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ABSTRACT

Machine learning is increasingly used to select which individuals receive limited-
resource interventions in domains such as human services, education, develop-
ment, and more. However, it is often not apparent what the right quantity is for
models to predict. Policymakers rarely have access to data from a randomized
controlled trial (RCT) that would enable accurate estimates of which individuals
would benefit more from the intervention, while observational data creates a sub-
stantial risk of bias in treatment effect estimates. Practitioners instead commonly
use a technique termed “risk-based targeting” where the model is just used to pre-
dict each individual’s status quo outcome (an easier, non-causal task). Those with
higher predicted risk are offered treatment. There is currently almost no empirical
evidence to inform which choices lead to the most effective machine learning-
informed targeting strategies in social domains. In this work, we use data from 5
real-world RCTs in a variety of domains to empirically assess such choices. We
find that when treatment effects can be estimated with high accuracy (which we
simulate by allowing the model to partially observe outcomes in advance), treat-
ment effect based targeting substantially outperforms risk-based targeting, even
when treatment effect estimates are biased. Moreover, these results hold even
when the policymaker has strong normative preferences for assisting higher-risk
individuals. However, the features and data actually available in most RCTs we
examine do not suffice for accurate estimates of heterogeneous treatment effects.
Our results suggest treatment effect targeting has significant potential benefits,
but realizing these benefits requires improvements to data collection and model
training beyond what is currently common in practice.

1 INTRODUCTION

Policymakers often face the difficulty of allocating a resource-limited intervention with the goal of
targeting the intervention towards those who will benefit most from it. Indeed, the causal inference
literature documents that any given treatment may not have the same effect on every individual that
receives it (Wager & Athey, 2018; Künzel et al., 2019; Varadhan & Seeger, 2013). When there are
observable features that correlated with greater benefit from the treatment, such variation can be
used for targeting. Heterogeneity of treatment effect (HTE) refers to this nonrandom, explainable
variability in the direction and magnitude of treatment effects for individuals within a population.
Given this variability, policymakers often face the problem of selecting who to treat when having to
assign a particular treatment to a group of people under a fixed budget. Machine learning methods
seem to offer the promise of discovering richer forms of heterogeneity, allowing more effective
targeting of interventions in practice.

The main challenge is that heterogeneous treatment effects are difficult to learn: doing so requires a
potentially large amount of data that is unconfounded, i.e., where treatment is assigned in a manner
(conditionally) independent of each individual’s outcomes. Conducting a randomized controlled
trial (RCT) to achieve this is often infeasible due to time constraints, resource limitations, and ethical
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concerns. Policymakers may prefer to prioritize access to treatment via an already-available proxy
metric that is believed to align with need if experimenting to gather additional evidence would be
seen as unethical.

One particularly common proxy is to target according to the baseline risk each individual faces, i.e.,
their expected outcome in the absence of treatment (as opposed to the treatment effect, which is
the difference in outcomes induced by treatment). This strategy has been referred to as risk-based
targeting (Wilder & Welle, 2024). Individuals with poor predicted baseline outcomes may be seen
as needing assistance the most. Policymakers may also believe that these individuals also stand the
most to benefit since their status-quo prognosis is the worst. Importantly, baseline risks can often
be learned using existing administrative data (from before a treatment was introduced) instead of re-
quiring a new experiment, making this strategy easily implementable in many practical settings. For
all of these reasons, risk-based targeting has seen widespread use by policymakers in a wide range of
domains, including targeting humanitarian assistance (Aiken et al., 2021), allocating homelessness
services via vulnerability scores (Shinn & Richard, 2022), and the use of ”early warning systems”
in education (Perdomo et al., 2023).

Despite this widespread usage, there is only a limited amount of work which empirically assesses
the effectiveness of risk-based targeting: do individuals with the greatest baseline risk actually tend
to benefit the most from intervention? Existing studies speak only to a single specific applica-
tion domain each, for instance, targeting students for sending reminders for financial aid applica-
tions (Athey et al., 2024), preventing customer churn (Ascarza, 2018), or targeting cash transfers
(Haushofer et al., 2022). (Kube et al., 2022) examines this from a human perspective by empiri-
cally eliciting decision-maker preferences for whether to prioritize more vulnerable households or
households who would best take advantage of more intensive interventions when determining which
homeless households to serve with limited housing assistance. (Ascarza, 2018) encourages practi-
tioners to use RCTs to better inform their decision, however, as discussed above, running a RCT
may be infeasible in many settings. The alternative more likely to be available to practitioners is to
simply estimate treatment effects using observational data which likely suffers from confounding,
potentially leading to biased estimates of treatment effects.

How should practitioners navigate this tradeoff between a more easily-learnable label that may not
always correlate with benefit from an intervention (baseline risk) and a difficult-to-learn quantity
(heterogeneous treatment effects) that captures the impact of the intervention? This corresponds to
the choice of the appropriate target for prediction, as opposed to the specific model used to make the
prediction. The choice of outcome variable has been observed to exert a disproportionate influence
on the impacts of machine learning systems in many settings (Obermeyer et al., 2019; Coster, 2013;
Gerdon et al., 2022). In the setting of targeting interventions for causal impact, practitioners have
little empirically-grounded guidance. Our goal in this work is to inform the selection of an objective
function for machine-learning based targeting of scarce interventions. We make three contributions
towards this goal:

First, we assess the efficacy of risk-based targeting on a wider variety of real RCT datasets encom-
passing settings in economics, healthcare and education in contrast to prior studies that generally
focus on one dataset. We find a generally noisy and variable relationship between baseline risk and
treatment effects: high-risk individuals seem to benefit more on average in most domains, but with
substantial variance in treatment effects which is not explained by baseline risk. When treatment
effects can be estimated reliably (which we simulate by allowing the model to partially observe
outcomes in advance), targeting based on these estimates produces substantially better results com-
pared to risk-based targeting. However, in practice, treatment effects must be predicted from features
alone, and limited data can make it difficult to learn accurate mappings from features to treatment
effects, potentially degrading the performance of treatment effect based targeting.

Second, we compare risk-based targeting to targeting policies based on biased estimates of treat-
ment effect obtained from confounded data. Such biased estimates are likely when conducting a
full-fledged RCT is infeasible and policymakers have to rely on available observational data alone.
Accordingly, potentially-biased causal estimates represent the likely alternative to risk-based target-
ing in many domains of practical interest. To our knowledge, these two strategies have not been
explicitly compared. We find that across even relatively severe levels of confounding, a utilitarian
policymaker often prefers targeting according to biased estimates of the treatment effect rather than
baseline risk when treatment effects can be estimated reliably at no confounding.
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Finally, we analyze the setting where a policymaker has inequality-averse preferences: oftentimes,
policymakers may prefer interventions which benefit those who are worse-off to begin with even
if they produce less aggregate impact. Such normative goals are one possible justification for risk-
based targeting, even if risk-based targeting is less attractive in standard utilitarian terms. We com-
pare the two targeting strategies under popular classes of social welfare functions which capture
inequality-averse preferences. We find that when treatment effects can be estimated reliably, treat-
ment effect based targeting is typically favorable to risk-based targeting, even in scenarios where
policy makers are inequality-averse and the only available data is confounded to some degree.

All together, our results suggest that the barrier to targeting on treatment effects is more likely to lie
in the collection of large and rich enough datasets to support accurate prediction of outcomes, while
confounding or inequality-averse preferences have more limited impact. This implies that large-
scale administrative datasets may be a more attractive avenue for policy learning than previously
thought, even if they lack the guaranteed validity of a randomized controlled trial.

Related Work: Measuring heterogeneity in treatment effect and choosing which subpopulations to
assign a treatment to has long been an active avenue of research in causal inference literature with
a variety of methods proposed to solve this problem. (Green & Kern, 2012; Hill, 2011; Hill & Su,
2013; Foster et al., 2011; Wager & Athey, 2018) use forest-based algorithms to identify groups that
show heterogeneity in treatment effect with other identified groups. (Tian et al., 2014) proposed to
measure the interaction between treatment and covariates by numerically binarizing the treatment
and including the products of this variable with each covariate in a regression model. (Künzel et al.,
2019) uses meta-learners that decompose estimating the CATE into several sub-regression problems
that can be solved with any regression or supervised learning method. The problem of choosing who
to treat is closely related to identifying the heterogeneity in treatment effects. This often involves
balancing policies based solely on estimates of conditional average treatment effect (CATE) with ad-
ditional prioritization rules set by the policymaker. (Yadlowsky et al., 2021) proposes rank-weighted
average treatment effect metrics for testing the quality of treatment prioritization rules, providing an
example involving optimal targeting of aspirin to stroke patients. Meanwhile, (Gupta et al., 2020)
provides a theoretical analysis of risk-based targeting strategies, establishing performance bounds
for scoring rules when treatments are benign.

2 PRELIMINARIES

Consider a setting where there is a population of individuals who are candidates for a treatment or
intervention. Each individual has a feature vector X ∈ Rd. Here we are concerned with binary
treatments. Following Neyman and Ruben’s (Splawa-Neyman et al., 1990; Rubin, 1974) potential
outcomes framework, we use Y (1) to denote the outcome that an individual would experience under
treatment and Y (0) to denote the outcome they would experience if not treated. Their individual
treatment effect is Y (1) − Y (0). We assume that (X,Y (0), Y (1)) are drawn i.i.d. for each individual
from some joint distribution. In order to identify individuals who are likely to benefit, a common
strategy is to use individuals’ observed covariates to predict the expected treatment effect. The
conditional average treatment effect (CATE) is defined as:

τ(x) = E
[
Y (1) − Y (0)

∣∣∣X = x
]
. (1)

Estimating the CATE in order to target based on treatment effects is a difficult statistical problem.
Suppose we have access to data corresponding to n people, labeled i = 1, ..., n, consisting of fea-
tures Xi, a treatment assignment Wi ∈ {0, 1}, and the observed outcome Yi = Y

(Wi)
i . Importantly,

for each individual, we can observe only the outcome corresponding to the treatment they were
actually assigned. Accordingly, identifying treatment effects typically requires a a no-unobserved-
confounders assumption (Rosenbaum & Rubin, 1983): {Y (0), Y (1)} ⊥⊥ W | X . This assumption
is most credible in the context of a randomized controlled trial (RCT). In an RCT, the assignment
of treatment, represented by Wi, is assigned independently of the potential outcomes Yi (potentially
after stratification on covariates Xi). When data is purely observational, practitioners typically try
to select a sufficiently rich set of covariates X such that all potential confounders between outcomes
and treatment assignment are measured. However, ensuring that all confounders are completely
captured is notoriously difficult in practice, creating the likelihood that some bias in the estimated
CATE remains (LaLonde, 1986; Pearl, 2009; Skelly et al., 2012; Milli et al., 2022).
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As an alternative to targeting on treatment effects, policymakers often decide to treat people who are
more vulnerable or worse-off at present, without attempting to quantify the benefit these individuals
receive from treatment. This is quantified via a ’baseline risk’; we refer to the resulting allocation
strategy as ’risk-based targeting’(Wilder & Welle, 2024). Baseline risk may sometimes be directly
measured quantity (one of the covariates in X , for example baseline test scores in an educational
context). In many settings though, it is estimated using a predictive model that uses the covariates as
input. Let b be a function that maps a set of covariates to a baseline risk measurement such that b(X)
represents the baseline risk and b(Xi) denotes the baseline risk associated with i. Then this method
involves selecting individuals with the highest values of b for treatment, implying that these individ-
uals have the highest ’risk’ associated with them, which needs immediate resolution. It is important
to note that this strategy requires only data on baseline outcomes prior to program implementation,
with no information about the treatment’s effect being incorporated in the policymaker’s decision.

3 METHODS

We compare risk-based and treatment effect-based targeting strategies using real-world RCTs, which
allow credible estimation of heterogeneous treatment effects because of the assumption of no un-
measured confounding. We simulate these targeting strategies under varying degrees of confounding
and under different social welfare functions for policymakers, evaluating their effectiveness against
randomization-enabled treatment effect estimates. We now detail the methodology used in each step
of this process, starting with the datasets used.

3.1 DATASETS

We conduct experiments on a variety of RCTs across different domains as detailed below:

Targeting the Ultra Poor (TUP) in India ((Banerjee et al., 2021)): This RCT was conducted
to study the long-term effects of providing large one-time capital grants to low income-families
and observing how family income and overall consumption changed over a period of 7 years. We
consider a family’s total expenditure as the outcome, which is positively affected by treatment.

NSW (National Supported Work demonstration) Dataset ((Dehejia & Wahba, 1999; 2002;
LaLonde, 1986): This study estimated the impact of the National Supported Work Demonstration, a
job training program, on beneficiaries’ income in 1978. We consider an individual’s income in 1978
as the outcome, which is positively affected by treatment.

Postoperative Pain Dataset: Patients undergoing operations like tracheal intubations often experi-
ence throat pain following treatment (Mchardy & Chung, 1999). This RCT was conducted to test
the efficacy of a licorice solution at reducing postoperative sore throat. The outcome we focus on is
a patient’s throat pain 4 hours after surgery. Here, the effect of the treatment is to reduce the amount
of throat pain, hence the treatment effect is negative. In order to maintain consistency with other
plots, we present results with the sign for treatment effect reversed.

Acupuncture Dataset: (Vickers et al., 2004) This RCT aimed to determine the effect of acupuncture
therapy on headache severity in patients with chronic headaches. Our outcome variable is headache
severity 1 year post-randomization. Here again, the effect of the treatment is to reduce the severity
of headaches, hence the treatment effect is negative. In order to maintain consistency with other
plots, we present results with the sign for treatment effect reversed.

Tennessee’s Student Teacher Achievement Ratio (STAR) project (Achilles et al., 2008): This
four-year study by the Tennessee State Department of Education examined class size effects on stu-
dent performance. The design compared: 1) Small classes (13-17 students per teacher), 2) Regular
classes (22-25 students), and 3) Regular classes with a teacher’s aide. We focus only on the first two
configurations to maintain binary treatment consistency with other RCTs. Our outcome measure is
kindergarten students’ cumulative test scores.

For each of these datasets, we estimate E[Y (0)|X] using a machine learning model applied to the
RCT’s control group and set b(X) = E[Y (0)|X] or b(X) = −E[Y (0)|X] as appropriate so that
larger values of b indicate worse outcomes. Additional details are included in Appendix A.
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3.2 ESTIMATING HETEROGENEOUS TREATMENT EFFECTS

We estimate heterogeneous treatment effects on each dataset using a doubly-robust estimator
(Kennedy, 2023a). The DR estimator splits the data into separate folds. For each fold, we esti-
mate models for both the expected outcome and the treatment variable (estimating the latter even
when the propensity scores are known can increase statistical efficiency Hirano et al. (2000)). Let
µ̂(X,A) be the estimated mean outcome for an individual with covariates X and treatment assign-
ment A, and π̂(X) be the estimated propensity score. For each individual in the held-out data for
the fold, we estimate their pseudo-outcomes, defined as

χi(A) = µ̂(Xi, A) +
1[Wi = A](Yi − µ̂(Xi, A))

Aπ̂(Xi) + (1−A)(1− π̂(Xi))
.

If at least one of µ̂ or π̂ is correctly specified, χi(A) has expectation (over the random treatment
assignment) equal to Y

(A)
i , which allows us to use it as a proxy for the unobserved outcomes in

evaluating counterfactual evaluation policies.

3.3 EXPLORING TREATMENT EFFECT HETEROGENEITY

Our first analysis tests one potential rationale for risk-based targeting strategies: the hypothesis that
individuals with greater baseline risk will also tend to have greater treatment effects. We frame
this as estimating E[Y (1) − Y (0)|b(X)], a conditional average treatment effect just with respect
to value of the risk score b. We follow the doubly-robust approach to estimating CATEs, where
the pseudo-outcome difference χi(1) − χi(0) is regressed on the covariates of interest (Kennedy,
2023a). Because our covariate of interest, b, is one-dimensional, we use a kernel regression method
to estimate the CATE as a generic smooth function (see Appendix A.3).

In later analyses, we compare the welfare gains of potential targeting policies. Here, we also use
a doubly-robust estimator. Consider a hypothetical policy that assigns treatments A(X) ∈ {0, 1}
as a function of individuals’ features X . The mean outcome under policy A, E[Y (A(X))], can be
decomposed as

E[Y (A(X))] = E[Y (0)] + Pr(A(X) = 1)E[Y (1) − Y (0)|A(X) = 1].

The term E[Y (1) − Y (0)|A(X) = 1] represents the treatment effect on the treated population and
captures how much the policy improves over no treatment. For policies with the same budget
(equal Pr(A(X) = 1)), only this term varies and so we assess allocation policies by their ex-
pected treatment-on-the-treated. Following standard doubly-robust estimators for (group) average
treatment effects Kennedy (2023b), we empirically estimate this quantity on a separate test set as

1∑n
j=1 A(Xj)

n∑
j=1

A(Xj)(χj(1)− χj(0)). (2)

3.4 INTRODUCING CONFOUNDING

Our next analysis aims to simulate conditions where we do not have access to perfectly conducted
randomized controlled trials for our problem, in order to compare risk-based targeting to a plausi-
ble alternative in real world settings: targeting according to observational, and potentially biased,
estimates of the CATE.

We introduce varying levels of confounding to the RCTs that we study. We do this by simulat-
ing adverse selection into treatment, where units are more likely to be observed if the estimated
individual-level treatment effects deviate from the mean. Specifically, we generate the biased “ob-
servational” dataset by removing data in a systematic manner. This process, inspired by (Kallus
& Zhou, 2021), is controlled by a parameter k giving the fraction of data removed, with higher k
corresponding to more biased estimates. From the treated units, we remove the examples that lie
in the top k% percent when ordered in descending order of (χi(1) − χi(0)) (assuming treatment
effect is positive) while for the untreated units, we remove the examples that lie in the bottom k% of
examples when ordered in descending order of (χi(1)− χi(0)). In simpler terms, for treated units,
we remove examples for which the treatment ’went well’(most positive), while for untreated units,
we remove examples for which the lack of treatment did not go well(least positive).
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3.5 FAMILIES OF WELFARE FUNCTIONS

In order to simulate policymakers with varying preferences for who to treat, we compare risk-based
targeting to treatment-effect based targeting with respect to two paradigmatic classes of social wel-
fare functions. A social welfare function maps a vector of individual utilities u to the policymaker’s
overall utility for the allocation. Both functions we study are commonly used instances of the class of
weighted power mean functions, which contains all social welfare functions satisfying desirable ax-
iomatic properties (Pardeshi et al., 2024). The two functions we investigate here are Weighted Util-
itarian Welfare, given by M(u;w) =

∑d
i=1 wiui and Nash Welfare, given by M(u) =

∏d
i=1 ui.

We consider utilitarian welfare with two sets of weights. First, the uniform weights wi = 1∀i ∈ [n].

Second, wi = n·eαb′(Xi)∑n
j=1 eαb′(Xj)

where α is a hyperparameter and b′(Xi) is represents the percentile

score of the baseline risk for the ith example, with the example with highest baseline risk having
score 1 and the example with lowest baseline risk having score 0. This assigns greater weight
to individuals with high values of baseline risk for high values of α, thereby simulating a scenario
where a policymaker might value treating treating these ”high risk” individuals. α can be interpreted
as 2 log

(
w75

w25

)
where w75 is the weight given to the 75th percentile example by baseline risk and

w25 is the weight given to the 25th percentile example by baseline risk.

The Nash social welfare function has commonly been used to achieve a balance between maxi-
mizing total welfare (utilitarian) and ensuring equitable distribution (egalitarian) Caragiannis et al.
(2019); Charkhgard et al. (2020). We consider unweighted Nash welfare (wi = 1∀i). In order to
avoid the complications of utility when using an unweighted Nash welfare function, we scale up
the estimated utilities for each example to a minimum value of 1. Note that the Nash welfare can
be equivalently formulated in log space Caragiannis et al. (2019) as 1

n

∑n
i=1 log ui. When each

individual’s utility under an allocation policy corresponds to their realized outcome Y
(A(Xi))
i (e.g.,

their income after the interventional period), we compare policies exactly as outlined in Equation 2,
but with Y (A(X)) replaced by log Y (A(X)), estimated by replicating the same procedure after taking
logs of all outcome variables.

4 RESULTS

Figure 1 shows how treatment effect varies as a function of baseline risk for each of the 5 datasets we
study, with 95% confidence intervals shaded around the estimated treatment effects. These intervals
are pointwise Wald-type confidence intervals (Kennedy et al., 2019). The estimated relationship
between baseline risk and treatment effect is variable across domains. In most domains, the point
estimate shows a general upward trend, indicating that individuals at greater risk benefit more (on
average) from treatment. However, in the NSW domain, the point estimate is essentially flat. In
addition, the confidence intervals are wide for all domains and there is very little statistically signifi-
cant significant evidence in favor of high-risk individuals benefiting more. Wide confidence intervals
reflect that there is significant variance in the pseudo-outcomes estimated for different individuals at
the same level of baseline risk. That is, there is a great deal of variance in our estimated treatment ef-
fects that is not explained by baseline risk. However, we do expect that risk-based targeting should,
in most domains, perform better than a random allocation, since the point estimates generally show
larger average effects at higher baseline risk.

Next, Figure 2 shows the the average utility of the three targeting policies – risk-based, treatment
effect-based, and random – on each of the datasets. The x axis on each plot represents the degree of
confounding synthetically introduced, as discussed above. At the k = 0 point (x = 0) on the axis,
no confounding is present, representing the ideal scenario as in an RCT. For risk-based targeting,
we observe a tendency towards improvement over random targeting, but with confidence intervals
overlapping in all domains. For treatment-effect based targeting, we observe at most mixed success.
On the STAR dataset, we see statistically significant evidence that targeting on treatment effects
outperforms risk-based targeting when no confounding is present, with the point estimate trending
downwards and eventually drawing even with risk-based targeting as confounding increases. On
the NSW dataset, we see a similar trend in the point estimates, but with overlapping confidence
intervals. One the remaining datasets, treatment effect targeting has strongly overlapping confidence
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intervals with risk-based targeting and shows effectively a flat trajectory with respect to the degree
of confounding. We conclude that in these settings, either limited data or insufficiently rich features
prevent the model from learning complex treatment effect heterogeneity patterns. On the one hand,
we conclude that practitioners should be wary about whether the kind of data generated by many
RCTs in practice suffices to learn strong predictors of heterogeneous treatment effects. On the other
hand, we find no evidence that the presence of confounding makes matters worse unless there is a
meaningful amount of signal present to start with. Appendix A contains results for alternate welfare
functions, with similar results.

Figure 1: Observing treatment effect heterogeneity across different settings by plotting treatment
effect against baseline risk for each of our 5 datasets. We observe a unique trend for each dataset,
indicating a lack of a consistent well-defined relation between the two quantities

In order to isolate the impact of confounding in a setting where heterogeneous treatment effects
would otherwise be predictable, we now conduct a semi-synthetic analysis that simulates a targeting
model with stronger signal. In particular, we simulate a treatment effect-based targeting policy that
ranks individuals by their pseudo-outcome directly, instead of the predicted pseudo-outcome using
the covariates. This incorporates information on the realized outcome of the individual and so is not
attainable in practice. However, it mimics a setting where the second-stage regression model has
strong performance in the no-confounding setting. Differences between the two settings are detailed
in A.1. The results, shown in Figure 3, demonstrate that when treatment effects can be accurately es-
timated (k = 0, no confounding), targeting based on treatment effects always produces significantly
higher utilitarian welfare. This indicates that when a policymaker seeks only to maximize aggregate
benefit and can credibly estimate treatment effects, the gains from causal targeting are substantial.

As the level of confounding bias in treatment effect targeting increases (increased k), its effec-
tiveness decreases. However, when the policymaker has utilitarian preferences, targeting based on
biased treatment effect estimates still performs at least as well as risk-based targeting (and typi-
cally better) across all datasets, even for relatively severe levels of confounding. This indicates that
using even relatively biased observational data to learn treatment rules is likely superior when the
policymaker’s goal is just to maximize aggregate gain.
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(a) Utilitarian Welfare on the Ul-
tra Poor RCT

(b) Utilitarian Welfare on the
NSW RCT

(c) Utilitarian Welfare on the
Postoperative Pain RCT

(d) Utilitarian Welfare on the
Acupuncture RCT

(e) Utilitarian Welfare on the
STAR RCT

Figure 2: Comparison of risk-based targeting to biased treatment effect-based targeting by plotting
the benefit offered by each policy against the amount of data systematically removed from the RCT
to introduce confounding

The second column of Figure 3 shows an alternative set of preferences, where the policymaker has
a utilitarian welfare function with higher welfare weights on individuals with higher baseline risk
(for these plots, α is 2 log 2, so the ratio of the weight placed on individuals in the 75th percentile
of risk to the 25th percentile is 2). This welfare function decreases the gap between treatment effect
and risk based targeting as individuals with higher risk now have more weight associated with them.
However, targeting on (biased) treatment effects is still preferable to risk-based targeting across all
datasets in Figure 3. Similarly, under the Nash social welfare function (third column of Figure 3),
we observe some differences across our chosen settings but the general trend remains the same: as
we increase confounding (increase the percentage of data we systematically remove), the benefit we
accrue by following a treatment assignment policy based on biased treatment effect values decreases.
At high levels of confounding, risk-based targeting accrues higher utility for a policymakers with a
Nash social welfare function in the Ultra Poor setting in 3. However, across all other datasets, the
policymaker prefers to target based on treatment effects even at high levels of confounding.

This motivates us to ask: how much greater must the policymaker weight high-risk individuals in
order to prefer risk-based targeting? In Table 1 we give the minimum value of α at which risk-
based targeting finally outperformed treatment effect based-targeting at each level of systematic
data removal for the real and synthetic settings we consider respectively. We limit α such that the
ratio of the 75th percentile weight to the 25th percentile weight when sorted in descending order is
less than 100; otherwise, only a few individuals have non-zero weights and estimating welfare gains
becomes impossible. “na” indicates there is no α value (up to our upper bound) at which risk based
targeting outperforms targeting based on treatment effects.

In general, we note that the required α values tend to be lower when we increase k, which follows
directly from the fact that the treatment effect estimates become more biased at higher k. We note
a dichotomous tendency in the results. In some cases, the value of alpha is 0, where risk-based
targeting performs at least as well as treatment-effect based targeting even at k = 0). When α takes
a non-zero value, it is almost always at least 3 (and typically higher), indicating that the policymaker
would need to place approximately 4.5 times more weight on the welfare of an individual at the
75th percentile of baseline risk than an individual at the 25th percentile. We conclude that when
treatment effect-based targeting is effective at all, relatively extreme welfare weights are needed to
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(a) Utilitarian Welfare on the Ul-
tra Poor RCT

(b) Weighted Utilitarian Welfare
on the Ultra Poor RCT

(c) Nash Welfare on the Ultra
Poor RCT

(d) Utilitarian Welfare on the
NSW RCT

(e) Weighted Utilitarian Welfare
on the NSW RCT

(f) Nash Welfare on the NSW
RCT

(g) Utilitarian Welfare on the
Postoperative Pain RCT

(h) Weighted Utilitarian Welfare
on the Postoperative Pain RCT

(i) Nash Welfare on the PostOp-
erative Pain RCT

(j) Utilitarian Welfare on the
Acupuncture RCT

(k) Weighted Utilitarian Welfare
on the Acupuncture RCT

(l) Nash Welfare on the Acupunc-
ture RCT

(m) Utilitarian Welfare on the
STAR RCT

(n) Weighted Utilitarian Welfare
on the STAR RCT

(o) Nash Welfare on the STAR
RCT

Figure 3: Comparison of risk-based targeting to biased treatment effect-based targeting by plotting
the benefit offered by each policy against the amount of data systematically removed from the RCT
to introduce confounding but using observed pseudo-outcome data
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rationalize the adoption of risk-based targeting instead. Table 2 shows the required α values for the
setting when we do not use observed pseudo outcome values for treatment effect estimation.

Table 1: Values of α for different k at which risk-based targeting outperforms treatment effect based
targeting. ’na’ indicates no such α was found (using observed pseudo-outcome data)

Dataset 5% 10% 15% 20% 25% 30% 35% 40%
Ultra Poor na 8.5 5.5 4.5 3.5 2 1 0
NSW na 6.5 8.25 4.5 4.25 3.5 1.5 1
Postoperative Pain na 8 na 6.5 na 5.5 6.5 4
Acupuncture na 7.5 na 6.75 6 3.75 4.5 5.75
STAR na na na na na na na na

Table 2: Values of α for different k at which risk-based targeting outperforms treatment effect based
targeting. ’na’ indicates no such α was found

Dataset 5% 10% 15% 20% 25% 30% 35% 40%
Ultra Poor 0 0 0 0 0 0 0 0
NSW na na na na 0 0 na na
Postoperative Pain 0 0 0 0 0 0 0 0
Acupuncture 3.5 3 na 9 6 7 7 3.5
STAR 5 3 3.5 2 3.5 2 0.5 1.5

Collectively, our results reveal two key insights. First, in many real-world settings, limited data
makes it difficult to learn reliable mappings from features to treatment effects, which can severely
limit the effectiveness of treatment effect based targeting in practice. However, our analysis using
directly observed pseudo outcomes, as well as real-data results in the settings with stronger sig-
nal, both demonstrate that simple reliability of learning heterogeneous treatment effects is the key
bottleneck: if treatment effects could be estimated more reliably (through larger datasets or bet-
ter modeling approaches), then a policy maker is almost always better of using them for targeting,
regardless of both the potential for confounding and inequality-averse preferences.

5 CONCLUSION

This paper presents a systematic comparison between two of the most popular treatment assignment
policies in use by policymakers today: risk-based targeting and treatment effect based targeting. We
find that risk-based targeting tends to produce higher welfare than a uniformly random allocation,
confirming some of the intuition behind its widespread use by practitioners. However, our analy-
sis reveals both important practical limitations and significant potential benefits of treatment effect
based targeting. The key practical challenge is that real-world datasets can contain insufficient data
to learn reliable mappings from features to treatment effects, making it difficult to accurately predict
who will benefit most from treatment. This limitation helps explain why risk-based targeting, which
requires learning simpler relationships, remains popular in practice.

At the same time, our analysis which simulates a higher-accuracy treatment effect estimator shows
the substantial potential benefits of treatment effect based targeting if these estimation challenges
could be overcome. Even when accounting for confounding in treatment effect estimates and egal-
itarian preferences for assisting high-risk individuals, treatment effect based targeting consistently
produces better outcomes unless policymakers have extremely strong preferences for helping higher-
risk individuals regardless of benefit. One limitation is that our investigation assumes an essentially
consequentialist perspective, where the policymaker’s goal is to improve individuals’ welfare as de-
fined by their outcome. If policymakers have non-consequentialist preferences, targeting directly on
a measure of vulnerability may be more appropriate.

Looking forward, we nevertheless find that there would be substantial gains to investing in data and
modeling approaches that enabled effective causal targeting (at least with respect to the normative
goals we assess). Our results also suggest that enabling strong outcome prediction is worth accepting
some risk of bias, potentially arguing in favor of increased use of observational administrative data.
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A APPENDIX

A.1 EXPERIMENT DETAILS

Real Setting:

We divide the RCT data into two splits such that one split is used for training nuisance functions and
the other split is used entirely for evaluation.

Following the DR estimator framework in (Kennedy, 2023a), we divide the first split into two halves
and and train a set of outcome and propensity nuisance functions on each half. We then perform
cross-fitting where the nuisance functions trained on one half are used to estimate pseudo outcomes
for the other half. Finally, we train a random forest regressor strictly between the estimated pseudo
outcome differences and a unit’s features. This random forest model is applied to units in the eval-
uation set to obtain treatment effect estimates for the evaluation set. The ground truth treatment
effects for the evaluation set are obtained by using information about the observed pseudo outcome
and taking the mean of the estimate provided by each set of nuisance functions.

Semi-synthetic Setting:

We divide the RCT into two splits such that we use each split to obtain treatment effect estimates
for the other split and make maximal use of available data. Again, we use the DR estimator from
(Kennedy, 2023a) and use information about the observed pseudo outcome in estimating treatment
effects (both ground truth and subsequent biased treatment effect estimates from confounded data).

A.2 DATASETS

• Targeting the Ultra Poor (TUP) in India ((Banerjee et al., 2021)): This RCT was conducted
to study the long-term effects of providing large one-time capital grants to low income-
families and observing how family income and overall consumption changed over a period
of 7 years. We consider a family’s total expenditure as the outcome, which is positively
affected by treatment. We filter the dataset before use by removing null values and per-
forming feature selection to limit the number of covariates. The dataset consists of 796 ex-
amples post filtering. We quantify baseline risk b(X) as an estimate of baseline expenditure
E[Y (0)|X] from a machine learning model, with low values of E[Y (0)|X] corresponding
to high baseline risk and vice versa. This follows the hypothesis that households with low
expenditure at baseline will benefit most from the treatment.
While constructing a doubly robust estimator to estimate pseudo outcomes for this dataset,
we found the estimated propensity scores to be very high/low for certain examples, which
would consequently scale pseudo outcome estimates to unusually large values. Therefore,
we manually set propensity scores uniformly according to the treated:untreated ratio in the
RCT.

• NSW (National Supported Work demonstration) Dataset ((Dehejia & Wahba, 1999; 2002;
LaLonde, 1986): This is a popular causal inference dataset that was used to estimate the
impact of the National Supported Work Demonstration, a job training program, on ben-
eficiaries’ income in 1978. The covariates include demographic variables like age, race,
marital status and academic background, along with the benficiary’s income in 1975 prior
to the experiment as a baseline. The dataset consists of 722 examples (297 treated and
425 control). Here too, we use an estimate of an individuals baseline income as a measure
of risk, following the hypothesis that low income individuals will benefit more from the
treatment.

• Tennessee’s Student Teacher Achievement Ratio (STAR) project ((Achilles et al., 2008)):
The Tennessee State Department of Education conducted a comprehensive four-year study
called the Student/Teacher Achievement Ratio (STAR) to examine the effects of class size
on student performance. This research, backed by the Tennessee General Assembly, in-
volved 11601 students across 79 schools. The study design included three different class-
room configurations:

– Small classes with 13-17 students per teacher
– Regular classes with 22-25 students per teacher
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– Regular classes with 22-25 students plus a full-time teacher’s aide

To ensure unbiased results, both students and teachers were randomly assigned to these dif-
ferent classroom types. The experiment began when the participants entered kindergarten
and continued through their third-grade year, allowing for a longitudinal analysis of the
impact of class size on educational outcomes. In this paper, we only focus on the first two
types of classes mentioned above, so as to stay consistent with treatment value being binary
in other RCTs. This large-scale research project aimed to provide empirical evidence on
the relationship between class size and student achievement. Again, we filter the dataset
before use by removing null values and performing feature selection to limit the number of
covariates. We focus on students in kindergarten and a cumulative measure of their scores
on various tests as the outcome under consideration. The filtered dataset consists of 3712
students examples. Since we do not have the students’ test scores at baseline, we train a
random forest model on rows corresponding to students who did not receive the treatment
with their test scores at endline being the outcome variable. The prediction offered by this
model for every student is then used as a proxy for their baseline test scores and the nega-
tive of this value is used as baseline risk. This follows the general hypothesis that students
with low test scores need the treatment more.

• Postoperative Pain Dataset: Patients undergoing operations like tracheal intubations often
experience throat pain following treatment(Mchardy & Chung, 1999). This RCT was con-
ducted to test the efficacy of gargling with licorice solution prior to endotracheal intubation
on reducing postoperative sore throat, which is a common side-effect of the procedure.
The investigation involved 236 adult participants scheduled for elective thoracic surgeries
necessitating the use of double-lumen endotracheal tubes. The outcome we focus on is a
patient’s throat pain 4 hours after surgery, measured on a discrete Likert scale from 0 to 7.
Additional covariates include a patient’s gender, BMI, age, Mallampati score, preoperative
pain, surgery size and smoking status. Here, the effect of the treatment is to reduce the
amount of throat pain, hence the treatment effect is negative. In order to maintain consis-
tency with other plots, we present results with the sign for treatment effect reversed. Since
we do not have a measured value for throat pain at baseline, we again train a random for-
est model on rows corresponding to patients who did not receive the treatment with their
throat pain at endline being the outcome variable. The prediction offered by this model for
every patient is then used as a proxy for their baseline throat pain and consequently as the
baseline risk. This follows the intuition that patients with more severe throat pain require
the treatment more than their co-patients.

• Acupuncture Dataset: This RCT aimed to determine the effect of acupuncture therapy on
headache severity in patients with chronic headaches. These measures were assessed at
randomization, 3 months post-randomization, and 1 year post-randomization. We focus on
headache severity 1 year post-randomization. Headache severity is measured on a discrete
Likert scale from 0 to 5. The dataset consists of data from 401 patients with covariates
including patient age, sex, chronicity(number of years of headache severity) and whether
the headaches were diagnosed as migraines or not. Here again, the effect of the treatment
is to reduce the severity of headaches, hence the treatment effect is negative. In order to
maintain consistency with other plots, we present results with the sign for treatment effect
reversed. We estimate headache severity at baseline E(Y (0)|X] using a machine learning
model and use it as a proxy for baseline risk, following the intuition that patients with more
severe headaches need the treatment more.

A.3 KERNEL SMOOTHING

Given the kernel function K(u) = exp(− 1
2u

2), the CATE estimate at b(Xi) is given by:

τ̂(b(Xi)) =

∑n
j=1 K(

b(Xj)−b(Xi)
σi

)τ̂j∑n
j=1 K(

b(Xj)−b(Xi)
σi

)
(3)

where τ̂j is the estimated difference in pseudo outcomes, for unit j, χj(1) − χj(0), as determined
by the doubly robust estimator, and σi is the adaptive bandwidth calculated as:
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σi =
1

2
(b(Xi+100)− b(Xi−99)) (4)

for a window of 200 data points centered at i. The confidence intervals are computed using a
weighted variance estimate:

CI = τ̂(b(Xi))± 1.96

√√√√∑n
j=1 K(

b(Xj)−b(Xi)
σi

)(τ̂j − τ̂(b(Xi)))2

(
∑n

j=1 K(
b(Xj)−b(Xi)

σi
))2

(5)

This approach allows us to capture the heterogeneity in treatment effects across different levels of
baseline risk while accounting for the varying density of data points.

A.4 ADDITIONAL PLOTS

A.4.1 EVALUATING BASED ON WEIGHTED UTILITARIAN WELFARE AND NASH SOCIAL
WELFARE

(a) Weighted Utilitarian Welfare (b) Nash Welfare

Figure 4: Comparing risk-based targeting to biased treatment effect-based targeting on weighted
utilitarian welfare and Nash social welfare for the STAR RCT.

(a) Weighted Utilitarian Welfare (b) Nash Welfare

Figure 5: Comparing risk-based targeting to biased treatment effect-based targeting on weighted
utilitarian welfare and Nash social welfare for the Ultra Poor RCT.
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(a) Weighted Utilitarian Welfare (b) Nash Welfare

Figure 6: Comparing risk-based targeting to biased treatment effect-based targeting on weighted
utilitarian welfare and Nash social welfare for the NSW RCT.

(a) Weighted Utilitarian Welfare (b) Nash Welfare

Figure 7: Comparing risk-based targeting to biased treatment effect-based targeting on weighted
utilitarian welfare and Nash social welfare for the Postoperative Pain RCT.

(a) Weighted Utilitarian Welfare (b) Nash Welfare

Figure 8: Comparing risk-based targeting to biased treatment effect-based targeting on weighted
utilitarian welfare and Nash social welfare for the Acupuncture RCT.
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A.4.2 EVALUATING BASED ON UTILITARIAN WELFARE WITH BUDGET = 30% AND 40% OF
THE POPULATION BUT USING OBSERVED PSEUDO OUTCOME INFORMATION

(a) Budget = 30% (b) Budget = 40%

Figure 9: Comparison of risk-based assignment to biased treatment effect based assignment for the
STAR dataset, with fixed budget of 30% and 40% of the population respectively.

(a) Budget = 30% (b) Budget = 40%

Figure 10: Comparison of risk-based assignment to biased treatment effect based assignment for the
Ultra Poor dataset, with fixed budget of 30% and 40% of the population respectively.
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(a) Budget = 30% (b) Budget = 40%

Figure 11: Comparison of risk-based assignment to biased treatment effect based assignment for the
Postoperative Pain dataset, with fixed budget of 30% and 40% of the population respectively.

(a) Budget = 30% (b) Budget = 40%

Figure 12: Comparison of risk-based assignment to biased treatment effect based assignment for the
Acupuncture dataset, with fixed budget of 30% and 40% of the population respectively.

(a) Budget = 30% (b) Budget = 40%

Figure 13: Comparison of risk-based assignment to biased treatment effect based assignment for the
NSW dataset, with fixed budget of 30% and 40% of the population respectively.
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A.4.3 EVALUATING BASED ON UTILITARIAN WELFARE WITH BUDGET = 30% AND 40% OF
THE POPULATION

(a) Budget = 30% (b) Budget = 40%

Figure 14: Comparison of risk-based assignment to biased treatment effect based assignment for the
STAR dataset, with fixed budget of 30% and 40% of the population respectively.

(a) Budget = 30% (b) Budget = 40%

Figure 15: Comparison of risk-based assignment to biased treatment effect based assignment for the
Ultra Poor dataset, with fixed budget of 30% and 40% of the population respectively.
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(a) Budget = 30% (b) Budget = 40%

Figure 16: Comparison of risk-based assignment to biased treatment effect based assignment for the
Postoperative Pain dataset, with fixed budget of 30% and 40% of the population respectively.

(a) Budget = 30% (b) Budget = 40%

Figure 17: Comparison of risk-based assignment to biased treatment effect based assignment for the
Acupuncture dataset, with fixed budget of 30% and 40% of the population respectively.

(a) Budget = 30% (b) Budget = 40%

Figure 18: Comparison of risk-based assignment to biased treatment effect based assignment for the
NSW dataset, with fixed budget of 30% and 40% of the population respectively.
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