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1 MORE DETAILS AND DISCUSSIONS
1.1 Additional Dataset Details

In Fig. 1, we showcase some data samples from two distinct dataset
construction pipelines. Pipeline (a) (the upper part of the figure)
is the synthetic datasets construction pipeline, and pipeline (b)
(the bottom) is the real-world datasets construction pipeline. The
synthetic datasets are constructed by simply blending the objects
and background images. Diverse 3D assets are rendered into multi-
view images and are utilized to construct such synthetic data pairs.
However, training our model only with synthetic datasets will
result in inharmonious customization since the synthesized data
is inharmonious and unnatural. On the contrary, the real-world
dataset construction pipeline uses the Zero-1-to-3 to generate an
object with a novel view from a natural image in the real world.
Thus the learning targets are naturally enough for harmonious
customization. With our dataset construction pipelines, we can
train the unified framework in an end-to-end manner and achieve
more harmonious customization.

We perform joint training with both synthetic and real-world
data with sampling ratio 5% : 95%, respectively. Though the abla-
tion experiments in the main paper show that training with only
synthetic data will generate inharmonious results, we still use 5%
synthetic datasets during training due to their superior 3D con-
sistency between the object and the target customized image. By
training with these datasets, the model enhances its comprehension
of the complex 3D geometry of objects.

It is worth mentioning that our datasets use text prompts as
conditions. These text prompts may also contain some description
of the objects, which is some high-level semantic information that
also helps with model performance. In Toss [5], they introduce text
prompts to the task of novel view synthesis (NVS) from just a single
RGB image, which also demonstrates the benefits of the additional
textual description in improving the generation quality.

1.2 More Style Control Details

We further fine-tune the text branch of our CustomNet to enhance
the control over textual style. More specifically, the instruction-
based editing dataset proposed in InstructPix2Pix [1] is utilized to
achieve this goal. This dataset provides paired data in a specific
format: Each pair consists of an original image, a prompt (which
often serves as a style guidance for editing the image), and the corre-
sponding edited image. This format is particularly useful as it allows
us to align the text prompts with the desired image editing results.
The edited images serve as targets during this fine-tuning process,
guiding the model to learn the desired style transformations. As
shown in Figs. 2 3 and 4, this fine-tuning process significantly en-
hances the textual capabilities of our model. As a result, CustomNet
can control the style of the objects in the image, and simultaneously
manage their viewpoints.

Object Image

Target Image

Object Image

Target Image

(b) Data samples from real-world dataset construction pipeline.

Figure 1: Data samples from our constructed synthetic
datasets and real-world datasets. (a) shows data samples from
the synthetic dataset construction pipeline. The synthetic
datasets simply blend the objects and background images. It
can utilize diverse multi-view 3D datasets but result in in-
harmonious results. (b) shows data samples from real-world
dataset construction pipelines. It uses the Zero-1-to-3 to gen-
erate the object’s multi-view conditions, as the target images
come from the real world, which is naturally harmonious.

1.3 Difference between Different Customization
Methods

To achieve image customization with diffusion models, some encoder-
based methods have been developed to achieve efficient zero-shot
customization. Usually, the reference object image is first encoded
into embedding, which is crucial for extracting the visual informa-
tion within the image. Initial attempts, such as Paint-by-Example [7]
and GLIGEN [4], utilized the pretrained CLIP image encoder to ex-
tract single visual embedding. However, this approach often fails
when dealing with input objects that possess complex appearances.
To address this, ELITE [6] introduced multi-layer features of CLIP
for local feature enhancements. Meanwhile, BLIP-Diffusion [3] took
a different approach by first training a Q-former. This Q-former
extracts the image embedding sequence from the object image
through multimodal representation learning. IP-Adapter [8], on the
other hand, opts for a simpler method, projecting the CLIP image
embedding into a sequence of features to train the diffusion model
with an image construction target. While these subsequent methods
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have made strides in improving object identity preservation, they
still fail to keep object identity in customization compared with our
method.

Different from above methods, (1) our CustomNet addresses
identity preservation by concatenating the VAE latent of an ob-
ject with the noisy latent in the channel dimension. This approach
demonstrates a strong capability for identity preservation. (2) Fur-
thermore, we utilize viewpoints as an additional condition to guide
the image toward diverse generations. (3) Moreover, we design
dataset construction pipelines to handle complex real-world im-
ages. Through both quantitative and qualitative experiments, our
CustomNet outperforms other encoder-based method and achieves
harmonious results.

1.4 Classifier-free Guidance Details

We apply classifier-free guidance concerning two conditions: image
(x, R, x1, which is related to object viewpoint and location) and text
(T for textual description). For simplification, we use Cy and Cr to
represent the two conditions respectively. When sampling , we set
two guidance scales (Sy, St) to control their influence respectively
as follows:
ép (21, Cr.Cr) =€ (21,01, 07)
+S1 - (92, Cr, 07) — €9(21,01.07)) (1)
+S7 - (e9(21, C1, Cr) — €9(21,C1, 07))

where 0 is set the * condition to null. The conditional probability
of our model is as follows:
P(z,Cr.Cr) _ P(Cr|Cr,2)P(Crlz)P(2)
P(z|Cr,Cr) = = )
P(Cr,Cr) P(Cr,Cr)
The log probability is s:
log(P(z|Cr, Cr)) =log(P(Cr|C1, 2)) + log(P(Ci2))
+1og(P(z)) - log(P(Cr, Cy))

The derivative of the log probability is the score [2] of the diffusion
model:

V:log(P(z|C1,Cr)) =V.log(P(2))
+ V_log(P(Cylz)) 4)
+ V_log(P(Cr|Cy, 2))

2 MORE QUANTITATIVE AND QUALITATIVE
RESULTS

2.1 Quantitative Comparison to Inpainting
Methods

We further report the metrics, including DINO-I, CLIP-I following
BLIP-Diffusion [3], to conduct a quantitative comparison of various
inpainting methods. As Tab. 1 shows, CustomNet achieves the best
metrics when given a referenced object image and background
image compared with other inpainting methods.

2.2 More Results of CustomNet

We showcase the application of our model to real-world object cus-
tomization tasks. These results, which are presented in Figures 2, 3,
and 4, provide a comprehensive view of the model’s capabilities.
In these figures, a diverse range of objects have been customized
using our model, which demonstrates the model’s ability to handle

Anonymous Authors

Table 1: Quantitative Comparison. We compute DINO-I, CLIP-
I following [3] to compare different inpainting models.

Method | DINO-IT CLIP-IT
Paint-by-Example [7] | 0.5070 0.7234
GLIGEN [4] 0.5242  0.7489
CustomNet (Ours) 0.7603 0.8107

complex real-world scenarios. These results show the potential of
our model for practical customization applications.
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On the moon In the office

On dirt road On the beach

With autumn leaves

On the street With mountrain On the moon

On green grass On the beach With mountrain With autumn leaves

Figure 2: More real-world object customized results of the proposed CustomNet.
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On wooden floor on dirt road

With autumn leaves On dirt road

On the beach

In snow

On the moon On dirt road With city

On the beach

At midnight In snow On the street

Figure 3: More real-world object customized results of the proposed CustomNet.
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