

Means±standard errors.

Data: Data collection is conducted for both simulation with MuJoCo [49] and real-world scenarios.594

We record the UR5 robot operating on a random object by performing one of “pick”, “push”, and595

“put down” actions. We collect 2,000 demonstrations in simulation for task (1), and 100 on the596

real robot for task (2), with changing the location of each object for each demonstration. For task597

(3), we collect 2,000 demonstrations in simulation with adding the tactile sensors. We use ABR598

control and robosuite [50] in addition to MuJoCo to ensure rigorous dynamics in the simulator. Each599

demonstration sequence has a length of approximately 350 steps with a timestep of 0.08 seconds.600

An 80/20 data split is utilized for training and testing each task. It should be noted that in all tasks,601

we normalize the joint modality y3 and apply Gaussian noise to each joint angle, drawn from the602

distribution N ∼ (0, σ2I) where σ2 = 0.1. We collect the F/T sensor readings directly from603

MuJoCo’s native touch sensor. Moreover, the depth maps obtained from MuJoCo are with no noise604

therefore can be regarded as high-fidelity data.605

Ablation Study: In addition to the findings presented in Section 4.2, we perform a comprehensive606

ablation analysis for each manipulation task to address the question, “How does the use of multiple607

modalities compare to a subset of modalities for state estimation with differentiable filters?”. Table 6608

displays the outcome for each task with various number of modalities using MAE metric. The609

highest margin of error is indicated by the red shading, while the complete modality is labeled by610

green shading for each task. Interestingly, even thought using all modalities can generate comparable611

results, in certain tasks, utilizing all modalities does not necessarily guarantee superior performance612

compared to utilizing a subset of modalities. Through our experiments in Task (1), it becomes613

apparent that the optimal performance is achieved by utilizing the subset of modalities [y1, y2],614

which yields an improvement of joint angles (2.19◦ → 1.91◦). In Task (3), we observe that diverse615

subsets of modalities lead to superior state estimation results for joint angles, EE, and the object616

locations respectively. Analysis of Table 6 indicates an important role played by the depth map617

y2 when considering all observations. This suggests that y2 is treated as high-fidelity data during618

training, thereby contributing the most towards the final results.619
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Figure 11: State estimation results are shown after introducing di-
verse levels of noise to [y1, y2]. The red group depicts results
using [y1, y2] modality, while the blue group represents results
using [y1, y2, y3] modality.

Henceforth, we conduct an additional620

ablation analysis to ascertain whether621

or not the use of a combination of622

high-fidelity and low-fidelity sensor623

inputs offers a potential benefit. As624

noted during data collection, the pro-625

prioceptive input y3 comprising joint626

angles is obtained via adding Gaus-627

sian noise and is therefore considered628

a low-fidelity input. Figure 11 illus-629

trates the scenario of using y3 and not630

using y3 while applying distinct lev-631

els of Gaussian blur in the image and632

depth space. Notably, without em-633

ploying y3, the state estimation performance deteriorates as the level of blur increases. On the634

other hand, y3 - despite being classified as a low-fidelity modality - contributes to the final state635

estimation. In particular, at the highest level of blur, incorporating y3 yields a 29% improvement in636

joint angle estimation and a 17% improvement for end-effector locations.637

B.3 Soft Robot Modeling Tasks638

This section presents a comprehensive analysis of the tensegrity robot structure, the bending motion639

mechanism, and pertinent sensory information, followed by a description of additional experimental640

outcomes related to this task.641

Layer 1
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Layer 5

IMU5

IMU1

MoCap

Inter-layer Actuator

Strut

Intra-layer Actuator

Cable

Figure 12: The tensegrity robot features 5 flexible layers, each a tenseg-
rity module with struts, cables, and actuators. Its sensory data includes
IMUs, MoCap, and pressure vector readings from pneumatic cylinders.

Preliminaries: Our research642

utilizes a tensegrity robot arm643

(developed in [39]) that follows644

a strict tensegrity structure fea-645

turing struts, cables (including646

spring-loaded and actuated ca-647

bles), and five layers of arm-like648

tensegrity structures, which pro-649

duce continuous bending pos-650

tures when exposed to exter-651

nal forces. The longitudinal652

length is maintained by stiff ca-653

bles, while the bending direction654

is solely determined by external655

forces. We determine the robot’s656

kinematics through data from Inertial Measurement Units (IMUs), optical motion capture (MoCap),657

and proportional pressure control valves, with each of the five struts in each layer featuring an IMU.658

We also record the video by placing a camera in front of the robot while collecting all sensory data.659

A soft robot’s state at t is a 7-dimensional vector xt = [x, y, z,qx,qy,qz,qw]
T , indicating its po-660

sition and orientation relative to the base frame (layer 1’s bottom). q represents the robot’s posture.661

The system’s action is the pressure vector of its 40 pneumatic cylinder actuators (at ∈ R40). Its raw662

observation is comprised of 5 IMU readings (y3
t ∈ R30), with each IMU measuring a 6-dimensional663

vector of accelerations and angular velocities relative to its location. Fig. 12 illustrates the locations664

of the IMUs on the struts (blue cubes) in each layer.665

Data: The complete set of modalities comprises [y1,y2,y3], where y1 ∈ R224×224×3 represents666

RGB images, y2 ∈ R224×224 is synthetic depth maps which we generate from DPT repo [40]667

utilizing “Intel/dpt-large”, and y3 ∈ R30 is proprioceptive inputs (IMUs). The dataset is generated668

by performing optical motion capture on the real tensegrity robot hand tip while randomly supplying669

desired pressure vectors to the pneumatic cylinder actuators. The action at ∈ R40, 5 IMU readings670

y3
t ∈ R30, and a 7-dimensional state xt are recorded, with 40-dimensional pressure vectors being671
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Figure 13: Predicted end-effector (EE) positions and quaternion vectors q in the soft robot modeling task. The
top row displays the actual robot posture at the corresponding time, with the orange circle indicating the EE
positions, which are not included in the RGB modality input.

used as a control signal. A total of 12,000 trials of robot motion are collected, with each trial672

involving moving the robot from its current equilibrium posture to the next equilibrium posture by673

applying the new desired pressure. All data are collected via a ROS2 network with a sampling674

frequency of 30Hz and are synchronized using the “message_filters” package.675

Table 7: Ablation study on Tensegrity robot.

RGB Depth IMUs EE (cm) q(101)

✓ 2.07±0.03 0.31±0.08
✓ 2.77±0.01 0.19±0.05

✓ 8.99±0.02 0.79±0.03
✓ ✓ 2.08±0.03 0.14±0.02

✓ ✓ 1.73±0.05 0.12±0.02
✓ ✓ 1.74±0.06 0.10±0.02
✓ ✓ ✓ 1.67±0.09 0.12±0.01

Means±standard errors.

Ablation Study: In addition to the re-676

sults presented in Section 4.3, we evalu-677

ate various combinations of modalities678

to determine whether an optimal sub-679

set of modalities can be identified to at-680

tain comparable outcomes without using681

all modalities during the filtering oper-682

ation. As demonstrated in Table7, uti-683

lizing only one modality fails to achieve684

comparable results, with the highest ac-685

curacy (2.07cm) exclusively from em-686

ploying y1 (RGB). The lowest error in687

posture estimation for the robot is obtained by leveraging [y1,y2], showing slight improvement688

(0.10→0.12) over leveraging the full modalities [y1,y2,y3]. However, the lowest MAE error for689

the EE position persists even when all modalities are employed. Interestingly, using solely y3 re-690
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sults in the highest state estimation error, which aligns with the lowest attention value visualized in691

Fig 14. As depicted in Fig. 14, it is evident that α-MDF prioritizes y1 over other modalities. Inter-692

estingly, the attention values change upon turning off certain modalities while the system remains693

stable and functional.694
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Figure 14: The corresponding accumulated attention values for each modality during testing. The gray areas
show certain modalities are selected or not selected.

C Training Details695

Table 8 provides an exhaustive enumeration of all learnable modules utilized in α-MDF,696

which includes three primary components: the state transition model fθθθ, the sensor encoders697

[s1(·), s2(·), · · · , sM (·)], and the attention gain (AG) module. We adopt self-attention layers with698

dimension 256 and 8 heads, denoted as “Self Attn”, in the state transition model. The cross-attention699

layers, denoted as “Cross Attn”, is with dimension 32 and 4 heads in the AG module. The sensor700

encoders utilized in our approach and all baseline models are identical, with s1 acting on image-701

like modalities, utilizing ResNet18 [51] for learning high-dimensional observation representations,702

while s2 pertains to low-dimensional modalities such as joint angles. The auxiliary modelA and the703

decoder D shares a similar structure to s2, but with different number of neurons. Note that x is the704

dimension of the actual state.705

Table 8: α-MDF’s learnable sub-modules.
fθθθ: 3× SNN(256, ReLu), Positional Embedding, 3× Self Attn(256,8), 2× SNN(256, ReLu), 1× SNN(dx, -)

s1: 1× ResNet18(h,w,ch), 2× fc(2048, ReLu), 1× SNN(512, ReLu), 1× SNN(dx, -)

s2: 1× SNN(128, ReLu), 1× SNN(256, ReLu), 1× SNN(512, ReLu), 1× SNN(dx, -)

AG: Positional Embedding, 1× Cross Attn(32, 4, mask)

A: 1× SNN(128, ReLu), 1× SNN(256, ReLu), 1× SNN(512, ReLu), 1× SNN(1024, ReLu), 1× SNN(dx, -)

D: 1× fc(256, ReLu), 1× SNN(128, ReLu), 1× SNN(32, ReLu), 1× SNN(x, -)
fc: Fully Connected, SNN: Stochastic Neural network.

During α-MDF training, we employ the curriculum outlined in Algorithm 1. Note that some tasks706

may require pre-training the sensor encoders before performing end-to-end training the entire frame-707

work. For each task, we train α-MDF model with utilizing batch size of 64 on a single NVIDIA708

A100 GPU for roughly 48 hours. For all the tasks, we use the Adamw [52] optimizer with a learning709

rate of 1e-4.710

Algorithm 1 Condition in Latent Space: training algorithm return the weights ω

Input: α-MDF, dataloader
(
{xxxt}t+1

t−N , {ymt }Mm=1, {ymt+1}Mm=1, {at}t+1
t−1

)
Output: weights ω
while not converged do

Call dataloader with a random timestep t.
for timestep t← t to t+ 1 do

e1 ←
∑M
m=1 ∥D(sm(ymt ))− xxxt∥22 according to Eq. 6

e2 ← Lfθθθ (Xt) + Le2e(X̂t) according to Eq. 6
et ← e1 + e2

end for
ω ← Train (α-MDF, et + et+1)

end while
return ω
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