
Under review as a conference paper at ICLR 2021

Supplementary Material for “About

contrastive unsupervised representation

learning for classification and its

convergence”

A PROOFS FOR SECTION 3

Apart from the similarity between the unsupervised and supervised loss, the proof of Lemma 3.1
uses properties of log-sum-exp.

Proof of Lemma 3.1. We first rewrite the unsupervised loss as:

Lun(f) = E(x,x+)⇠Dsim,x�⇠Dneg
log
�
1 + exp

�
f(x)T (f(x�)� f(x+))

��

where we recognize the ⇣ function ⇣(x) = log(1 + ex). We start by using Jensen’s inequality

Lun(f) = E(x,x+)⇠Dsim

x�⇠Dneg

⇥
⇣
�
f(x)T (f(x�)� f(x+))

�⇤

� Ec,c�⇠⇢,x⇠Dc

⇥
⇣
�
f(x)T (µc� � µc)

�⇤

� p⇢minEc⇠⇢,x⇠Dc


max
c�

⇣
�
f(x)T (µc� � µc)

��

= p⇢minEc⇠⇢,x⇠Dc


max
c�

LSE
�
0, f(x)T (µc� � µc)

��

� p⇢min

⇣
Ec⇠⇢,x⇠Dc

h
LSE

⇣
f(x)T (µc1 � µc), . . . , f(x)

T (µcNC
� µc)

⌘i
� logNC

⌘

= p⇢min

�
Lµ
sup(f, C)� logNC

�

where we have used properties of the log-sum-exp function

max(x1, . . . , xn)  LSE(x1, . . . , xn)  max(x1, . . . , xn) + log n,

the fact that LSE is non-negative whenever one of its arguments is, and for x 2 R2n we have

LSE(x) = LSE(LSE(x1, x2), . . . ,LSE(x2n�1, x2n))  max
j=1,...,n

LSE(x2j�1, x2j) + log n.

The proof of Lemma 3.2 considers the sample draws where all classes are represented.

Proof of Lemma 3.2. Let I 2 [NC]N the random vector of classes for each negative sample (I ⇠
⇢⌦N) and let J be the set of represented classes i.e. J = {Ij | j 2 [N]}. We have, again with
Jensen’s inequality

LN
un(f) = Ex,x+,x�

1 ,...,x�
N

⇥
LSE

�
0, f(x)T (f(x�

1)� f(x+)), . . . , f(x)T (f(x�
N)� f(x+))

�⇤

� Ec⇠⇢,I⇠⇢⌦N ,x⇠Dc

⇥
LSE

�
0, f(x)T (µI1 � µc), . . . , f(x)

T (µIN � µc)
�⇤

� P (|J | = NC)E c⇠⇢
I⇠⇢⌦N

x⇠Dc

⇥
LSE

�
0, f(x)T (µI1 � µc), . . . , f(x)

T (µIN � µc)
�
| |J | = NC

⇤

� P (|J | = NC)L
µ
sup(f, C),

where we used that for S ⇢ [n] and x 2 Rn we have LSE(xS)  LSE(x) with xS the restriction of
x to the indices in S . Finally, we have P (|J | = NC) = p⇢cc(N).

We restate Proposition 3.3 for cases N = 1 and N > 1. The proof uses Jensen’s inequality and the
uniformity of ⇢.

11

Under review as a conference paper at ICLR 2021

Proposition 3.3 (restated). Consider the unsupervised loss LN
un(f) from Equation (6) with N neg-

ative samples. Assume that ⇢ is uniform over C and that 2  k + 1  NC . Then,

(1) any encoder function f : X ! Rd satisfies

Lsup,k(f)  Lµ
sup,k(f) 

k

1� ⌧+
�
Lun(f)� ⌧+

�

with ⌧+ = Pc,c0⇠⇢2 (c = c0), where Lun(f) is the unsupervised loss from Equation (6) with
N = 1 negative sample;

(2) more generally,

Lsup,k(f)  Lµ
sup,k(f) 

k

1� ⌧+N

�
LN
un(f)� ⌧+N log(N + 1)

�

with ⌧+N = P(ci = c, 8i | c ⇠ ⇢, (c1, · · · , cN) ⇠ ⇢N), and where LN
un(f) is the unsuper-

vised loss from Equation (6).

Proof of Proposition 3.3. Let’s start with (1). By Jensen’s inequality, then use log = log2 without
loss of generality, and split the expectation into cases c� 6= c and c� = c,

Lun(f) = E(c,c�)⇠⇢2Ex,x+⇠Dc,x�⇠Dc�

⇥
log
�
1 + exp

�
f(x)T

�
f(x�)� f(x+)

���⇤

� E(c,c�)⇠⇢2,x⇠Dc

⇥
log
�
1 + exp

�
f(x)T (µc� � µc)

��⇤

= (1� ⌧+)Ec⇠⇢,x⇠DcEc�⇠⇢

⇥
log
�
1 + exp

�
f(x)T (µc� � µc)

����c� 6= c
⇤
+ ⌧+.

Let us write explicitly the uniform distribution ⇢ on C. On the one hand,

Ec�⇠⇢

⇥
log
�
1 + exp

�
f(x)T (µc� � µc)

����c� 6= c
⇤

=
X

c�2C\{c}

1

NC � 1
log
�
1 + exp

�
f(x)T (µc� � µc)

��
,

on the other hand,

Ec1,...,ck⇠⇢⌦k

"
kX

i=1

log
�
1 + exp

�
f(x)T (µci � µc)

��
�����{c, c1, . . . , ck} distinct

#

=
X

{c1,···,ck}✓C\{c}
{c1,...,ck}distinct

1✓
NC � 1

k

◆
kX

i=1

log
�
1 + exp

�
f(x)T (µci � µc)

��

=
1✓

NC � 1

k

◆
X

{c1,···,ck}✓C\{c}
{c1,...,ck}distinct

kX

i=1

log
�
1 + exp

�
f(x)T (µci � µc)

��
.

Consider a particular latent class c� 2 C\{c}, the term on c� appears in the double sum for exactly✓
NC � 2

k � 1

◆
times. And this is for every c� 2 C\{c}. We rearrange the double sum according to c�

=
1✓

NC � 1

k

◆
✓
NC � 2

k � 1

◆ X

c�2C\{c}

log
�
1 + exp

�
f(x)T (µc� � µc)

��

= k
X

c�2C\{c}

1

NC � 1
log
�
1 + exp

�
f(x)T (µc� � µc)

��
.

12

Under review as a conference paper at ICLR 2021

Hence, using the uniformity of ⇢,

Ec�⇠⇢

⇥
log
�
1 + exp

�
f(x)T (µc� � µc)

����c� 6= c
⇤

=
1

k
Ec1,...,ck⇠⇢⌦k

"
kX

i=1

log
�
1 + exp

�
f(x)T (µci � µc)

��
�����{c, c1, . . . , ck} distinct

#

�1

k
Ec1,...,ck⇠⇢⌦k

"
log

1 +

kX

i=1

exp
�
f(x)T (µci � µc)

�
!�����{c, c1, . . . , ck} distinct

#
.

That means we have

Lun(f) �
1� ⌧+

k
E c⇠⇢,x⇠Dc

c1,...,ck⇠⇢⌦k

"
log

1 +

kX

i=1

exp
�
f(x)T (µci � µc)

�
!�����{c, c1, . . . , ck} distinct

#
+ ⌧+

=
1� ⌧+

k
ET ⇠Dk+1E(x,c)⇠DT

2

64� log

0

B@
exp(f(x)Tµc)

exp(f(x)Tµc) +
P

c�2T
c� 6=c

exp (f(x)Tµc�)

1

CA

3

75+ ⌧+

=
1� ⌧+

k
Lµ
sup,k(f) + ⌧+.

As for (2), again by Jensen’s inequality, and split the expectation into cases c�i = c, 8i and 9c�i 6= c,

LN
un(f) = E(c,c�i)⇠⇢N+1Ex,x+⇠Dc,x

�
i ⇠D

c�i

"
log

1 +

NX

i=1

exp
�
f(x)T

�
f(x�

i)� f(x+)
��
!#

� E(c,c�i)⇠⇢N+1,x⇠Dc

"
log

1 +

NX

i=1

exp
⇣
f(x)T

⇣
µc�i

� µc

⌘⌘!#

= (1� ⌧+N)E c⇠⇢
x⇠Dc

Ec�i ⇠⇢N

"
log

1 +

NX

i=1

exp
�
f(x)T (µc� � µc)

�
!�����9c

�
i 6= c

#
+ ⌧+N log(N + 1)

with
⌧+N = P(ci = c, 8i | c ⇠ ⇢, ci ⇠ ⇢N) =

X

c2C
⇢(c)N+1 = N�N

C .

Considering the fact that

Ec�i ⇠⇢N

"
log

1 +

NX

i=1

exp
�
f(x)T (µc� � µc)

�
!�����9c

�
i 6= c

#
�

Ec�⇠⇢

⇥
log
�
1 + exp

�
f(x)T (µc� � µc)

����c� 6= c
⇤
,

then by similar computations as in (1), we have

LN
un(f) �

1� ⌧+N
k

Lµ
sup,k(f) + ⌧+N log(N + 1).

B PROOFS FOR SECTION 4

Let us first prove that under Assumption 2, the objective is gradient-Lipschitz w.r.t. the network
outputs.
Lemma 4.1. Consider the unsupervised loss ` given by (11), grant Assumption 2 and define the set

B3 =
n
z = (z1, z2, z3) 2 (Rd)3 : max

j=1,2,3
kzjk22  C2

o

where C > 0 is defined in Assumption 2. Then, the restriction of ` to B3 satisfies (12) with a
constant Lsmooth  2 + 8C2.

13

Under review as a conference paper at ICLR 2021

Proof. We will prove this result by bounding the norm of the Hessian matrix.

Let us write the gradient of `(z) with respect to z first. We have z 2 R3d. For ease of writing, we
define the matrices A1, A2, A3 2 R3d⇥d as

A1 =

Id
0d
0d

!
A2 =

0d
Id
0d

!
A3 =

0d
0d
Id

!

where Id, 0d 2 Rd⇥d are the identity and zero matrix respectively. With this notation, we have
zi = AT

i z for i = 1, 2, 3 the three contiguous thirds of z’s coordinates.

Our purpose is to compute

@

@z
`(z) =

@

@z

"
� log

exp

�
zT1 z2

�

exp
�
zT1 z2

�
+ exp

�
zT1 z3

�
!#

.

Denote cosi,j = zTi zj , we can now compute for i, j 2 {1, 2, 3} (i 6= j)

@

@z
cosi,j =

�
AiA

T
j +AjA

T
i

�
z =: @ cosi,j 2 R3d.

Now, denote v = softmax (cos1,2, cos1,3) 2 R2, we can write

@

@z
`(z) = (v1 � 1)@ cos1,2 +v2@ cos1,3 .

We proceed with the following computation

@2

@z2
cosi,j = AiA

T
j +AjA

T
i ,

which we will denote simply as @2 cosi,j . Before we get the Hessian of loss, we still need to compute

@v :=
@v

@z
= (diag(v)� vvT)

✓
@ cosT1,2
@ cosT1,3

◆
2 R2⇥3d.

Now we can write

@2

@z2
`(z) = (v1 � 1)@2 cos1,2 +v2@

2 cos1,3 +(@ cos1,2 @ cos1,3) @v.

We can now estimate the norm of this matrix which will provide an estimation for the Lipschitz
constant.

We find that
k@ cosi,jk  2max (kzik , kzjk) ,

keeping in mind that the matrix diag(v)� vvT has norm at most 1/2, this leads to

k(@ cos1,2 @ cos1,3) @vk = 8max
i,j

(kzik kzjk) .

We have also that
��@2 cosi,j

�� = 1.

All in all, we have
��� @2

@z2 `(z)
��� = 2 + 8maxi,j (kzik kzjk). Recalling that we restricted R3d so that

we have maxi kzik  C the result follows.

Theorem 1 is actually obtained in two steps. First, Theorem 6 from Allen-Zhu et al. (2019) allows
us to obtain that the gradient of the objective rbLun(f) with respect to the network outputs reaches
arbitrarily low values. Then, combining this with Assumption 2, this result can be extended into the
objective itself.

14

Under review as a conference paper at ICLR 2021

Following appendix A of Allen-Zhu et al. (2019), we need to define the loss vectors for our model.
These are originally defined as lossi = yi � y⇤i (yi and y⇤i are respectively the output and label
corresponding to an input xi from the dataset) for the `2 loss. More generally, for a network output
zi, they are defined as

lossi = rz`(zi).

Following the unsupervised training protocol, samples are fed into the network three at a time x, x+

and x�. Let us denote ✓ the parameters of the network f , for a triplet (xi, x
+
i , x

�
i), the trick is to

write:
@

@✓
`(zi) =

@z

@✓

@

@z
`(zi)

| {z }
loss

with zi the concatenation of f(xi), f(x
+
i), f(x

�
i).

By denoting (x1, x2, x3) = (xi, x
+
i , x

�
i), the previous writing is equivalent to
3X

j=1

@f(xj)

@✓
AT

j
@

@z
`(zi)

and by letting lossi,j = AT
j

@
@z `(zi), we obtain a triplet of loss vectors for each data triple (matrices

Aj defined in the previous proof).

Lemma B.1. Grant Assumption 1 and let bLun(f) be the loss incurred by f :

bLun(f) =
nX

i=1

`(f(xi), f(x
+
i), f(x

�
i))

and let ✏ > 0 be the desired precision. Then, assuming m � ⌦
�
poly(n, L, ��1) · d✏�1

�
, the

gradient descent with learning rate ⌫ = ⇥
⇣

d�
poly(n,L)·m

⌘
finds parameters such that

krbLun(f)k ✏

after a number of steps T = O
⇣

poly(n,L)
�2✏2

⌘
.

Proof. This result follows from Allen-Zhu et al. (2019) (see Theorem 6 and appendix A). It corre-
sponds to the case of a non-convex bounded loss function. We only need to check the used loss func-
tion ` is bounded and gradient-Lipschitz smooth. The latter condition is verified due to Lemma 4.1
and Assumption 2.

As for the boundedness, it is also a consequence of Assumption 2 and the fact that the softplus
function satisfies

⇣(x) ⇠x!+1 x and lim
x!�1

⇣(x) = 0.

From here, we can derive a result for the objective itself (Theorem 1) thanks to the following Lemma.
Lemma 4.2. Grant Assumption 2 and assume that the parameters of the encoder f are optimized so
that krbLun(f)k ✏ with ✏ < ⌘/2, where ⌘ is defined in Assumption 2. Then, for any i = 1, . . . , n,
we have `(zi)  2✏/⌘ where zi = (f(xi), f(x

+
i), f(x

�
i)).

Proof. Since we assume krbLun(f)k ✏, this also implies that maxi,j klossi,jk  ✏ (see Theorem
3 of Allen-Zhu et al. (2019) and its variant in appendix A).

We can write the norms klossi,jk as:

klossi,1k = k(v1 � 1)zi,2 + v2zi,3k
klossi,2k = |v1 � 1| kzi,1k
klossi,3k = v2 kzi,1k

15

Under review as a conference paper at ICLR 2021

where we defined v = softmax(zT1 z2, z
T
1 z3).

Thanks to Assumption 2, we can argue that kzi,jk � ⌘. These quantities can be small for v1 ! 1
and v2 ! 0. Since we have maxi,j klossi,jk  ✏, this implies in particular that for all i we get
klossi,3k  ✏ which means v2  ✏/⌘, and we have v2 = �(zT1 (z3 � z2)). So for an instance i 2 [n]
the loss term in the objective is:

⇣(zTi,1(zi,3 � zi,2)) = log(1 + exp(zTi,1(zi,3 � zi,2)))

= � log(�(�zTi,1(zi,3 � zi,2)))

= � log(1� �(zTi,1(zi,3 � zi,2)))

= � log(1� v2) 
v2

1� v2
 2v2  2✏/⌘,

where we used the inequality � log(1 � x)  x
1�x for 0  x < 1, and the assumption that ✏ <

⌘/2.

Lemma 4.2 allows us to deduce that the objective is well optimized (we treated the loss term for
a single triplet here but the same methods can be applied to the whole objective with a number of
gradient steps which is still polynomial).

Proof of Theorem 1. Theorem 1 is the consequence of combining Lemma B.1 applied using ✏⌘
2n

instead of ✏ and Lemma 4.2 (the 1/n factor can be absorbed by the poly(n, L) factors in the bounds
of Lemma B.1).

16

