
A Literature Review

In contrast to continuous optimization, where problems with the convex structure are studied in depth,
most works on discrete stochastic optimization (Futschik & Pflug, 1995; Gutjahr & Pflug, 1996;
Futschik & Pflug, 1997; Kleywegt et al., 2002; Semelhago et al., 2020) do not consider the convex
structure. The main obstacle to the development of discrete convex optimization lies in the lack
of a suitable definition of the discrete convex structure. A natural definition of the discrete convex
functions would be functions that are extensible to continuous convex functions. However, for that
class of functions, the local optimality does not imply the global optimality and therefore it is not
suitable for the purpose of optimization. Later, Favati (1990) proposed a stronger condition, named
the integral convexity, which ensures that the local optimality is equivalent to the global optimality.
On the other hand, similar properties of continuous convex functions have been proved for submodular
functions. Lovász (1983) showed the equivalence between the submodularity of a function and the
convexity of its Lovász extension, and later Fujishige (1984) established the Fenchel-type min-max
duality theorem for submodular functions. Moreover, the Lovász extension along with the subgradient
convinced in Fujishige (2005) provide a good framework of applying gradient-based method to the
submodular function minimization (SFM) problem. In the case when the objective function is an
integer-valued submodular function, the best strongly and weakly polynomial algorithms proposed
in Lee et al. (2015) respectively return the optimal solution with O(d3 log2(d)) and O(d2 log(Md))
function value evaluations, where d is the dimension and M is the maximal absolute objective
function value. The state-of-the-art approximate algorithm designed in (Axelrod et al., 2020) returns
an ε-approximate solution with O(d log(d)/ε2) function value evaluations. Our problem can be
viewed as stochastic versions of the problems in Chakrabarty et al. (2017); Axelrod et al. (2020),
which also naturally cause the difference in algorithm design and analysis. The efficiency of the
algorithms in Chakrabarty et al. (2017); Axelrod et al. (2020) comes from on sampling a stochastic
subgradient with O(1) variance within O(1) evaluations, which is based on the preprocessing phase
(Lemma 3.4 in Axelrod et al. (2020)). However, the sampling phase requires an importance sampling
based on the exact function values difference that is computed in the preprocessing phase. It is
challenging to extend the importance sampling to the case when we only have access to noisy
function values. The major techniques in our gradient-based algorithm is the truncation step, which is
proved to reduce the sample complexity by O(d). In Bach (2019); Axelrod et al. (2020), the authors
extend the domain of submodular function to {1, 2, . . . , N} × · · · × {1, 2, . . . , N} and show that the
generalized submodular function is equivalent to a submodular function on a sub-lattice of Z(N−1)d.

Instead of the deterministic SFM problem, the stochastic SFM problem is far from being well-
understood. Recently, Ito (2019) provided upper bounds on the computational complexity for
expectation error bounds. In addition, the authors of Ito (2019) proved a lower bound of computa-
tional complexity for achieving the given precision and showed that the stochastic SFM problem is
essentially more difficult than the deterministic SFM problem. The first polynomial-time approximate
algorithm to achieve a high-probability error bound is given in Blais et al. (2019). In this work, we
also focus on finding solutions with a small error with high probability. We propose algorithms that
either have a smaller computational complexity compared to the algorithms in Blais et al. (2019)
or do not require information about the objective function. An alternative problem, the stochastic
submodular maximization problem, has been studied in depth under the assumption that the objective
function is monotone; see Hassani et al. (2017); Karimi et al. (2017); Hassidim & Singer (2017);
Mokhtari et al. (2018); Sekar et al. (2021). We note that the approximate solutions to the maximiza-
tion problem often include a multiplicative error instead of an additive error for the SFM problem.
We refer the readers to Ito (2019) for a detailed discussion on related works for the stochastic SFM
problem.

In Murota (2003), a generalization of submodular functions, called the L\-convex functions, are
defined through the translation submodularity or the discrete midpoint convexity. The L\-convex
functions are equivalent to functions that are both submodular and integrally convex on integer
lattice. In addition, the L\-convex function has a convex extension that shares similar properties as
the Lovász extension and therefore gradient-based methods are also applicable for the L\-convex
function minimization problem. We refer the readers to Murota (2003) for more discussion on the
discrete convex functions.

Since we are optimizing the Lovász extension of the submodular function without accessing its
derivatives, we can view submodular minimization algorithms as zeroth-order convex optimization

16

algorithms. The idea of approximating gradient using finite difference appeared as early as Ne-
mirovsky & Yudin (1983) and was elaborated in Nesterov & Spokoiny (2017) to derive bounds of
zeroth-order methods on smooth and non-smooth convex problems. Later, Duchi et al. (2015) utilized
this idea to design the optimal zeroth-order mirror descent method for stochastic convex problems.
Furthermore, the RSGF method in Ghadimi & Lan (2013) also incorporates the Gaussian smoothing
technique and gives the first bound on stochastic nonconvex smooth problems. In the follow-up work
by Balasubramanian & Ghadimi (2018), the zeroth-order conditional gradient method is designed to
handle the constrained case. In the same literature, a linear-time zeroth-order estimator of the Hessian
matrix was proposed and was used to construct a saddle-point avoiding method. We refer the readers
to Homem-de Mello & Bayraksan (2014); Larson et al. (2019) for a review of recent developments
of zeroth-order algorithms.

The optimization problems via stochastic objective value evaluations have also been widely studied in
the simulation literature. The problem is often called the ranking-and-selection (R&S); see Hong et al.
(2020) for a recent review. There have been two approaches to categorize the R&S literature. One
approach is differentiating the frequentist view and the Bayesian view; see Kim & Nelson (2006);
Chick (2006). The other approach differentiates the fixed-confidence procedures and the fixed-budget
procedures; see Frazier et al. (2009); Hunter & Nelson (2017); Hong et al. (2020). In particular, the
probability of correct selection (PCS) of the best decision has been a widely used guarantee for both
types of procedures. In general, the R&S procedures under fixed-precision and fixed-budget were
often classified into the frequentist and Bayesian procedures in the literature. However, there are
some exceptions Frazier (2014). A large number of R&S procedures based on the PCS guarantee
adopt the indifference zone (IZ) formulation, called PCS-IZ. The IZ parameter is typically assumed
to be known, while Fan et al. (2016), as a notable exception, provides selection guarantees without
the knowledge of the indifference-zone parameter. In practice, for some problem settings, this IZ
parameter may be unknown a priori. This naturally gives rise to a notion of probability of good
selection (PGS), which is the optimality guarantee considered in this work. Eckman & Henderson
(2018a,b) have thoroughly discussed settings when the use of PGS is preferable compared to the use
of PCS-IZ. Generally in the R&S problems, there is no structural information such as convexity that
is considered.

The optimization problems considered in this work also belong to the class of discrete optimization
via simulation problems, the discussions of which can be found in Fu (2002); Nelson (2010); Sun
et al. (2014); Hong et al. (2015); Chen et al. (2018). Discrete optimization via simulation problems
naturally arise in many operations research and management science applications, including queueing
networks, supply chain networks, sharing economy operations, financial markets, etc.; see Shaked &
Shanthikumar (1988); Wolff & Wang (2002); Altman et al. (2003); Singhvi et al. (2015); Jian et al.
(2016); Freund et al. (2017) for example. Hu et al. (2007, 2008) have discussed model reference
adaptive search algorithms in order to ensure global convergence. Hong & Nelson (2006); Hong
et al. (2010); Xu et al. (2010) propose and study algorithms based on the convergent optimization
via most-promising-area stochastic search (COMPASS) that can be used to solve general simulation
optimization problems with discrete decision variables. The proposed algorithms are computationally
efficient and are proved to convergence with probability one to optimal points. Lim (2012) studies
simulation optimization problems over multidimensional discrete sets where the objective function
adopts multimodularity. They propose algorithms that converge almost surely to the global optimal.
Wang et al. (2013) discusses stochastic optimization problems with integer-ordered decision variables.
Park & Kim (2015) and Park et al. (2014) develop and examine the Penalty Function with Memory
(PFM) method for discrete optimization via simulation with stochastic constraints. Sun et al. (2014)
discusses an exploration-exploitation balancing approach using Gaussian process based search.
Eckman et al. (2020) discusses a statistically guaranteed screening to rule out decisions based on
initial simulation experiments utilizing the convex structure. Sekar et al. (2021) proposes an adaptive
line search method that guarantees the convergence to local minima.

B Preliminaries on L\-convex functions

In this section, we provide a detailed discussion on the properties of L\-convex functions. The
following property shows that L\-convex functions can be viewed as a generalization of submodular
functions.

17

Lemma 1 (Murota (2003)). Suppose that the function f(x) : X 7→ R is L\-convex. Then, the
following translation submodularity holds:

f(x) + f(y) ≥ f((x− α1) ∨ y) + f(x ∧ (y + α1)),

∀x, y ∈ X , α ∈ N s.t. (x− α1) ∨ y, x ∧ (y + α1) ∈ X .

By the translation submodularity, the L\-convex function restricted to a cube x + {0, 1}d ⊂ X is
a submodular function. Therefore, the Lovász extension (Lovász, 1983) can be constructed as the
convex piecewise linear extension inside each cube. In addition, L\-convex functions are integrally
convex functions (Murota, 2003). Hence, we can obtain a continuous convex function on [1, N]d by
piecing together the Lovász extension in each cube. More importantly, we can calculate a subgradient
of the convex extension with O(d) function value evaluations. Hence, L\-convex functions provide a
good framework for extending the continuous convex optimization theory to the discrete case. In
the remainder of this subsection, we specify this intuition of L\-convex functions in a rigorous way.
We first define the Lovász extension of submodular functions and give an explicit subgradient of the
Lovász extension at each point.
Definition 2. Suppose that f(x) : {0, 1}d 7→ R is a submodular function. For any x ∈ [0, 1]d, we
say that a permutation αx : [d] 7→ [d] is a consistent permutation of x, if

xαx(1) ≥ xαx(2) ≥ · · · ≥ xαx(d).

For each i ∈ {0, 1, . . . , d}, the i-th neighbouring points of x is defined as

Sx,i :=

i∑
j=1

eαx(j) ∈ X ,

where vector ek is the k-th unit vector of Rd. We define the Lovász extension f̃(x) : [0, 1]d 7→ R as

f̃(x) := f
(
Sx,0

)
+

d∑
i=1

[
f
(
Sx,i

)
− f

(
Sx,i−1

)]
xαx(i). (4)

We note that the value of the Lovász extension does not rely on the choice of the consistent permutation.
We list several well-known properties of the Lovász extension and refer their proofs to Lovász (1983);
Fujishige (2005).

Lemma 2. The following properties hold for f̃(x):

(i) For any x ∈ X , it holds that f̃(x) = f(x).

(ii) The minimizers of f̃(x) satisfy arg minx∈[0,1]d f̃(x) = arg minx∈X f(x).

(iii) The function f̃(x) is a convex function on [0, 1]d.

(iv) A subgradient g ∈ ∂f̃(x) is given by

gαx(i) := f
(
Sx,i

)
− f

(
Sx,i−1

)
, ∀i ∈ [d]. (5)

Using the expression (5), we construct a subgradient estimator at point x as

ĝαx(i) := F
(
Sx,i, ξ1

i

)
− F

(
Sx,i−1, ξ2

i−1

)
, ∀i ∈ [d], (6)

where ξji are mutually independent for i ∈ [d] and j ∈ [2]. By definition, we know the components of
ĝ are mutually independent and the computational complexity of each ĝ is 2d. Using the subgradient
defined in (5), we have

E
[
ĝαx(i)

]
= E

[
F
(
Sx,i, ξi

)
− F

(
Sx,i−1, ξi−1

)]
= f

(
Sx,i

)
− f

(
Sx,i−1

)
= gαx(i), ∀i ∈ [d],

which means that ĝ is an unbiased estimator of g.

Then, we show that the Lovász extension in the neighborhood of each point can be pieced together
to form a convex function on conv(X) = [1, N]d. We define the local neighborhood of each point
y ∈ [1, N − 1]d as the cube

Cy := y + [0, 1]d,

18

where the Minkowski sum of a point y ∈ Rd and a set C ⊂ Rd is defined as

y + C := {y + x | x ∈ C}.
We denote the objective function f(x) restricted to Cy ∩ X as fy(x), which is submodular by the
translation submodularity of f(x). For point x ∈ Cy, we denote αx as a consistent permutation of
x − y in {0, 1}d and, for each i ∈ {0, 1, . . . , d}, the corresponding i-th neighboring point of x is
defined as

Sx,i := y +

i∑
j=1

eαx(j).

Then, the Lovász extension of fy(x) in Cy can be calculated as

f̃y(x) := f
(
Sx,0

)
+

d∑
i=1

[
f
(
Sx,i

)
− f

(
Sx,i−1

)]
xαx(i).

Now, we piece together the Lovász extension in each cube by defining

f̃(x) := f̃y(x) ∀x ∈ [1, N]d, y ∈ [N − 1]d, s.t. x ∈ Cy. (7)

Using the results in Murota (2003), we can prove that f̃(x) is well-defined and is a convex function.

Theorem 8. The function f̃(x) in (7) is well-defined and is convex on X .

Utilizing properties (i) and (ii) of Lemma 2, we know that problem (1) is equivalent to the relaxed
problem

f∗ := min
x∈[1,N]d

f̃(x).

Moreover, the subgradient (5) and stochastic subgradient (6) are also valid for the convex extension
f̃(x). Similarly, (stochastic) subgradients can be computed in the neighboring cube of each point
with 2d evaluations to F (·, ·) and it does not matter which cube is chosen for points belonging to
multiple cubes.

B.1 Illustrations of the Lovász extension

In this subsection, we show the Lovász extension of a two-dimensional function on [3]2 = {1, 2, 3}2.
We consider the quadratic function

f(x) := xT
[

0.101 −0.068
−0.068 0.146

]
x, ∀x ∈ R2.

By the results in Murota (2003, Section 7.3), we know the function f(·) is an L\-convex function.
We compare the landscapes of the original objective and the Lovász extension in Figure 1. We can
see that the Lovász extension is a piecewise linear and convex function, which is consistent with the
results in Murota (2003).

C Proofs in Section 3

C.1 Proof of Theorem 2

Proof of Theorem 2. To gain some intuition, we first consider the deterministic case. Suppose that we
already have an ε-optimal solution to problem (2), i.e., a point x̄ in [1, N]d such that f̃(x̄) ≤ f∗ + ε.
Then, we rewrite the Lovász extension in (4) as

f̃(x̄) =
[
1− x̄αx̄(1)

]
f
(
Sx̄,0

)
+
d−1∑
i=1

[
x̄αx̄(i) − x̄αx̄(i+1)

]
f
(
Sx̄,i

)
+ x̄αx̄(d)f

(
Sx̄,d

)
, (8)

which is a convex combination of f
(
Sx̄,0

)
, . . . , f

(
Sx̄,d

)
. Hence, there exists an ε-optimal solution

among the neighboring points of x̄. This means that we can solve a sub-problem with d+ 1 points to
get the ε-optimal solution among neighboring points.

19

Figure 1: The landscapes of the objective function and its Lovász extension. Left: The original
objective function. Right: The Lovász extension of the objective function.

The proof for the stochastic case is similar. We denote the optimal value of f(x) as f∗. Since point x̄
satisfies the (ε/2, δ/2)-PAC guarantee, we have

f̃(x̄)− f∗ ≤ ε/2
holds with probability at least 1− δ/2. We assume this event happens in the following of this proof.
Let S0, S1, . . . , Sd be the neighboring points of x̄. Using the expression of the Lovász extension in
(8), we know there exists an ε/2-optimal solution among S0, S1, . . . , Sd. We denote the ε/2-optimal
solution and the solution returned by Algorithm 1 as S∗ and Ŝ, respectively. By the definition of
confidence intervals, we know∣∣∣F̂n(Si)− f(Si)

∣∣∣ ≤ ε/4 ∀i ∈ {0, . . . , d},
∣∣∣F̂n(Ŝ)− f(Ŝ)

∣∣∣ ≤ ε/4
holds uniformly with probability at least 1− δ/2. Under this event, we know

f(Ŝ)− f∗ ≤ F̂n(Ŝ)− f∗ + ε/4 ≤ F̂n(S∗)− f∗ + ε/4 ≤ f(S∗)− f∗ + ε/2 ≤ ε,
which implies that x∗ ∈ X is an ε-optimal solution and the probability is at least 1−δ/2−δ/2 = 1−δ.
Hence, we know x∗ is an (ε, δ)-PAC solution to problem (1).

Now, we estimate the computational complexity of Algorithm 1. By the Hoeffding bound, simulating

32

ε2
log

(
8d

δ

)
times on each neighboring point is enough to achieve 1− δ/(4d) confidence half-width ε/4. Hence,
the computational complexity of Algorithm 1 is at most

32(d+ 1)

ε2
log

(
8d

δ

)
= O

[
d

ε2
log

(
d

δ

)]
= Õ

[
d

ε2
log

(
1

δ

)]
.

C.2 Proof of Theorem 3

The analysis of Algorithm 2 fits into the classical convex optimization framework. The following
Azuma’s inequality for martingales with sub-Gaussian tails plays as a major role for deriving high-
probability bounds, i.e., the number of required samples to ensure the algorithms succeed with high
probability.
Lemma 3 (Azuma’s inequality for sub-Gaussian tails (Shamir, 2011)). Let X0, . . . , XT−1 be a
martingale difference sequence. Suppose there exist constants b1 ≥ 1, b2 > 0 such that, for any
t ∈ {0, . . . , T − 1},

P(|Xt| ≥ a | X1, . . . , Xt−1) ≤ 2b1 exp(−b2a2), ∀a ≥ 0. (9)

20

Then for any δ > 0, it holds with probability at least 1− δ that

1

T

T−1∑
t=0

Xt ≤
√

28b1
b2T

log(
1

δ
).

Since the stochastic subgradient ĝt is truncated, the stochastic subgradient used for updating, namely
g̃t, is not unbiased. We define the bias at each step as

bt := E
[
g̃t | x0, x1, . . . , xt

]
− gt, ∀t ∈ {0, 1, . . . , T − 1}.

First, we bound the `1-norm of the bias.
Lemma 4. Suppose Assumptions 1-4 hold. If we have

M ≥ 2σ ·
√

log(
8σdT

ε
) = Θ

[√
log(

dT

ε
)

]
, T ≥ 2ε

σ
,

then it holds
‖bt‖1 ≤

ε

2T
, ∀t ∈ {0, 1, . . . , T − 1}.

Proof. Let αt be a consistent permutation of xt and St,i be the corresponding i-th neighboring points
in the neighbourhood of xt. We only need to prove∣∣∣btαt(i)

∣∣∣ ≤ ε

2dT
, ∀i ∈ [d].

We define two random variables

Y1 := F
(
St,i, ξ1

i

)
− f

(
St,i
)
, Y2 := F

(
St,i−1, ξ2

i−1

)
− f

(
St,i−1

)
.

By Assumption 1, both Y1 and Y2 are independent and sub-Gaussian with parameter σ2. Hence, we
know

btαt(i)
= E

[
g̃tαt(i)

− gtαt(i)

]
= E [(Y1 + Y2) · 1−M≤Y1+Y2≤M] + E [M · 1Y1+Y2>M] + E [−M · 1Y1+Y2<−M]

= E [(M − Y1 − Y2) · 1Y1+Y2>M] + E [−(M + Y1 + Y2) · 1Y1+Y2<−M] ,

where the second step is from E[Y1] = E[Y2] = 0. Taking the absolute value on both sides, we get∣∣∣btαt(i)

∣∣∣ ≤ E [(Y1 + Y2 −M) · 1Y1+Y2>M] + E [−(M + Y1 + Y2) · 1Y1+Y2<−M] (10)

= E [(Y −M) · 1Y >M] + E [−(Y +M) · 1Y <−M] ,

where we define the random variable Y := Y1 + Y2. Since Y1, Y2 are independent, random variable
Y is sub-Gaussian with parameter 2σ2. Let F (y) := P[Y ≤ y] be the distribution function of Y .
Then, we have

E [(Y −M) · 1Y >M] =

∫ ∞
M

(y −M) dF (y) =

∫ ∞
M

(1− F (y)) dy. (11)

By the Hoeffding bound, we know

1− F (y) = P[Y > y] ≤ exp
(
−y2/4σ2

)
, ∀y ≥ 0.

Using the upper bound for Q-function in Borjesson & Sundberg (1979), it holds that∫ ∞
M

1− F (y) dy ≤
∫ ∞
M

exp
(
−y2/4σ2

)
dy ≤ 2σ2

M
exp

(
−M

2

4σ2

)
.

By the choice of M , we know

M ≥ 2σ
√

log(8d) ≥ 2σ and σ exp(−M2/4σ2) ≤ ε

4dT
.

which implies that ∫ ∞
M

1− F (y) dy ≤ 2σ2

M
exp(−M2/4σ2) ≤ ε

4dT
.

21

Substituting the above inequality into (11), we have

E [(Y −M) · 1Y >M] ≤ ε

4dT
.

Considering −Y in the same way, we can prove

E [−(Y +M) · 1Y <−M] ≤ ε

4dT
.

Substituting the last two estimates into inequality (10), we know∣∣∣btαt(i)

∣∣∣ ≤ ε

2dT
.

Next, we show that 〈gt + bt − g̃t, xt − x∗〉 forms a martingale sequence and use Azuma’s inequality
to bound the deviation, where x∗ is a minimizer of f(x).
Lemma 5. Suppose Assumptions 1-4 hold and let x∗ be a minimizer of f(x). The sequence

Xt :=
〈
gt + bt − g̃t, xt − x∗

〉
t = 0, 1, . . . , T − 1

forms a martingale difference sequence. Furthermore, if we have

M = max

{
L, 2σ ·

√
log(

4σdNT

ε
)

}
= Θ̃

[√
log(

dNT

ε
)

]
, T ≥ 2ε

σ
,

then it holds
1

T

T−1∑
t=0

Xt ≤
√

224dN2σ2

T
log(

1

δ
)

with probability at least 1− δ.

Proof. Let Ft be the filtration generated by x0, x1, . . . , xt. By the definition of bt, we know

E
[
gt + bt − g̃t | Ft

]
= 0,

which implies that

E [Xt | Ft] =
〈
E
[
gt + bt − g̃t | Ft

]
, xt − x∗

〉
= 0.

Hence, the sequence {Xt} is a martingale difference sequence. Next, we estimate the probability
P[|Xt| ≥ a | Ft]. We have the bound

|Xt| =
∣∣〈gt + bt − g̃t, xt − x∗

〉∣∣ ≤ ∥∥gt + bt − g̃t
∥∥

1

∥∥xt − x∗∥∥∞
≤ N

∥∥gt + bt − g̃t
∥∥

1
≤ N

∥∥gt − g̃t∥∥
1

+N
∥∥bt∥∥

1
.

Since M satisfies the condition in Lemma 4, we know ‖bt‖1 ≤ ε/2T . Recalling Assumption 4, we
get |gti | ≤ L for all i ∈ [d]. By the truncation rule and the assumption M ≥ L, we have∣∣g̃ti − gti ∣∣ =

∣∣(ĝti ∧M) ∨ (−M)− gti
∣∣ ≤ ∣∣ĝt − gt∣∣ , ∀i ∈ [d].

Hence, we get

|Xt| ≤
Nε

2T
+N

∥∥ĝt − gt∥∥
1
. (12)

Define random variables Yi := |ĝti − gti | for all i ∈ [d]. By Assumption 1, Yi is sub-Gaussian with
parameter σ2. Hence, we have

Y :=
∥∥ĝt − gt∥∥

1
=

d∑
i=1

Yi

is sub-Gaussian with parameter dσ2. First, we consider the case when a/N ≥ ε/T . Using inequality
(12), it follows that

P [|Xt| ≥ a | Fσ] ≤ P
[ε

2T
+ Y ≥ a

N

]
≤ P

[
Y ≥ a

N
− ε

2T

]
22

≤ P
[
Y ≥ a

2N

]
≤ 2 exp

(
− a2

8dN2σ2

)
, (13)

where the last inequality is from Hoeffding bound. In this case, we know condition (9) holds with

b1 = 1, b2 =
1

8dN2σ2
.

Now, we consider the case when a/N < ε/T . In this case, by the assumption that T ≥ 2ε/σ, we
have

2b1 exp
(
−b2a2

)
> 2 exp

(
− 1

8dN2σ2
· ε

2

T 2

)
≥ 2 exp

(
− 1

32d

)
≥ 2 exp

(
− 1

32

)
> 1.

Hence, it holds
P [|Xt| ≥ a | Fσ] ≤ 1 < 2b1 exp

(
−b2a2

)
.

Combining with inequality (13), we know condition (9) holds with b and c defined above. Using
Lemma 3, we know

1

T

T−1∑
t=0

Xt ≤
√

224dN2σ2

T
log(

1

δ
)

holds with probability at least 1− δ.

Then, we prove a lemma similar to the Lemma in Zinkevich (2003).
Lemma 6. Suppose Assumptions 1-4 hold and let x∗ be a minimizer of f(x). If we choose

η =
N

M
√
T
,

then we have
1

T

T−1∑
t=0

〈g̃t, xt − x∗〉 ≤ dNM√
T

.

Proof. We define x̃t+1 := xt − ηg̃t as the next point before the projection onto [1, N]d. Recalling
the non-expansion property of orthogonal projection, we get

‖xt+1 − x∗‖22 = ‖P
(
x̃t+1 − x∗

)
‖22 ≤ ‖x̃t+1 − x∗‖22 = ‖xt − x∗ − ηg̃t‖22

= ‖xt − x∗‖22 + η2‖g̃t‖22 − 2η〈g̃t, xt − x∗〉,
and equivalently,

〈g̃t, xt − x∗〉 =
1

2η

[∥∥xt − x∗∥∥2

2
−
∥∥xt+1 − x∗

∥∥2

2

]
+
η

2
·
∥∥g̃t∥∥2

2
.

Summing over t = 0, 1, . . . , T − 1, we have
T−1∑
t=0

〈g̃t, xt − x∗〉 =

∥∥x0 − x∗
∥∥2

2
−
∥∥xT − x∗∥∥2

2

2η
+
η

2

T−1∑
t=0

∥∥g̃t∥∥2

2

≤
d
∥∥x0 − x

∥∥2

∞
2η

+
η

2

T−1∑
t=0

∥∥g̃t∥∥2

2
≤ dN2

2η
+
η

2

T−1∑
t=0

∥∥g̃t∥∥2

2
.

By the definition of truncation, it follows that ‖g̃t‖22 ≤ dM2. Choosing

η :=
N

M
√
T
,

it follows that
T−1∑
t=0

〈g̃t, xt − x∗〉 ≤ dN2

2η
+
η

2

T−1∑
t=0

∥∥g̃t∥∥2

2
≤ dN2

2η
+
ηTdM2

2
= dNM

√
T .

23

Finally, using Lemmas 4, 5 and 6, we can finish the proof of Theorem 3.

Proof of Theorem 3. Denote f∗ as the optimal value of f̃(x). Using the convexity of f̃(x), we know

f̃(x̄)− f∗ ≤ 1

T

T−1∑
t=0

[
f̃(xt)− f∗

]
≤ 1

T

T−1∑
t=0

〈
gt, xt − x∗

〉
(14)

=
1

T

T−1∑
t=0

[〈
gt + bt − g̃t, xt − x∗

〉
+
〈
g̃t, xt − x∗

〉
−
〈
bt, xt − x∗

〉]
.

We choose

T :=
3584dN2σ2

ε2
log(

2

δ
) = Θ

[
dN2

ε2
log(

1

δ
)

]
.

Recalling Assumption 1, we know δ is small enough and therefore we have the following estimates:

L2 ≤M2 = Θ̃

[
log(

dT

ε
)

]
= Õ

[
log(

d2N2

ε3
) + log log(

1

δ
)

]
≤ ε2T

64d2
, T ≥ max

{
2ε

σ
, 4

}
.

Hence, the conditions in Lemmas 4 and 5 are satisfied. By Lemma 4, we know

− 1

T

T−1∑
t=0

〈
bt, xt − x∗

〉
≤ 1

T

T−1∑
t=0

∥∥bt∥∥
1

∥∥xt − x∗∥∥∞ ≤ ε

2T
≤ ε

8
. (15)

By Lemma 5, it holds

1

T

T−1∑
t=0

〈
gt + bt − g̃t, xt − x∗

〉
≤
√

224dN2σ2

T
log(

2

δ
) ≤ ε

4
(16)

with probability at least 1− δ, where the last inequality is from our choice of T . By Lemma 6, we
know

1

T

T−1∑
t=0

〈
g̃t, xt − x∗

〉
≤ dNM√

T
≤ ε

8
. (17)

Substituting inequalities (15), (16) and (17) into inequality (14), we get

f̃(x̄)− f∗ ≤ ε

2

holds with probability at least 1− δ/2. By the results of Theorem 2, we know Algorithm 2 returns an
(ε, δ)-PAC solution.

Finally, we estimate the computational complexity of Algorithm 2. For each iteration, we need to
generate a stochastic subgradient using (6) and the computational complexity is 2d. Hence, the total
computational complexity of all iterations is

2d · T = Θ̃

[
d2N2

ε2
log(

1

δ
)

]
.

By Theorem 2, the computational complexity of rounding process is at most

Õ

[
d

ε2
log(

1

δ
)

]
.

Thus, we know the total computational complexity of Algorithm 2 is at most

Õ

[
d2N2

ε2
log(

1

δ
)

]
.

24

C.3 Details of examples where Assumption 5 holds

Example 3. We consider the case when the randomness of each choice of decision variables shares
the same measure space, i.e., there exists a measure space (Z,BZ) such that ξx can be any element
in the measure space for all x ∈ X . Moreover, for any fixed ξ ∈ B, the function F (·, ξ) is also
L\-convex (or submodular when N = 2) and has `∞-Lipschitz constant L̃. Then, we consider the
subgradient estimator

ĝαx(i) := F
(
Sx,i, ξ

)
− F

(
Sx,i−1, ξ

)
∀i ∈ [d]. (18)

The computational complexity of estimator (18) is d+ 1. In addition, property (v) of Lemma 2 gives

‖ĝ‖1 ≤ 3L̃/2.

Therefore, in this situation, the Assumption 5 holds with G = 3L̃/2 and β = d+ 1.

When the distribution at each choice of decision variables is bounded almost surely, we show that
Assumption 5 also holds.
Example 4. We consider the case when the distribution at each point x ∈ X is bounded, namely,
there exists a constant C ≥ 0 such that

P[|F (x, ξx)| ≤ C] = 1, ∀x ∈ X .

We note that a bounded distribution is a special case of sub-Gaussian distributions. In this case, the
`∞-Lipschitz constant is 2C and property (v) in Lemma 2 gives ‖g‖1 ≤ 3C for any subgradient g.
We consider the subgradient estimator (6). At point x, if index i is chosen, then we know that

‖ĝ‖1 = d ·
∣∣F (Sx,i, ξ1

i

)
− F

(
Sx,i−1, ξ2

i−1

)∣∣ ≤ 2dC.

Hence, Assumption 5 holds with G = 2dC and β = 2.

C.4 Proof of Theorem 4

Since the stochastic gradient is bounded, we apply the Azuma’s inequality for martingale difference
sequences with bounded tails.
Lemma 7 (Azuma’s inequality with bounded tails). Let X0, . . . , XT−1 be a martingale difference
sequence. Suppose there exists a constant b such that for any t ∈ {0, . . . , T − 1},

P(|Xt| ≤ b) = 1.

Then for any δ > 0, it holds with probability at least 1− δ that

1

T

T−1∑
t=0

Xt ≤ b
√

2

T
log(

1

δ
). (19)

The proof follows a similar way as Theorem 3. We first bound the noise term by Azuma’s inequality.
Lemma 8. Suppose Assumptions 1-5 hold and let x∗ be a minimizer of f(x). Then, it holds

1

T

T−1∑
t=0

〈
gt − ĝt, xt − x∗

〉
≤ N

(
3L

2
+G

)√
2

T
log(

1

δ
)

with probability at least 1− δ.

Proof. Same as the proof of Lemma 5, the fact that ĝt is unbiased implies that

Xt :=
〈
gt − ĝt, xt − x∗

〉
t = 0, 1, . . . , T − 1

is a martingale difference sequence. By Assumption 5 and property (v) in Lemma 2, we know

|Xt| =
∣∣〈gt − ĝt, xt − x∗〉∣∣ ≤ ∥∥gt − ĝt∥∥

1

∥∥xt − x∗∥∥∞ ≤ N ∥∥gt − ĝt∥∥1
≤ N(3L/2 +G),

which implies that the condition (19) holds with b = N(3L/2 + G). Using Lemma 7, we get the
conclusion of this lemma.

25

The following lemma bounds the error of the algorithm and is similar to Theorem 3.2.2 in Nesterov
(2018).
Lemma 9. Suppose Assumptions 1-5 hold and let x∗ be a minimizer of f(x). If we choose

η =

√
dN2

TG2
,

then we have
1

T

T−1∑
t=0

〈
ĝt, xt − x∗

〉
≤
√
dN2G2

T
.

Proof. We define x̃t+1 := xt − ηĝt as the next point before the projection onto [1, N]d. Recalling
the non-expansion property of orthogonal projection, we get

‖xt+1 − x∗‖22 = ‖P
(
x̃t+1 − x∗

)
‖22 ≤ ‖x̃t+1 − x∗‖22 = ‖xt − x∗ − ηĝt‖22

= ‖xt − x∗‖22 + η2‖g̃t‖22 − 2η〈ĝt, xt − x∗〉,

and equivalently,

〈ĝt, xt − x∗〉 =
1

2η

[∥∥xt − x∗∥∥2

2
−
∥∥xt+1 − x∗

∥∥2

2

]
+
η

2
·
∥∥ĝt∥∥2

2
.

Using Assumption 5, we know ‖ĝt‖22 ≤ ‖ĝt‖
2
1 ≤ G2 and therefore

〈ĝt, xt − x∗〉 =
1

2η

[∥∥xt − x∗∥∥2

2
−
∥∥xt+1 − x∗

∥∥2

2

]
+
ηG2

2
.

Summing over t = 0, 1, . . . , T − 1, we have

T−1∑
t=0

〈ĝt, xt − x∗〉 =

∥∥x0 − x∗
∥∥2

2
−
∥∥xT − x∗∥∥2

2

2η
+ T · ηG

2

2

≤
d
∥∥x0 − x

∥∥2

∞
2η

+
ηTG2

2
≤ dN2

2η
+
ηTG2

2
.

Choosing

η :=

√
dN2

TG2
,

it follows that
T−1∑
t=0

〈g̃t, xt − x∗〉 ≤ NG
√
dT .

Now, we prove Theorem 4 using Lemmas 8 and 9.

Proof of Theorem 4. According to to the proof of Theorem 3, we have

f̃(x̄)− f∗ ≤ 1

T

T−1∑
t=0

[
f̃(xt)− f∗

]
≤ 1

T

T−1∑
t=0

〈
gt, xt − x∗

〉
(20)

=
1

T

T−1∑
t=0

〈
ĝt, xt − x∗

〉
+

1

T

T−1∑
t=0

〈
gt − ĝt, xt − x∗

〉
.

By Lemmas 8 and 9, it holds

1

T

T−1∑
t=0

〈
ĝt, xt − x∗

〉
≤ N

(
3L

2
+G

)√
2

T
log(

2

δ
),

1

T

T−1∑
t=0

〈
gt − ĝt, xt − x∗

〉
≤
√
dN2G2

T

26

with probability at least 1− δ/2. Choosing

T = N2

(
3L

2
+G

)2

· 32

ε2
log(

2

δ
) = Θ

[
N2(L+G)2

ε2
log(

1

δ
)

]
,

we know

T ≥ 16dN2G2

ε2

when δ is small enough. Hence, we have

1

T

T−1∑
t=0

〈
ĝt, xt − x∗

〉
≤ ε

4
,

1

T

T−1∑
t=0

〈
gt − ĝt, xt − x∗

〉
≤ ε

4

holds with probability at least 1− δ/2. Substituting into inequality (20), we have

f̃(x̄)− f∗ ≤ ε

2

holds with probability at least 1− δ/2. By the results of Theorem 2, we know Algorithm 2 returns an
(ε, δ)-PAC solution.

Finally, we estimate the computational complexity of Algorithm 2. For each iteration, the compu-
tational complexity is decided by the generation of a stochastic subgradient, which is at most β by
Assumption 5. Hence, the total computational complexity of all iterations is

O [βT] = Õ

[
βN2(L+G)2

ε2
log(

1

δ
)

]
.

By Theorem 2, the computational complexity of rounding process is at most

Õ

[
d

ε2
log(

1

δ
)

]
.

Thus, we know the total computational complexity of Algorithm 2 is at most

Õ

[
βN2(L+G)2 + d

ε2
log(

1

δ
)

]
.

C.5 Algorithms for the known sub-optimality gap case

In this section, we consider the case when the global optimum is unique and the sub-optimality is
known to be at least c > 0. In this case, it suffices to find a (c, δ)-PAC solution. We first prove that
the existence of sub-optimality is equivalent to the so-called weak sharp minima condition of the
convex extension. In addition, we use the `∞ norm in place of the `2 norm since the feasible set is a
hypercube.
Definition 3. We say that a function f(x) : X 7→ R satisfies the Weak Sharp Minimum (WSM)
condition, if the function f(x) has a unique minimizer x∗ and there exists a constant κ > 0 such that

‖x− x∗‖∞ ≤ κ (f(x)− f∗) , ∀x ∈ X ,
where f∗ := f(x∗).

The WSM condition was first defined in Burke & Ferris (1993), and is also called the polyhedral error
bound condition in recent literature (Yang & Lin, 2018). In addition, the WSM condition is a special
case of the global growth condition in Xu et al. (2016) with θ = 1. The WSM condition can be used
to leverage the distance between intermediate solutions and (c, δ)-PAC solutions. Given a constant
c > 0, we useMCc to denote the set of L\-convex models with sub-optimality gap at least c. The
next theorem verifies that the WSM condition is equivalent to the existence of sub-optimality gap c.

Theorem 9. Suppose that function f(x) : X 7→ R is an L\-convex function and f̃(x) is its Lovász ex-
tension on [1, N]d. For any constant c > 0, function f(x) ∈ MCc if and only if f̃(x) satisfies the
WSM condition with κ = c−1.

Proof. We first prove the sufficiency part and then consider the necessity part.

27

Sufficiency. Suppose there exists a constant κ > 0 such that the function f̃(x) satisfies the WSM
condition with κ. Considering any point x ∈ X\{x∗}, we know ‖x− x∗‖∞ ≥ 1 and, by the WSM
condition,

f(x)− f∗ = f̃(x)− f∗ ≥ κ−1‖x− x∗‖∞ ≥ κ−1.

Thus, we know the sub-optimality gap for f(x) is at least κ−1 and f(x) ∈MCκ−1 .

Necessity. Suppose there exists a constant c > 0 such that

f(x)− f∗ ≥ c ∀x ∈ X\{x∗}.

We first consider point x ∈ [1, N]d such that ‖x− x∗‖∞ ≤ 1. In this case, we know there exists a
hypercube Cy containing both x and x∗. By the definition of Lovász extension, we know that

f̃(x) = [1−xαx(1)]f
(
Sx,0

)
+

d−1∑
i=1

[xαx(i)−xαx(i+1)]f
(
Sx,i

)
+xαx(d)f

(
Sx,d

)
=

d∑
i=0

λif
(
Sx,i

)
,

where we define

λi := xαx(i) − xαx(i+1) ∀i ∈ [d− 1], λ0 := 1− xαx(1), λd := xαx(d).

Recalling the definition of consistent permutation, we get
d∑
i=0

λi = 1, λi ≥ 0, ∀i ∈ {0, . . . , d}

and f̃(x) is a convex combination of f
(
Sx,0

)
, . . . , f

(
Sx,d

)
. In addition, we can calculate that(

d∑
i=0

λiS
x,i

)
αx(k)

=

d∑
i=0

λi · Sx,iαx(k) =

d∑
i=0

λi · 1(i ≤ k) =

d∑
i=k

λi = xαx(k),

which implies that

x =

d∑
i=0

λiS
x,i.

If x∗ /∈
{
Sx,0, . . . , Sx,d

}
, the assumption that the sub-optimality gap is at least c gives

f̃(x)− f∗ =

d∑
i=0

λi
[
f
(
Sx,i

)
− f∗

]
≥

d∑
i=0

λi · c = c.

Combining with ‖x− x∗‖∞ ≤ 1, we have

‖x− x∗‖∞ ≤ c−1 ·
[
f̃(x)− f∗

]
.

Otherwise if x∗ = Sx,i for some i ∈ {0, . . . , d}. Then, we know

f̃(x)− f∗ =

d∑
i=0

λi
[
f
(
Sx,i

)
− f∗

]
≥
∑
i6=k

λi · c = (1− λk)c

and

‖x− x∗‖∞ =

∥∥∥∥∥
d∑
i=0

λiS
x,i − x∗

∥∥∥∥∥
∞

=

∥∥∥∥∥
d∑
i=0

λi
(
Sx,i − x∗

)∥∥∥∥∥
∞

=

∥∥∥∥∥∥
∑
i 6=k

λi
(
Sx,i − x∗

)∥∥∥∥∥∥
∞

≤
∑
i 6=k

λi
∥∥Sx,i − x∗∥∥∞ ≤∑

i 6=k

λi = 1− λk,

where the last inequality is because Sx,i and x∗ are in the same hypercube Cy . Combining the above
two inequalities, it follows that

‖x− x∗‖2 ≤ c−1 ·
[
f̃(x)− f∗

]
,

28

Algorithm 3 Adaptive truncated SSGD method for the PAC guarantee

Input: Model X ,BY, F (x, ξx), optimality guarantee parameter δ, indifference zone parameter c.
Output: An (c, δ)-PAC solution x∗ to problem (1).

1: Set the initial guarantee ε0 ← cN/4.
2: Set the number of epochs E ← dlog2(N)e+ 1.
3: Set the initial search space Y0 ← [1, N]d.
4: for e = 0, . . . , E − 1 do
5: Use Algorithm 2 to get an (εe, δ/(2E))-PAC solution xe in Ye.
6: Update guarantee εe+1 ← εe/2.
7: Update the search space Ye+1 ← N (xe, 2

−e−2N).
8: end for
9: Round xE−1 to an integral point satisfying the (c, δ)-PAC guarantee by Algorithm 1.

which means that the WSM condition holds with κ = c−1. Now we consider point x ∈ [1, N]d such
that ‖x− x∗‖∞ ≥ 1. We define

x̃ := x∗ +
x− x∗

‖x− x∗‖∞
to be the point on the segment xx∗ such that ‖x̃ − x∗‖∞ = 1. By the convexity of f̃(x) and the
WSM condition for point x̃, we know

f̃(x)− f∗ ≥ ‖x− x
∗‖∞

‖x̃− x∗‖∞

[
f̃(x̃)− f∗

]
=

f̃(x̃)− f∗

‖x̃− x∗‖∞
· ‖x− x∗‖∞ ≥ c−1 · ‖x− x∗‖∞,

which shows that the WSM condition holds with κ = c−1. Hence, the WSM condition holds for all
points in [1, N]d with κ = c−1.

Using the WSM condition, we can accelerate Algorithm 2 by dynamically shrinking the search space.
To describe the shrinkage of search space, we define the `∞-neighbourhood of point x as

N (x, a) := {y ∈ [1, N]d : ‖y − x‖∞ ≤ a}

and the orthogonal projection onto N (x, a) as

Px,a(y) := (y ∧ (x+ a)1) ∨ (x− a)1, ∀x ∈ Rd.

Now we give the adaptive truncated SSGD algorithm for the PAC guarantee. Basically, the algorithm
finds a (c, δ)-PAC solution and, with the assumption that the sub-optimality gap is at least c, the
solution is the global optimum with probability at least 1 − δ. We prove that the computational
complexity of Algorithm 3 has only O(log(N)) dependence on N .
Theorem 10. Suppose that Assumptions 1-4 hold. Then, Algorithm 3 returns a (c, δ)-PAC solution.
Furthermore, we have

T (δ,MCc) = O

[
d2 log(N)

c2
log(

1

δ
) +

d3 log(N)

c2
log

(
d2N

ε3

)
+
d3 log(N)L2

c2

]
= Õ

[
d2 log(N)

c2
log(

1

δ
)

]
.

Proof. We first prove the correctness of Algorithm 3. Let x∗ be the minimizer of f(x) and f∗ :=
f(x∗). We use the induction method to prove that, for each epoch e, it holds

f̃(xe)− f∗ ≤ εe
with probability at least 1− (e+ 1)δ/(2E). For epoch 0, the solution x0 is (ε0, δ/(2E))-PAC and
we know

f̃(x0)− f∗ ≤ ε0
holds with probability at least 1− δ/(2E). We assume that the above event happens for the (e−1)-th
epoch with probability at least 1 − e · δ/(2E) and consider the case when this event happens. By

29

Theorem 9, function f̃(x) satisfies the WSM condition with κ = c−1. Hence, the intermediate
solution xe−1 satisfies

‖xe−1 − x∗‖∞ ≤ c−1
[
f̃(xe−1)− f∗

]
≤ c−1εe−1 = c−1 · 2−e+1ε0 = 2−e−1N,

which implies that x∗ ∈ N (xe−1, 2
−e−1N) = Ne and therefore x∗ ∈ Ne. For the epoch e, it holds

f̃(xe)− f∗ = f̃(xe)− min
x∈Ne

f̃(x) ≤ εe

with probability at least 1 − δ/(2E). Hence, the above event happens with probability at least
1− δ/(2E)− e · δ/(2E) = 1− (e+ 1)δ/(2E) for epoch e. By the induction method, we know the
claim holds for all epochs. Considering the last epoch, we know

f̃(xE−1)− f∗ ≤ εE−1 = 2−E+1ε0 = 2−dlog2(N)e−2 · cN ≤ 2− log2(N)−2 · cN = c/4

holds with probability at least 1− δ/2. Thus, we know xE−1 satisfies the (c/4, δ/2)-PAC guarantee.
By Theorem 2, the integral solution returned by Algorithm 3 satisfies the (c/2, δ)-PAC guarantee.
Since the indifference zone parameter is c, the solution satisfying the (c/2, δ)-PAC guarantee must
satisfies the (c, δ)-PAC guarantee.

Next, we estimate the computational complexity of Algorithm 3. By Theorem 3, the computational
complexity of epoch e is at most

Õ

[
d2 (2−eN)

2

ε2e
log(

E

δ
)

]
= Õ

[
d2 (2−eN)

2

(2−e−2 · cN)
2 log(

E

δ
)

]
= Õ

[
d2

c2
log(

1

δ
)

]
.

Summing over e = 0, 1, . . . , E − 1, we know the total computational complexity of E epochs is at
most

Õ

[
E · d

2

c2
log(

1

δ
)

]
= Õ

[
d2 log(N)

c2
log(

1

δ
)

]
.

By Theorem 2, the computational complexity of the rounding process is at most

Õ

[
d

c2
log(

1

δ
)

]
.

Combining the two parts, we know the computational complexity of Algorithm 3 is at most

Õ

[
d2 log(N)

c2
log(

1

δ
)

]
.

Similarly, we can estimate the computational complexity under Assumption 5 and we omit the proof.
Theorem 11. Suppose that Assumptions 1-5 hold. Then, Algorithm 3 returns a (c, δ)-PAC solution.
Furthermore, we have

T (δ,MCc) = Õ

[
β(L+G)2 log(N) + d

c2
log(

1

δ
)

]
.

D Proofs in Section 4

D.1 Proof of Theorem 5

The main idea of the generalization to multi-dimensional problems is to view optimization algorithms
as estimators to the optimal value. This intuition is elaborated in the following definition.
Definition 4. Given a constant C > 0, we say that an algorithm is sub-Gaussian with dimension d
and parameter C if for any d-dimensional L\-convex problem, any ε > 0 and small enough δ > 0,
the algorithm returns an estimate to f∗ satisfying |f̂∗ − f∗| ≤ ε with probability at least 1− δ using
at most

T (ε, δ) = Õ

[
2C

ε2
log(

2

δ
)

]
objective function value evaluations.

30

We note that if we treat algorithms as estimators, estimators are generally “biased”. This fact implies
that the empirical mean of several (ε, δ)-PAC solutions does not produce a better optimality guarantee,
while the empirical mean of several unbiased estimators usually has a tighter deviation bound.

Now, we inductively construct sub-Gaussian algorithms for problem (1). We first define the marginal
objective function as

fd−1(x) := min
y∈[N]d−1

f(y, x). (21)

Observe that each evaluation of fd−1(x) requires solving a (d − 1)-dimensional L\-convex sub-
problem. Hence, if we have an algorithm for (d− 1)-dimensional L\-convex problems, we only need
to solve the last one-dimensional problem

min
x∈[N]

fd−1(x) = min
x∈[N]

min
y∈[N]d−1

f(y, x) = min
x∈X

f(x) (22)

Moreover, we can prove that problem (22) is also a convex problem.
Lemma 10. If function f(x) is L\-convex, then function fd−1(x) is L\-convex on [N].

Proof. Let k ∈ {2, 3, . . . , N − 1}. By the definition of fd−1(x), there exists vectors yk−1, yk+1 ∈
[N]d−1 such that

fd−1(k − 1) = f(yk−1, k − 1), fd−1(k + 1) = f(yk+1, k + 1).

By the L\-convexity of f(x), we have

fd−1(k − 1) + fd−1(k + 1) = f(yk−1, k − 1) + f(yk+1, k + 1)

≥ f
(⌈

yk−1 + yk+1

2

⌉
, k

)
+ f

(⌊
yk−1 + yk+1

2

⌋
, k

)
≥ 2 min

y∈[N]d−1
f(y, k) = 2fd−1(k),

which means the discrete midpoint convexity holds at point k. Since we can choose k arbitrarily, we
know function fd−1(x) is convex on [N].

Based on the observations above, we can use sub-Gaussian algorithms for (d − 1)-dimensional
problems and the uniform sampling algorithm to construct sub-Gaussian algorithms for d-dimensional
problems. We give the pseudo-code in Algorithm 4. We prove that Algorithm 4 is sub-Gaussian with
dimension d and estimate its parameter.
Theorem 12. Suppose that Assumptions 1-3 hold, and that Algorithm A is sub-Gaussian with
dimension d− 1 and parameter C. Then, Algorithm 4 is a sub-Gaussian algorithm with dimension d
and parameter MC, where M > 0 is an absolute constant.

Proof. We first verify the correctness of Algorithm 4. The algorithm is the same as the uniform
sampling algorithm in Zhang et al. (2021) except the condition for implementing Type-II Operations.
Hence, if we can prove that, when Type-II Operations are implemented, it holds

h ≤ |S| · ε/80, (23)

then the proof of Theorem 2 in Zhang et al. (2021) can be directly applied to this case. If the
confidence interval is updated at the beginning of current iteration, then we have

h = |S| · ε/160 < |S| · ε/80.

Otherwise, if the confidence interval is not updated in the current iteration. Then, we have |S| >
Ncur/2 and therefore

h = Ncur · ε/160 < 2|S| · ε/160 = |S| · ε/80.

Combining the two cases, we have inequality (23) and the correctness of Algorithm 4.

Next, we estimate the computational complexity of Algorithm 4. Denote the active sets when
we update the confidence interval as S1, . . . ,Sm, where m ≥ 1 is the number of times when the

31

Algorithm 4 Multi-dimensional uniform sampling algorithm

Input: Model X ,Bx, F (x, ξx), optimality guarantee parameters ε and δ, sub-Gaussian algorithm A
with dimension d− 1.

Output: An (ε, δ)-PAC solution x∗ to problem (1).
1: Set the active set S ← [N].
2: Set the step size d← 1 and the maximal number of comparisons Tmax ← N .
3: Set Ncur ← +∞.
4: while the size of S is at least 3 do . Iterate until S has at most 2 points.
5: if |S| ≤ Ncur/2 then . Update the confidence interval.
6: Record current active set size Ncur ← |S|.
7: Set the confidence width h← Ncur · ε/160.
8: For each x ∈ S, use algorithm A to get an estimate to fd−1(x) such that∣∣∣f̂d−1(x)− fd−1(x)

∣∣∣ ≤ h
holds with probability at least 1− δ/(2Tmax).

9: end if
10: if f̂d−1(x) + h ≤ f̂d−1(y)− h for some x, y ∈ S then . Type-I Operation
11: if x < y then
12: Remove all points z ∈ S with the property z ≥ y from S.
13: else
14: Remove all points z ∈ S with the property z ≤ y from S.
15: end if
16: else . Type-II Operation
17: Update the step size d← 2d.
18: Update S ← {xmin, xmin + d, . . . , xmin + kd}, where xmin = minx∈S x and k =
d|S|/2e − 1.

19: end if
20: end while . Now S has at most 2 points.
21: For each x ∈ S, use Algorithm A to obtain an estimate to fd−1(x) such that∣∣∣f̂d−1(x)− fd−1(x)

∣∣∣ ≤ ε/4
holds with probability at least 1− δ/(2Tmax).

22: Return x∗ ← arg minx∈S f̂
d−1(x).

confidence interval is updated. Then, we know |S1| = N and |Sm| ≥ 3. By the condition for
updating the confidence interval, it holds

|Sk+1| ≤ |Sk| ∀k ∈ [m− 1],

which implies
|Sk| ≥ 2m−k|Sm| ≥ 3 · 2m−k ∀k ∈ [m].

Since the algorithm A is sub-Gaussian with parameter C, for each x ∈ Sk, the computational
complexity for generating f̂d−1(x) is at most

2C

h2
log(

2Tmax
δ

) =
2C

160−2|Sk|2ε2
log(

2Tmax
δ

) = |Sk|−2 · 51200C

ε2
log(

2Tmax
δ

).

Hence, the total computational complexity for the k-th update of confidence intervals is at most

|Sk|·|Sk|−2·51200C

ε2
log(

2Tmax
δ

) = |Sk|−1·51200C

ε2
log(

2Tmax
δ

) ≤ 2k−m/3·51200C

ε2
log(

2Tmax
δ

).

Summing over all iterations, we have the computational complexity of all iterations of Algorithm 4 is
at most
m∑
k=1

2k−m/3·51200C

ε2
log(

2Tmax
δ

) =
(
2− 21−m)·51200C

3ε2
log(

2Tmax
δ

) <
102400C

3ε2
log(

2Tmax
δ

).

32

Now we consider the computational complexity of the last subproblem. Since the algorithm 4 is
sub-Gaussian with parameter C, the computational complexity of the subproblem is at most

2 · 2C

(ε/4)2
log(

2Tmax
δ

) =
64C

ε2
log(

2Tmax
δ

).

Hence, the total computational complexity of Algorithm 4 is at most

102400C

3ε2
log(

2Tmax
δ

) +
64C

ε2
log(

2Tmax
δ

) < 17099 · 2C

ε2
log(

2Tmax
δ

).

When δ is small enough, we can choose M = 17100 and the computational complexity of Algorithm
4 is at most

2MC

ε2
log(

2Tmax
δ

),

which implies that Algorithm 4 is sub-Gaussian with dimension d and parameter MC.

If we treat the noisy evaluation oracle F (x, ξx) as a sub-Gaussian algorithm with dimension 0 and
parameter σ2, then Theorem 12 implies that there exists a sub-Gaussian algorithm with dimension 1
and parameter σ2M . However, the parameter C of the uniform sampling algorithm is usually smaller
than σ2M and therefore the uniform sampling algorithm is preferred in the one-dimensional case.
Using the results of Theorem 12 and the fact that the uniform sampling algorithm is sub-Gaussian
with dimension 1, we can inductively construct sub-Gaussian algorithms with any dimension d and
this finishes the proof of Theorem 5.

D.2 Proof of Theorem 6

As a counterpart of separation oracles, we introduce the stochastic separation oracle, namely the
(ε, δ)-separation oracle, to characterize the accuracy of separation oracles in the stochastic case.

Definition 5. An (ε, δ)-separation oracle ((ε, δ)-SO) is a function on [1, N]d with the property that
for any input x ∈ [1, N]d, it outputs a vector ĝ ∈ Rd such that the inequality

f(y) ≥ f(x)− ε

holds with probability at least 1− δ for any y ∈ [1, N]d ∩H , where the half space H is defined as
{z : 〈ĝ, z − x〉 ≥ 0}.

We give a concrete example of (ε, δ)-SO oracle and provide an upper bound on the computational
complexity of evaluating each oracle. We define the averaged subgradient estimator as

ĝnαx(i) := F̂n
(
Sx,i

)
− F̂n

(
Sx,i−1

)
, ∀i ∈ [d], (24)

where αx is a consistent permutation of x, n ≥ 1 is the number of samples, and F̂n is the empirical
mean of n independent evaluations of F . The following lemma gives a lower bound on n to guarantee
that ĝn is an (ε, δ)-SO oracle.

Lemma 11. Suppose that Assumptions 1-3 hold. If we choose

n = Õ

[
dN2

ε2
log

(
1

δ

)]
,

then ĝn is an (ε, δ)-SO oracle. Moreover, the expected computational complexity of generating an
(ε, δ)-SO oracle is at most

O

[
d2N2

ε2
log

(
1

δ

)
+ d

]
= Õ

[
d2N2

ε2
log

(
1

δ

)]
.

Proof. By the assumption that F (x, ξx) − f(x) is sub-Gaussian with parameter σ2 for any x, we
know that ĝαx(i) − gαx(i) is the difference of two independent sub-Gaussian random variables and
therefore

ĝαx(i) − gαx(i) ∼ subGaussian
(
2σ2
)
∀i ∈ [d],

33

where g is the subgradient of f(x) defined in (5). Then, using the properties of sub-Gaussian random
variables, it holds that

ĝnαx(i) − gαx(i) ∼ subGaussian

(
2σ2

n

)
∀i ∈ [d].

Recalling that components of ĝn are mutually independent, we know

〈ĝn − g, y − x〉 =
∑
i

(ĝnαx(i) − gαx(i)) · (y − x)αx(i) ∼ subGaussian

(
2σ2

n
· ‖y − x‖22

)
.

Since ‖y − x‖22 ≤ dN2, we know

〈ĝn − g, y − x〉 ∼ subGaussian

(
2dN2σ2

n

)
.

By the Hoeffding bound, it holds

|〈ĝn − g, y − x〉| ≤

√
4dN2σ2

n
log

(
2

δ

)
with probability at least 1− δ. If we choose

n =

⌈
4dN2σ2

ε2
log

(
2

δ

)⌉
≤ 4dN2σ2

ε2
log

(
2

δ

)
+ 1,

it follows that

|〈ĝn − g, y − x〉| ≤ ε. (25)

Since f(x) is a convex function and g is a subgradient at point x, we have f(y) ≥ f(x) + 〈g, y − x〉
for all y ∈ [1, N]d. Combining with inequality (25) gives

f(y) ≥ f(x) + 〈ĝn, y − x〉+ 〈g − ĝn, y − x〉 ≥ f(x) + 〈ĝn, y − x〉 − ε ∀y ∈ [1, N]d

holds with probability at least 1− δ. Then, considering the half space H = {y : 〈ĝn, y − x〉 ≤ 0}, it
holds

f(y) ≥ f(x) + 〈ĝn, y − x〉 − ε ≥ f(x)− ε ∀y ∈ [1, N]d ∩Hc

with the same probability. Taking the minimum over [1, N]d ∩ Hc, it follows that the averaged
stochastic subgradient provides an (ε, δ)-SO oracle. Finally, the expected computational complexity
of each oracle evaluation is at most

d · n ≤ 4d2N2σ2

ε2
log

(
2

δ

)
+ d = Õ

[
d2N2σ2

ε2
log

(
1

δ

)]
.

Using the above results, the cutting-plane methods in Vaidya (1996); Bertsimas & Vempala (2004)
can be used to shrink the search polytope without excluding all ε-approximate solutions with high
probability. We give the pseudo-code of the dimension reduction algorithm in Algorithm 5.

Proof of Theorem 6. We first verify the correctness of Algorithm 5. If the optimal solution has been
removed during the dimension reduction process, we claim that the optimal solutions are removed
from the search set by some cutting plane. This is because the dimension reduction steps will not
remove integral points from the current search set (Jiang, 2020). This implies that x is not in the half
space

H := {y : ĝT y ≤ ĝT z},
where ĝ is an (ε/8, δ/4)-SO oracle. Then, by the definition of (ε/8, δ/4)-SO oracle and the claim
that x ∈ [1, N]d ∩Hc, it holds

min
x∈S

f(x) ≤ min
x∈X

f(x) + ε/4 (26)

with probability at least 1− δ/4.

34

Algorithm 5 Dimension reduction method for PAC guarantee

Input: Model X ,Bx, F (x, ξx), optimality guarantee parameters ε and δ, (ε, δ)-SO oracle ĝ.
Output: An (ε, δ)-PAC solution x∗ to problem (1).

1: Set the initial polytope P ← [1, N]d.
2: Initialize the set of points used to query separation oracles S ← ∅.
3: for d′ = d, d− 1, . . . , 2 do
4: Apply Vaidya’s method or the random walk-based cutting-plane method with (ε/4, δ/4)-SO

oracles.
5: Add points to S whenever separation oracles are called.
6: Stop when the volume of P is small enough.
7: Find the hyperplane H that contains all integral points in P .

. If P contains no integral points, then an arbitrary hyperplane works.
8: Update P to a polytope on the hyperplane H . . Reduce the dimension by 1.
9: end for

10: Find an (ε/4, δ/4)-PAC solution of the last one-dim problem and add the solution to S.
11: Find the (ε/4, δ/4)-PAC solution x̂ of problem minx∈S f(x).
12: Round x̂ to an integral solution by Algorithm 1.

Otherwise if the optimal solution has not been removed from the search set throughout the dimension
reduction process, we know the last one-dimensional problem contains the optimal solution. Hence,
the (ε/4, δ/4)-PAC solution to the one-dimensional problem is also an (ε/4, δ/4)-PAC solution to
the original problem. Since the PAC solution is also added to the set S, we also have relation (26)
holds with probability at least 1− δ/4. Then, the (ε/4, δ/4)-PAC solution x̄ to problem minx∈S f(x)
satisfies

f(x̄) ≤ min
x∈X

f(x) + ε/2

with probability at least 1 − δ/2, or equivalently x̄ is an (ε/2, δ/2)-PAC solution to problem (1).
Using the results of Theorem 2, the solution returned by Algorithm 5 is an (ε, δ)-PAC solution.

Next, we estimate the expected computational complexity of Algorithm 5. By the results in Jiang
(2020), (ε/4, δ/4)-SO oracles are called at most O[d(d+ log(N))] times. Hence, the size of S is at
most O[d(d+ log(N))]. By the estimates in Lemma 11, the total computational complexity of the
dimension reduction process is at most

O

[
d3N2(d+ log(N))

ε2
log(

1

δ
) + d2(d+ log(N))

]
= Õ

[
d3N2(d+ log(N))

ε2
log(

1

δ
)

]
.

Moreover, the one-dimensional convex problem has at most N feasible points and Theorem 2 in
Zhang et al. (2021) implies that the expected computational complexity for this problem is at most

Õ

[
1

ε2
log(

1

δ
)

]
.

Since the size of S is at most O[d(d+ log(N))], the sub-problem for the set S takes at most

O

[
d2(d+ log(N))

ε2
log(

1

δ
) + d2(d+ log(N))

]
= Õ

[
d2(d+ log(N))

ε2
log(

1

δ
)

]
objective function value evaluations. Finally, Theorem 2 shows that the expected computational
complexity of the rounding process is at most

Õ

[
d

ε2
log(

1

δ
)

]
.

In summary, the total expected computational complexity of Algorithm 5 is at most

Õ

[
d3N2(d+ log(N))

ε2
log(

1

δ
)

]
.

35

E Proofs in Section 5

E.1 Proof of Theorem 7

The information-theoretical inequality in Kaufmann et al. (2016) provides a systematic way to prove
lower bounds of zeroth-order algorithms. Given an algorithm and a model M , we denote Nx(τ) as
the number of times that F (x, ξx) is evaluated when the algorithm terminates, where τ is the stopping
time of the algorithm. Then, it follows from the definition that

EM [τ] =
∑
x∈X

EM [Nx(τ)] ,

where EM is the expectation when the model M is given. Similarly, we can define PM as the
probability when the model M is given. The following lemma was proved in Kaufmann et al. (2016)
and is the major tool for deriving lower bounds in this paper.

Lemma 12. For any two models M1,M2 and any event E ∈ Fτ , we have∑
x∈X

EM1 [Nx(τ)] KL(ν1,x, ν2,x) ≥ d(PM1(E),PM2(E)), (27)

where d(x, y) := x log(x/y) + (1− x) log((1− x)/(1− y)), KL(·, ·) is the KL divergence and νk,x
is the distribution of model Mk at point x for k = 1, 2.

The information-theoretical inequality (27) is our major tool for deriving lower bounds. We first
reduce the construction of L\-convex functions to the construction of submodular functions. Then,
using the family of submodular functions defined in Graur et al. (2020), we can construct d + 1
submodular functions that have different optimal solutions and have the same value except on d+ 1
potential solutions. Hence, the algorithm has to simulate enough samples on the d + 1 potential
solutions to decide the optimal solution and the computational complexity is proportional to d.

Proof of Theorem 7. In this proof, we change the feasible set to X = {0, 1, . . . , N}d, where N ≥ 1.
We split the proof into three steps.

Step 1. We first show that the construction ofL\-convex functions can be reduced to the construction
of submodular functions. Equivalently, we show that any submodular function defined on {0, 1}d
can be extended to an L\-convex function on X with the same convex extension after scaling. Let
g(x) be a submodular function defined on {0, 1}d and g̃(x) be the Lovász extension of g(x). We first
extend the domain of the Lovász extension to [0, N]d by scaling, i.e.,

f̃(x) := g̃(x/N) ∀x ∈ [0, N]d.

Then, we define the discretization of f̃(x) by restricting to the integer lattice

f(x) := f̃(x) ∀x ∈ X .

We prove that f(x) is an L\-convex function. By Proposition 7.25 in Murota (2003), we know the
Lovász extension g̃(x) is a polyhedral L-convex function. Since the scaling operation does not change
the L-convexity, we know f̃(x) is also polyhedral L-convex. Hence, by Theorem 7.29 in Murota
(2003), the function f̃(x) satisfies the SBF\[R] property, namely,

f̃(p) + f̃(q) ≥ f̃ [(p− α1) ∨ q] + f̃(p ∧ (q + α1)) ∀p, q ∈ [0, N]d, α ≥ 0.

Restricting to the integer lattice, we know the SBF\[Z] property holds for f(x), namely,

f(p) + f(q) ≥ f [(p− α1) ∨ q] + f(p ∧ (q + α1)) ∀p, q ∈ {0, . . . , N}d, α ∈ N.

Finally, Theorem 7.7 in Murota (2003) shows that the L\-convexity is equivalent to the SBF\[Z]
property and therefore we know that f(x) is an L\-convex function.

36

Step 2. Next, we construct d + 1 submodular functions on {0, 1}d and extend them to X by the
process defined in Step 1. The construction is based on the family of submodular functions defined
in Graur et al. (2020). We denote I := {0} ∪ [d]. For each i ∈ I, we define point xi ∈ {0, 1}d as

xi :=

i∑
j=1

ej ,

where ej is the j-th unit vector of Rd. Index j(x) is defined as the maximal index j such that

xi = 1 ∀i ∈ [j].

If x1 = 0, then we define j(x) = 0. Given c : I 7→ R, we define a function on {0, 1}d as

gc(x) :=

{
−c(i) if x = xi for some i ∈ I
(‖x‖1 − j(x)) · (d+ 2− ‖x‖1) otherwise.

By Lemma 6 in Graur et al. (2020), the function gc(x) is submodular if c(I) ⊂ {0, 1}. Using the
fact that convex combinations of submodular functions are still submodular, we know that gc(x) is
submodular for any c such that c(I) ⊂ [0, 1]. Then, for each i ∈ I, we construct

ci(0) :=
1

2
, ci(j) :=

{
1 j = i

0 j 6= i
∀j ∈ [d].

We denote gi(x) := gc
i

(x) and let f i(x) be the extension of 6ε · gi(x) on X by the process in Step 1.
By the result in Step 1, we know that f i(x) is L\-convex.

Next, we prove that f0(x) has disjoint set of ε-optimal solutions with f i(x) for any i ∈ [d]. For each
f i(x), we define the set of ε-optimal solutions as

X iε := {x ∈ X : f i(x)−min
y

f i(y) ≤ ε}.

We first consider X 0
ε . By the definition of g0(x), we know that

f0(x0) = g0(x0) = −3ε, f0(x) = g0(x/N) ≥ 0 ∀x ∈ {0, N}d\{x0}, (28)

which implies that
X 0
ε = {x ∈ X : f0(x) ≤ −2ε}.

Since f0(x) is defined by the scaled Lovász extension of g0(x), we have

f0(x) = N−1 ·

[
(N − xα(1))f

0(S0) +

d−1∑
i=1

(xα(i) − xα(i+1))f
0(Si) + xα(d)f

0(Sd)

]
, (29)

where α is a consistent permutation of x/N and Si := N ·Sx/N,i ∈ {0, N}d is the i-th neighbouring
points of x in the hypercube {0, N}d. Using the relation in (28) and the fact S0 = x0, we get

f0(x) ≥ N−1 · (N − xα(1))f(S0) = N−1 · (N − xα(1))f(x0) = −3εN−1 · (N − xα(1)).

Hence, for any point x ∈ X 0
ε , we have N − xα(1) = N −maxi xi ≥ 2N/3 and therefore

X 0
ε ⊂ {x ∈ X : N −max

i
xi ≥ 2N/3} = {x ∈ X : max

i
xi ≤ N/3}. (30)

Next, we consider X iε with i ∈ [d]. By the definition of gi(x), we have

f i(x0) = gi(x0) = −3ε, f i(x) = gi(x) ≥ −6ε ∀x ∈ {0, N}d\{x0},

which implies that
X iε = {x ∈ X : f i(x) ≤ −5ε}.

Since the consistent permutation and neighboring points only depend on the coordinate of x, we
know

f i(x) = N−1 ·

[
(N − xα(1))f

i(S0) +

d−1∑
i=1

(xα(i) − xα(i+1))f
i(Si) + xα(d)f

i(Sd)

]
(31)

37

≥ N−1 ·

[
−3ε(N − xα(1))− 6ε

d−1∑
i=1

(xα(i) − xα(i+1))− 6ε · xα(d)

]
= N−1 ·

[
−3ε(N − xα(1))− 6ε · xα(1)

]
= −3εN−1 · (N + xα(1)).

Hence, the set X iε satisfies

X iε ⊂ {x ∈ X : N + max
i

xi ≥ 5N/3} = {x ∈ X : max
i

xi ≥ 2N/3}. (32)

Combining the relations (30) and (32), we know X 0
ε ∩ X iε = ∅ for all i ∈ [d].

Step 3. Finally, we give a lower bound of T0(ε, δ,MC). For each i ∈ I, we define Mi as the
model such that the objective function is f i(x) and the distribution at each point is Gaussian with
variance σ2. Same as the one-dimensional case, given a zeroth-order algorithm and a model M , we
denote Nx(τ) as the number of times that F (x, ξx) is simulated when the algorithm terminates. By
definition, we have

EM [τ] =
∑
x∈X

EM [Nx(τ)] ,

where EM is the expectation when the model M is given. Similarly, we can define PM as the
probability when the model M is given. Suppose A is an [(ε, δ)-PAC,MC]-algorithm and let E be
the event that the solution returned byA is in the set X 0

ε . Since X 0
ε ∩X iε = ∅ for all i ∈ [d], we know

PM0 [E] ≥ 1− δ, PMi [E] ≤ δ ∀i ∈ [d].

Using the information-theoretical inequality (27), it holds∑
x∈X

EM0 [Nx(τ)] KL(ν0,x, νi,x) ≥ d(PM0(E),PMi(E)) ≥ d(1− δ, δ) ≥ log(
1

2.4δ
), (33)

where d(x, y) := x log(x/y) + (1− x) log((1− x)/(1− y)), KL(·, ·) is the KL divergence and νi,x
is the distribution of F i(x, ξx). Since the distributions νi,x are Gaussian with variance σ2, the KL
divergence can be calculated as

KL(ν0,x, νi,x) = 2σ−2
(
f0(x)− f i(x)

)2
.

Now we estimate f0(x)− f i(x) for all i ∈ [d]. By equations (29) and (31), we get

f0(x)− f i(x) = N−1

[
(N − xα(1))

(
f0(S0)− f i(S0)

)
(34)

+

d−1∑
j=1

(xα(j) − xα(j+1))
(
f0(Sj)− f i(Sj)

)
+ xα(d)

(
f0(Sd)− f i(Sd)

)]
,

where α is a consistent permutation of x/N and Si is the i-th neighboring point of x in hypercube
{0, N}d. By the definition of f0(x) and f i(x), we have

f0(x)− f i(x) =

{
6ε if x = xi

0 otherwise.

Since
∥∥xi∥∥

1
= i and

∥∥Sj∥∥
1

= j for all j ∈ I, we know

f0(Si)− f i(Si) ≤ 6ε, f0(Sj)− f i(Sj) = 0 ∀j ∈ I\{i}.
Substituting into equation (34), it follows that

f0(x)− f i(x) ≤

{(
6ε · (xα(i) − xα(i+1))

)2
if i ∈ [d− 1](

6ε · xα(d)

)2
if i = d.

Hence, the KL divergence is bounded by

KL(ν0,x, νi,x) = 2σ−2
(
f0(x)− f i(x)

)2 ≤ {72σ−2N−2ε2
(
(xα(i) − xα(i+1))

)2
if i ∈ [d− 1]

72σ−2N−2ε2x2
α(d) if i = d.

38

Substituting the KL divergence into inequality (33) and summing over i = 1, . . . , d, we get

∑
x∈X

EM0
[Nx(τ)] · 72σ−2N−2ε2

[
d−1∑
i=1

(xα(i) − xα(i+1))
2 + x2

α(d)

]
≥ d log

(
1

2.4δ

)
. (35)

Since α is the consistent permutation of x, we know

0 ≤ xα(i) − xα(i+1) ≤ N ∀i ∈ [d− 1]

and therefore
d−1∑
i=1

(xα(i) − xα(i+1))
2 + x2

α(d) ≤ N ·

(
d−1∑
i=1

(xα(i) − xα(i+1)) + xα(d)

)
= N · xα(1) ≤ N2.

Combining with inequality (35), we get∑
x∈X

EM0
[Nx(τ)] · 72ε2σ−2 ≥ d log

(
1

2.4δ

)
,

which implies that

EM0
[τ] =

∑
x∈X

EM0
[Nx(τ)] ≥ dσ2

72ε2
log

(
1

2.4δ

)
.

F More numerical experiments

F.1 Separable convex function minimization

We consider the problem of minimizing a stochastic function whose expectation is a separable
L\-convex function of the form

fc,x∗(x) :=

d∑
i=1

cig(x∗i ;xi),

where ci ∈ [0.75, 1.25], x∗i ∈ {1, . . . , b0.3Nc} for all i ∈ [d] and

g(y∗; y) :=


√

y∗

y − 1 if y ≤ y∗√
N+1−y∗
N+1−y − 1 if y > y∗

∀y, y∗ ∈ [N].

It can be observed that the function fc,x∗(x) is the sum of separable convex functions and therefore is
L\-convex. Moreover, the function fc,x∗(x) has the optimum x∗ associated with the optimal value 0.
For stochastic evaluations, we add Gaussian noise with mean 0 and variance 1. Figure 1 in Zhang et al.
(2021) shows that the landscape of g(x∗;x) is very flat. The advantage of this numerical example
is that the expected objective function has a closed form, and we are able to exactly compute the
optimality gap of the solutions returned by the proposed algorithms.

The dimension and scale of the separable convex model are chosen as d ∈ {2, 6, 10} and N ∈
{50, 100, 150}. The optimality guarantee parameters are chosen as ε = (d!)1/d/5 and δ = 10−6,
respectively. The choice of ε ensures that the ε-sub-level set of objective function covers a “flat
region” of the landscape. Same as the one-dimensional case, we compute the average computational
complexity of 400 independently generated models to approximate the expected computational
complexity. Moreover, early stopping conditions are designed to terminate algorithms early when
little progress is made at any iteration. For the truncated subgradient descent method, we maintain
the empirical mean of stochastic objective function values up to the current iteration and terminate
the algorithm if the empirical mean does not decrease by ε/

√
N after O(dε−2 log(1/δ)) consecutive

iterations. For the dimension reduction method, we terminate the algorithm if the polytope is
empty. Furthermore, we have observed that using (Nε/4, δ/4)-SO oracles is enough for producing
high-probability guarantees within the range 1 ≤ N ≤ 150.

39

F.2 Optimal allocation problem of a service system

In this subsection, we implement our proposed algorithms on the optimal allocation problem of a
queueing system. We consider the 24-hour operation of a service system with a single stream of
incoming customers. The customers arrive according to a a doubly stochastic non-homogeneous
Poisson process with intensity function

Λ(t) := 0.5λN · (1− |t− 12|/12) ∀t ∈ [0, 24],

where λ is a positive constant and N is a positive integer. Each customer requests a service with
service time independent and identically distributed according to the log-normal distribution with
mean 1/λ and variance 0.1. We divide the 24-hours operation into d time slots with length 24/d for
some positive integer d. For the i-th time slot, there are xi ∈ [N] of homogeneous servers that work
independently in parallel and the number of servers cannot be changed during the slot. Assume that
the system operates based on a first-come-first-serve routine, with unlimited waiting room in each
queue, and that customers never abandon.

The decision maker’s objective is to select the staffing level x := (x1, . . . , xd) such that the total
waiting time of all customers is minimized. Namely, letting f(x) be the expected total waiting time
under the staffing plan x, then the optimization problem can be written as

min
x∈[N]d

f(x). (36)

It has been proved in Altman et al. (2003) that the function f(·) is multimodular. We define the linear
transformation

g(y) := (y1, y2 − y1, . . . , yd − yd−1) ∀y ∈ Rd.
Then, Murota (2003) has proved that

h(y) := f ◦ g(y) = f(y1, y2 − y1, . . . , yd − yd−1)

is an L\-convex function on the L\-convex set

Y := {y ∈ [Nd]d | y1 ∈ [N], yi+1 − yi ∈ [N], i = 1, . . . , N − 1}.
The optimization problem (36) has the trivial solution x1 = · · · = xd = N . However, in reality, it is
also necessary to keeping the staffing cost low. There are two different approaches to achieve this
goal. Firstly, we can constrain the total number of servers

∑d
i=1 xi to be at most K, where K ≤ Nd

is a positive integer and the optimization problem can be written as

min
y∈Y

h(y) s.t. yd ≤ K. (37)

On the other hand, we can add a regularization term R(x1, . . . , xd) := c/d ·
∑d
i=1 xi = c/d · yd to

the objective function, where c is a positive constant. The optimization problem can be written as

min
y∈Y

h(y) + c/d · yd. (38)

We refer problems (37) and (38) as the constrained and the regularized problems, respectively. Our
algorithms can be extended to this case by considering the Lovász extension h̃(y) on the set

Ỹ := {y ∈ [1, Nd]d | y1 ∈ [1, N], yi+1 − yi ∈ [1, N], i = 1, . . . , N − 1}.

We compare the performance of the projected SSGD method (Algorithm 2) with truncation (M <∞)
and without truncation (M =∞) on both problems. In the truncation-free case, the step size is chosen
to be η = O(N

√
d/T). We first fix the dimension (number of time slots) to be d = 4 and compare

the performance when the scale N ∈ {10, 20, 30, 40, 50}, and we then fix the scale to be N = 10
and compare the performance when the dimension d ∈ {4, 8, 12, 16, 20, 24}. The parameters of the
problem are chosen as λ = 4, c = 50 and K = bNd/3c, and the optimality guarantee parameters
are ε = N/2 and δ = 10−6. For each problem setup, we average the computational complexities
of 10 independent implementations to estimate the expected computational complexity. Moreover,
early stopping is used to terminate algorithms early when little progress is made after some iterations.
More concretely, we maintain the empirical mean of stochastic objective function values up to the
current iteration and terminate the algorithm if the empirical mean does not decrease by ε/

√
N after

O(dε−2 log(1/δ)) consecutive iterations.

40

We first implement both algorithms on the trivial problem (36) for 10 times. Since the optimal
solution is known, it is possible to verify whether the solutions returned by algorithms are at most
ε worse than the optimum. It turns out that both algorithms succeed in implementations with any
parameters d and N . Next, we consider the performance of algorithms on problems (37) and (38),
and the results are summarized in Table 3.

41

