
A Appendix

A.1 Datasets

We tested models on MNIST [1], its temporal, event-driven version, N-MNIST [2], and Fashion-
MNIST [3]. We modified the original 60, 000/10, 000 train/test split to 50, 000/10, 000/10, 000
train/validate/test split, by partitioning away the last 10, 000 training samples to the validation set.
We normalized and rescaled each 28× 28 MNIST and Fashion-MNIST image to 0− 1 range, which
we Poisson encoded into the spiking activity of input neurons. For N-MNIST, we treated all discrete
events the same way and transformed each image into 300× 68× 34 matrix, with the first dimension
being temporal. Using first 250 timesteps, we converted each event at each timestep into a spike in
the corresponding input neuron.

A.2 Neuron Parameters

The LIF neuron parameters we used in all networks are shown in Table S1.

A.3 Liquid Connectivity Parameters

The parameters we used in the distance based connection probability function, (3), depended on the
connection type. Connection types were determined by the pre- and post-synaptic neurons, which
resulted in 4 types of connections:

1. EE: excitatory to excitatory

2. EI: excitatory to inhibitory

3. II: inhibitory to inhibitory

4. IE: inhibitory to excitatory

For each connection type [EE,EI, II, IE], parameter C values were [0.2, 0.1, 0.3, 0.05]. For all
connection types, λ = 3.0.

A.4 Neuron-astrocyte connection weight

The weight of neuron-astrocyte connections, wastro in (7), impacted both liquid dynamics and
NALSM accuracy. Controlling the responsiveness of the LIM astrocyte to liquid neuron activity,
larger wastro resulted in lower branching factor, and vice versa. For both datasets, accuracy peaked
in the vicinity of wastro = 0.01 with slightly super-critical branching factor of ≈ 1.3 for MNIST and
≈ 1.2 for N-MNIST (Fig. S1).

A.5 LSM+AP-STDP model

We implemented AP-STDP from [4] on top of LSM+STDP model by making STDP weight changes
conditionally dependent on neuronal activity. Specifically, we implemented rule (4) from [4], with
p = 1.0. The spiking rate of each neuron i, Ci, was approximated using (3) from [4], with τC = 1000
ms. Parameters Cθ and ∆C set the neuronal activity range in which STDP changes were enforced.
We hand-tuned parameters Cθ and ∆C for each specific network and dataset to maximize the
validation accuracy of LSM+AP-STDP model. We used the same initialization process as was used
for LSM+STDP model, with two exceptions 1) weights were set to 1.0 prior to initialization, and 2)

Table S1: LIF neuron parameters

Parameter name Description Value

θ membrane potential threshold 20.0
τv membrane potential time constant 64.0
τu synaptic conductance time constant 1.0
b membrane potential bias 0.0
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Figure S1: Neuron-astrocyte connection weight impacts liquid dynamics and NALSM accuracy.
( Top ) NALSM accuracy shown with respect to neuron-astrocyte connection weight for MNIST and
N-MNIST. ( Bottom ) NALSM liquid dynamics shown as a function of neuron-astrocyte connection
weight for MNIST and N-MNIST. Data points are averaged over 10 random networks. Error bars are
standard deviation.

STDP synaptic weight changes were conditioned on neuron activity ranges using Cθ and ∆C. As
with LSM+STDP model, the liquid’s weights were fixed during spike generation phase.

A.6 Evidence for edge-of-chaos dynamics in NALSM

Here, we provide evidence suggesting that NALSM’s slightly super-critical branching dynamics
(Fig. 2) corresponded to the edge-of-chaos. First, NALSM exhibited coexistence of small and
large synaptic weights, which is necessary for chaotic activity in spiking networks [5]. NALSM
had concentrations of near-maximum excitatory weights and near-zero weights, with weights also
covering the full range in between these extremes. Inhibitory weights exhibit the same kind of
bimodal distribution (Fig. S2).

Second, NALSM exhibited excitation/inhibition (E/I) balance, which is thought to be necessary for
existence of deterministic chaos [6, 7]. We used three different methods to evaluate E/I balance. First,
we confirmed synaptic weight E/I balance, WE/I , in initialized NALSM liquids, which was found to
align with edge-of-chaos dynamics in [7] and was evaluated as:

WE/I =
nw>0 − nw<0

nw 6=0
(10)

where nw>0, nw<0, and nw 6=0 are total number of IL and LL synaptic weights that are positive,
negative, and non-zero, respectively. Indicative of E/I balance, we obtainedWE/I = −0.0029±0.018
averaged over all NALSM initializations on both MNIST and N-MNIST (WE/I ranges from −1
to 1, with 0 representing perfect E/I balance). Second, we measured the difference in spiking rates
between liquid excitatory and liquid inhibitory neuron populations by evaluating:

fE/I =
|f̂e − f̂i|

f̂l
(11)

where f̂e, f̂i, and f̂l are the average spiking rate of excitatory liquid neurons, inhibitory liquid
neurons, and all liquid neurons, respectively. Averaged over all NALSM network initializations and
both MNIST and N-MNIST datasets, we obtained fE/I = 0.074 ± 0.083, which was indicative
of E/I balance since fE/I ranges from 0 to 1, with 0 representing perfect E/I balance. Finally, we
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Figure S2: Initialized NALSM synaptic weights. Distribution of IL and LL synaptic weights after
NALSM liquid initialization.

measured the net current received by each neuron at each timestep from all active input and liquid
neurons. Averaged over 100 different MNIST input samples, net current received by each neuron was
−0.99±4.91. The near 0 average net current combined with its large standard deviation suggests that
excitatory and inhibitory inputs were balanced and that neurons were primarily driven by network
fluctuations. This is believed to give rise to the irregular activity observed in the brain [8] and has
been associated with deterministic chaos [6] (shown in Fig. 2 A in [6]).

Indeed, NALSM also exhibited spiking activity that was irregular across the network and across time
(Fig. S3). Evidence for chaotic activity was further confirmed by autocorrelation analysis performed
on neuronal spike trains generated during generation of spike counts for output layer training (See
2.2.2). Specifically, spike autocorrelation function, Aspikes(τauto), was computed as:

Aspikes(τauto) =
1

NT

N∑
i=1

T∑
t=1

σi(t+ τauto)σi(t) (12)

where N = 1000 liquid neurons, T = 125 ms is the duration of neuronal spike trains, σi is the
spike train of neuron i. As the branching factor became increasingly greater than 1.0, the decay of
liquid neuron spike autocorrelation functions became broader and increased in magnitude (Fig. S4).
Alternatively, when the branching factor became progressively less than 1.0, decay of liquid neuron
spike autocorrelation functions was narrower and magnitudes were marginally greater than that of
input neuron spike autocorrelation functions. As expected, spike train autocorrelation functions of
input neurons remained flat showing no decay with respect to lag time. This suggested that the
transition from a sub-critical to a super-critical branching factor possibly corresponded to a transition
to chaos in NALSM’s spiking rate dynamics [8, 9].

A.7 NALSM performance with respect to liquid size

NALSM performance increased with the number of neurons in the liquid, saturating at approximately
8, 000 neurons (Fig. S5)

A.8 Number of plastic parameters in NALSM

For NALSM, we counted all IL, LL, and LO connections as either plastic with STDP or trainable
with gradient descent. For NALSM8000, the number of LO connections was constant at 80, 000. The
number of IL, LL connections varied based on the randomly generated liquid. The average number
of total plastic/trainable connections for NALSM8000 trained on MNIST was 1, 199, 406.70 ±
453.47 with a maximum(minimum) of 1, 200, 105(1, 198, 916). For N-MNIST, the average was
3, 033, 045.40 ± 268.70 with a maximum(minimum) of 3, 033, 446(3, 032, 737). The significant
difference in the number of plastic connections used for MNIST and N-MNIST training was due to
the ≈ 3 times larger input layer needed for N-MNIST.
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Figure S3: NALSM network spike activity. For each input sample class, a raster plot shows spike
activity of input (black), liquid inhibitory (green), and liquid excitatory (blue) neurons for a 100 ms
duration.
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Figure S4: Spike autocorrelation versus branching factor dynamics. Spike autocorrelation as a
function of lag time for sub-critical (left), near-critical (middle), and super-critical (right) branching
factor dynamics. Spike autocorrelation was computed using equation (12) on input (gray) and liquid
(blue) neuron spike trains. Data points are averaged over 100 MNIST input samples. Error bars are
standard deviation.

Figure S5: NALSM accuracy increases with liquid size. NALSM accuracy shown with respect to
number of neurons in the liquid. Data points are averaged over 5 random networks. Error bars are
standard deviation.

A.9 Added computational cost of the LIM astrocyte model

Our proposed method adds a negligible computational cost to the LSM. Specifically, we used a
single astrocyte unit with the same functional form as the LIF neuron, making it 0.01% of all the LIF
neurons used in NALSM8000 (we used a total of 8, 784 input and liquid neurons for MNIST). In terms
of connections, we used 8, 784 neuron-astrocyte connections, which was 0.78% of the number of
neuron-neuron connections (we used 1, 119, 407 input-liquid and liquid-liquid connections). Further,
we showed in Fig. 4 that even with 90% of neuron-astrocyte connections removed, NALSM still
maintains a performance advantage versus LSM+AP-STDP and LSM models; in which case only
878 neuron-astrocyte connections are used or 0.078% of neuron-neuron connections. Finally, fixed
neuron-astrocyte connections are computationally less expensive than the plastic neuron-neuron
connections, since the ms-precision STDP mechanism (Eqs. 4, 5, 6) adds extra computations on top
of each neuronal connection that does not exist in the neuron-astrocyte connections.

A.10 Curve Fitting

We fit 2nd and 3rd degree polynomial functions. All polynomial fit parameters and residual sum
values are shown in Table S2.

A.11 Hardware

We used Tesla K80 GPU to train all models.
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Table S2: Polynomial Curve Fitting Parameters

Figure/Plot Degree Coefficients Residuals Sum

Fig. 1 B 3 (0.1143,−0.7563, 1.7492,−0.0658) 0.00143
Fig. 2 C MNIST 2 (−0.9151, 2.7587,−0.6077) 0.00229
Fig. 2 C N-MNIST 2 (0.3000, 0.6104, 0.0752) 0.00050
Fig. 4 MNIST 3 (0.0187,−0.0344, 0.0209, 0.9561) 0.000000422
Fig. 4 N-MNIST 3 (0.0044,−0.0084, 0.0060, 0.9585) 0.000000477
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(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] We provide
all data (as excel file and appendix) and provide code with instructions to reproduce
results.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Yes, all details are in section 2 or in the the appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]
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(e) Did you discuss whether the data you are using/curating contains personally identifiable
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Board (IRB) approvals, if applicable? [N/A]
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