
Chaos 28, 061104 (2018); https://doi.org/10.1063/1.5039508 28, 061104

© 2018 Author(s).

Attractor reconstruction by machine
learning 

Cite as: Chaos 28, 061104 (2018); https://doi.org/10.1063/1.5039508
Submitted: 08 May 2018 . Accepted: 05 June 2018 . Published Online: 22 June 2018

Zhixin Lu , Brian R. Hunt, and Edward Ott

COLLECTIONS

 This paper was selected as an Editor’s Pick

ARTICLES YOU MAY BE INTERESTED IN

Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from
data
Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 121102 (2017); https://
doi.org/10.1063/1.5010300

Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a
knowledge-based model
Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 041101 (2018); https://
doi.org/10.1063/1.5028373

 Reservoir observers: Model-free inference of unmeasured variables in chaotic systems
Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 041102 (2017); https://
doi.org/10.1063/1.4979665

https://images.scitation.org/redirect.spark?MID=176720&plid=1005867&setID=379030&channelID=0&CID=325850&banID=519756366&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=082cb6af4fbc944d85d1de440f689ced95efc013&location=
https://doi.org/10.1063/1.5039508
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=cha
https://doi.org/10.1063/1.5039508
https://aip.scitation.org/author/Lu%2C+Zhixin
http://orcid.org/0000-0001-9067-7821
https://aip.scitation.org/author/Hunt%2C+Brian+R
https://aip.scitation.org/author/Ott%2C+Edward
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=cha
https://doi.org/10.1063/1.5039508
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5039508
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5039508&domain=aip.scitation.org&date_stamp=2018-06-22
https://aip.scitation.org/doi/10.1063/1.5010300
https://aip.scitation.org/doi/10.1063/1.5010300
https://doi.org/10.1063/1.5010300
https://doi.org/10.1063/1.5010300
https://aip.scitation.org/doi/10.1063/1.5028373
https://aip.scitation.org/doi/10.1063/1.5028373
https://doi.org/10.1063/1.5028373
https://doi.org/10.1063/1.5028373
https://aip.scitation.org/doi/10.1063/1.4979665
https://doi.org/10.1063/1.4979665
https://doi.org/10.1063/1.4979665


Attractor reconstruction by machine learning

Zhixin Lu,1,a) Brian R. Hunt,2 and Edward Ott3
1Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
2Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
3Institute for Research in Electronics and Applied Physics, University of Maryland, College Park,
Maryland 20742, USA

(Received 8 May 2018; accepted 5 June 2018; published online 22 June 2018)

A machine-learning approach called “reservoir computing” has been used successfully for short-

term prediction and attractor reconstruction of chaotic dynamical systems from time series data.

We present a theoretical framework that describes conditions under which reservoir computing can

create an empirical model capable of skillful short-term forecasts and accurate long-term ergodic

behavior. We illustrate this theory through numerical experiments. We also argue that the theory

applies to certain other machine learning methods for time series prediction. Published by AIP
Publishing. https://doi.org/10.1063/1.5039508

A long-standing problem is prediction and analysis of

data generated by a chaotic dynamical system whose

equations of motion are unknown. Techniques based on

delay-coordinate embedding have been successful for

sufficiently low-dimensional systems. Recently, machine-

learning approaches such as reservoir computing have

shown promise in treating a larger class of systems. We

develop a theory of how prediction with reservoir com-

puting or related machine-learning methods can “learn”

a chaotic system well enough to reconstruct the long-term

dynamics of its attractor.

I. INTRODUCTION

Reservoir computing1–4 is a machine-learning approach

that has demonstrated success at a variety of tasks, including

time series prediction5–8 and inferring unmeasured variables of

a dynamical system from measured variables.9,10 In this

approach, a “reservoir” is a high-dimensional, non-autonomous

(driven) dynamical system, chosen independently of the task.

A particular task provides an input time series, and the reser-

voir state as a function of time is regarded as a “raw” output

time series, which is post-processed to fit the task. The post-

processing function is determined, typically by linear regres-

sion, from a limited-time “training” data set consisting of the

desired output time series for a given input time series.

Reservoir computing can be performed entirely in soft-

ware, typically with an artificial neural network model, or

with a physical reservoir; examples of the latter include a

bucket of water,11 an electronic circuit with a time delay,12 a

field-programmable gate array (FPGA),13 an optical network

of semiconductor lasers,14 and an optic-electronic phase-delay

system.15 Other machine-learning techniques, including deep

learning,16,17 attempt to optimize internal system parameters

to fit the training data; doing so requires a mathematical

model of the machine-learning system. By contrast, reservoir

computing does not require a model for the reservoir, nor the

ability to alter the reservoir dynamics, because it seeks only to

optimize the parameters of the post-processing function. The

ability to use a physical reservoir as a “black box” allows for

various potential advantages over other machine-learning

techniques, including greatly enhanced speed.

In this article, we consider the task of predicting future

measurements from a deterministic dynamical system,

whose equations of motion are unknown, from limited time

series data. We describe a general framework that includes

the reservoir computing prediction method proposed by

Jaeger and Haas.5 With appropriate modifications, the same

framework applies to other machine-learning methods for

time series prediction [including a long short-term memory

(LSTM) approach18] as we discuss further in Sec. IV. We

assume the vector u(t) of measurements to be a function h of

the finite-dimensional system state s(t)

uðtÞ ¼ hðsðtÞÞ: (1)

For simplicity, we assume that there is no measurement noise

although our discussion below could be modified for the case

that Eq. (1) is an approximation. We do not assume that h is

invertible nor that h or s is known in practice. Training data

consists of a finite time series {u(t)} of measurements. We

predict future values of u(t) by a sequence of three steps,

which we call listening, training, and predicting.

Listening consists of using the training time series as

input to the reservoir, which we model as a discrete time

deterministic process

rðtþ sÞ ¼ f rðtÞ; uðtÞ½ �: (2)

Here, r(t) is the reservoir state, s is a time increment, and we

assume f to be a differentiable function. We emphasize that

in practice, a formula for f need not be known; only its out-

puts are used for training and prediction. For convenience,

we assume that the full reservoir state r(t) can be measured

or computed although our arguments can be modified easily

for the more general case that the reservoir output is a func-

tion of its internal state. We call Eq. (2) the “listening

reservoir.”a)Electronic mail: zhixinlu@seas.upenn.edu.
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Training consists of determining a post-processing func-

tion ŵ that, when applied to the reservoir output r(tþ s),

estimates the next input u(tþ s). (We view ŵ as an approxi-

mation to an “ideal” post-processing function w, to be intro-

duced in Sec. II B.) Thus, the goal of training is to find ŵ

such that ŵðrðtþ sÞÞ � uðtþ sÞ, or equivalently

ŵðrðtÞÞ � uðtÞ; (3)

for t large enough that the listening reservoir (2) has evolved

beyond transient dynamics. We compute ŵ by a fitting pro-

cedure, such as linear regression, on the training time series

{u(t)} and the corresponding time series {r(t)} determined

from the listening reservoir (2).

Predicting then proceeds by modifying the reservoir to

run autonomously with a feedback loop, replacing its input

[u(t) in Eq. (2)] with its post-processed output from the pre-

vious time increment

r̂ðtþ sÞ ¼ f r̂ðtÞ; ŵðr̂ðtÞÞ
h i

: (4)

We call Eq. (4) the “predicting reservoir.” When initialized

(from the listening reservoir state) with r̂ðt0Þ ¼ rðt0Þ, iterat-

ing the predicting reservoir yields a time series fŵðr̂ðt0

þsÞÞ; ŵðr̂ðt0 þ 2sÞÞ;…g of predictions for future measure-

ments fuðt0 þ sÞ; uðt0 þ 2sÞ;…g. (Our notation reflects the

fact that for t > t0, the predicting reservoir state r̂ðtÞ esti-

mates the state r(t) that would result from evolving the lis-

tening reservoir (2) with the future measurements.)

The reservoir prediction method we have described has

been shown to produce successful short-term forecasts for a

variety of dynamical systems.5,7,8 If the system has a chaotic

attractor, then, as for any imperfect model, the prediction

error kŵðr̂ðtÞÞ � uðtÞk cannot remain small for t � t0.

However, in some cases, the long-term time series fŵðr̂ðtÞÞg
continues to behave like the measurements from a typical

trajectory on the attractor, and in this sense the predicting

reservoir (4) approximately reproduces the ergodic proper-

ties of the dynamical system that generated the measure-

ments.8 We refer to this ability, often called attractor

reconstruction, as replication of the “climate.”

In this article, we develop and illustrate a theory of how

reservoir prediction is able to “learn” the dynamics of a sys-

tem well enough to produce both accurate short-term fore-

casts and accurate long-term climate. We make use of the

notion of generalized synchronization,19–22 which in our

context means that the reservoir state r(t) becomes asymptot-

ically a continuous function / of s(t), in the limit that the lis-

tening reservoir (2) is run infinitely long. In Sec. II, we argue

that the following four conditions are sufficient for both

short-term prediction and attractor/climate replication.

1. The listening reservoir (2) achieves generalized synchro-

nization with the process {s(t)}, so that rðtÞ � /ðsðtÞÞ for

a continuous function /, within the time interval covered

by the training time series.

2. The synchronization function / is one-to-one, or at least

carries enough information about its input to recover

u(t)¼ h(s(t)) from /ðsðtÞÞ.

3. Training is successful in finding a function ŵ such that

Eq. (3) holds, or equivalently in view of generalized syn-

chronization, that ŵð/ðsðtÞÞÞ � hðsðtÞÞ.
4. The attractor approached by the listening reservoir is also

stable for the predicting reservoir (4).

Conditions 1–3 enable short-term prediction. Condition

4 ensures that the climate established by generalized syn-

chronization of the listening reservoir is preserved when its

input is replaced by a feedback term to form the predicting

reservoir. One of the main points of Sec. II is to precisely

formulate the stability condition described in condition 4.

We remark that generalized synchronization of the lis-

tening reservoir6,10 is related to the “echo state property,”1,23

which states that an infinite history of inputs fuðt� sÞ; uðt
�2sÞ;…g uniquely determines r(t), subject to the condition

that the trajectory {r(t)} is bounded. Indeed, if {s(t)} is a tra-

jectory of an invertible dynamical system, then the past

inputs are functions of s(t), so the echo state property implies

that if the listening reservoir (2) has run for an infinite period

of time in a bounded domain, then r(t) is a function of s(t)
[though it does not imply that this function is continuous].

We believe that for the reservoir prediction method we

described, it is desirable (though not strictly necessary) to

have the echo state property and generalized synchroniza-

tion. In Sec. II A, we show why both properties hold if the

listening reservoir is uniformly contracting as a function of

r, and that we can quantify the amount of transient time

it takes for the reservoir to achieve the approximation rðtÞ
� /ðsðtÞÞ of condition 1.

Conditions 2 and 3 are significantly more difficult to

ensure a priori. In Sec. II B, we argue why it is plausible that

these conditions can be achieved. In Secs. II C and II D, we

describe the consequences of conditions 1–3 for short-term

prediction and formulate more precisely the stability crite-

rion of condition 4 that determines whether the correct

attractor and climate are approximately reproduced by the

long-term dynamics of the predicting reservoir (4). In Sec.

II E, we describe how a model for the reservoir dynamics

can be used to compute Lyapunov exponents that reflect cli-

mate stability.

In Sec. III, we give examples of short-term state and

long-term climate predictions using the Lorenz equations as

our input system. In addition to a case where the climate is

approximated well, we show a case where the predicted cli-

mate is inaccurate, although the short-term forecast is still

reasonably accurate. We compute the Lyapunov exponents

of the predicting reservoir (4) and show that the transition

from accurate climate to inaccurate climate corresponds to a

Lyapunov exponent crossing zero. When this Lyapunov

exponent is positive but close to zero, the reservoir predic-

tion remains close to the correct climate for a transient

period, and we relate the average duration of this transient to

the value of the Lyapunov exponent.

II. THEORY

We consider the application of the reservoir prediction

method described in the introduction to a time series {u(t)}
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that is a function h of a trajectory {s(t)} of the dynamical

system

sðtþ sÞ ¼ gðsðtÞÞ; (5)

where g is differentiable and invertible, and we assume that

s(t) evolves on a bounded attractor A. In preparation for train-

ing and prior to prediction, the reservoir state r(t) evolves

according to the listening reservoir (2). The system described

by Eqs. (5) and (2), coupled by Eq. (1), is often called a drive-

response, skew-product, or one-way coupled system. The

coupled system dynamics are illustrated by Fig. 1. We next

consider the evolution of the coupled system as t!1.

A. Listening and generalized synchronization

The goal of training can be regarded as finding a post-

processing function ŵ such that ŵðrðtÞÞ is in approximate

identical synchronization20 with uðtÞ ¼ hðsðtÞÞ, when r(t) is

evolved with the listening reservoir (2). The desired relation-

ship uðtÞ � ŵðrðtÞÞ can also be thought of as approximate

generalized synchronization between u(t) [or the underlying

state s(t)] and r(t). The existence of such a relationship

would be implied by stochastic synchronization,19 which in

our context means a one-to-one correspondence between r(t)
and s(t) in the limit t!1. However, in drive-response sys-

tems, the definition of generalized synchronization21,22

requires only that the response state be asymptotically a

function of the drive state: in our case, that there is a continu-

ous function / such that rðtÞ � /ðsðtÞÞ ! 0 as t ! 1. The

existence of such a / is typically easier to establish than its

invertibility. Next, we describe conditions on the reservoir

system f that guarantee generalized synchronization.

Although weaker conditions are possible, we assume

uniform contraction for f, as is often the case in practice. By

uniform contraction, we mean that there is some q < 1 such

that for all r1, r2, and u we have that jfðr1; uÞ � fðr2; uÞj
< qjr1 � r2j. It then follows that two trajectories {r1(t),
u(t)} and {r2(t), u(t)} of (2) with the same input time series

approach each other exponentially: jr1ðtÞ � r2ðtÞj � jr1ð0Þ
�r2ð0Þjqt=s. Thus, for a given input time series {u(t)}, the

reservoir state r(t) is asymptotically independent of its initial

state; this is essentially what Jaeger1 called the “echo state

property.” Furthermore, because g is invertible and A is

bounded, and due to the results of Hirsch, Pugh, and

Shub24,25 (a direct proof is given by Stark26), uniform con-

traction implies generalized synchronization, as defined

above. (In general, the synchronization function / cannot be

determined analytically from f, g, and h.) A weaker form of

generalized synchronization can also be guaranteed26 from

the non-uniform contraction implied by negative conditional

Lyapunov exponents.

We remark that if the listening reservoir (2) is uniformly

contracting, then rðtÞ � /ðsðtÞÞ converges to zero exponen-

tially. If the designer of the reservoir can guarantee a specific

contraction rate q, this determines the convergence rate, so

that the amount of transient time needed to make the approx-

imation rðtÞ � /ðsðtÞÞ accurate can be known in practice.

Generalized synchronization implies that the set of (s, r)

such that s is on its attractor A and r ¼ /ðsÞ is an attractor

for the drive-response system given by Eqs. (5), (1), and (2).

Below we will use the fact that this set is invariant: rðtÞ
¼ /ðsðtÞÞ implies rðtþ sÞ ¼ /ðsðtþ sÞÞ.

B. Training

Recall that training seeks a function ŵ that predicts the

current measurement vector u(t) from the current listening res-

ervoir state r(t) [which is computed from past measurements]

and that when generalized synchronization is achieved, accu-

racy of this prediction is equivalent to ŵð/ðsðtÞÞÞ � hðsðtÞÞ.
For the rest of Sec. II, we assume that there is a function w

defined on /ðAÞ such that wð/ðsÞÞ ¼ hðsÞ for all s in A. This

assumption means that in the asymptotic limit of generalized

synchronization, the listening reservoir state rðtÞ ¼ /ðsðtÞÞ
uniquely determines u(t)¼h(s(t)). The goal of training can

then be described as finding a function ŵ defined on the state

space of the reservoir that approximates w on the set /ðAÞ.
We summarize our notation in Table I.

Although the existence of w is not strictly necessary for

the reservoir to make useful predictions, if no such w exists,

then it seems unlikely that training can successfully achieve

the desired approximation wð/ðsðtÞÞÞ � hðsðtÞÞ, and thus

FIG. 1. Drive-response system dynamics, with the drive state s(t) coupled to

the listening reservoir state r(t) through the measurement vector u(t).

TABLE I. Summary of notation.

Dynamical system to be predicted

s(t) System state

g : sðtÞ ! sðtþ sÞ System evolution

A Attractor for s(t)

Measurements

u(t) Measurement vector

h : sðtÞ ! uðtÞ Measurement function

Reservoir

r(t) Listening reservoir state

f : ½rðtÞ; uðtÞ� ! rðtþ sÞ Listening reservoir evolution

r̂ðtÞ Predicting reservoir state

ûðtÞ ¼ ŵðr̂ðtÞÞ Predicted measurements

f : ½r̂ðtÞ; ûðtÞ� ! r̂ðtþ sÞ Predicting reservoir evolution

Generalized synchronization

/ : s! r for s in A Synchronization function

w : r! u for r in /ðAÞ Ideal post-processing function

ŵ : r̂ðtÞ ! ûðtÞ Actual post-processing function
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unlikely that u(t) can be approximated as a function of the res-

ervoir state during either listening or predicting. The existence

of w is guaranteed if / is one-to-one on A; then w ¼ h � /�1.

Furthermore, if h is one-to-one on A (in other words, the mea-

surements at a given time determine the system state), then /

must be one-to-one on A in order for w to exist. Thus, we pro-

pose that a goal of reservoir design should be to yield a

one-to-one synchronization function / for a variety of input

systems. In practice, having a sufficiently high-dimensional

reservoir may suffice; embedding results27,28 imply that if the

dimension of the reservoir state r is more than twice the

dimension of A, functions from A to the reservoir state space

are typically one-to-one. We note that in practice, the dimen-

sion of r must be much larger than twice the dimension of A
in order to provide a suitable basis for approximating w, in

the sense described below.

Careful consideration of conditions under which training

is successful in determining an accurate approximation ŵ to w

is beyond the scope of our theory. However, we argue that suc-

cess is plausible if the training time series is sufficiently long

that the trajectory {s(t)} well samples its attractor A, if the

dimension of the reservoir state r(t) is sufficiently high, and if

the dynamics of the coordinates of r(t) are sufficiently hetero-

geneous. If, for example, training uses linear regression of

fuðtÞg ¼ fhðsðtÞÞg versus {r(t)}, then since rðtÞ � /ðsðtÞÞ,
the coordinates of the vector-valued function /ðsÞ can be

thought of “basis functions”;6 training seeks a linear combina-

tion ŵ of these basis functions that approximates h(s) on A. A

suitable basis for training (using a linear or nonlinear combina-

tion) is plausible if the listening reservoir yields a sufficiently

large variety of responses to its input.

C. Prediction and attractor reconstruction

After training determines the post-processing function ŵ,

prediction proceeds by initializing r̂ðt0Þ ¼ rðt0Þ and evolving

r̂ðtÞ for t � t0 according to the predicting reservoir (4). The

reservoir state r(t0) is determined by evolving the listening

reservoir (2) for an interval of time preceding t0; this could be

the time interval used for training, or it could be a later time

interval that uses inputs {u(t)} measured after training (we

call this feature “training reusability”29). We assume that the

listening time preceding t0 is sufficiently long to achieve gen-

eralized synchronization, so that r̂ðt0Þ ¼ rðt0Þ � /ðsðt0ÞÞ is

near /ðAÞ. For t � t0, the predicted value of u(t) is

ûðtÞ ¼ ŵðr̂ðtÞÞ: (6)

Figure 2 depicts the dynamics of the predicting reservoir (4).

Consider now the idealized scenario that our approxima-

tions are instead exact relations ŵ ¼ w on /ðAÞ, and r̂ðt0Þ
¼ rðt0Þ ¼ /ðsðt0ÞÞ. Suppose hypothetically that the measure-

ments {u(t)} for t � t0 (these are the values we want to pre-

dict in practice) are available, so that we can evolve both the

listening reservoir (2) depicted in Fig. 1 and the predicting

reservoir (4) depicted in Fig. 2, and compare their outputs.

Then we claim that the two reservoirs agree exactly: r̂ðtÞ
¼ rðtÞ and ûðtÞ ¼ uðtÞ for all t� t0. First notice that ûðt0Þ
¼ ŵðr̂ðt0ÞÞ ¼ wð/ðsðt0ÞÞ ¼ hðsðt0ÞÞ ¼ uðt0Þ. Then r̂ðt0 þ sÞ

¼ f½r̂ðt0Þ; ûðt0Þ� ¼ f½rðt0Þ; uðt0Þ� ¼ rðt0 þ sÞ, and rðt0 þ sÞ
¼ /ðsðt0 þ sÞÞ due to generalized synchronization.

Similarly, ûðt0 þ sÞ then equals uðt0 þ sÞ, so r̂ðt0 þ 2sÞ
¼ rðt0 þ 2sÞ ¼ /ðsðt0 þ 2sÞÞ, etc. This agreement between

the trajectories also shows that /ðAÞ is an invariant set for

the idealized predicting reservoir

rðtþ sÞ ¼ f rðtÞ;wðrðtÞÞ½ �; (7)

and that its dynamics, observed through w, are equivalent to

the dynamics of A observed through h.

Thus, if the time series {u(t)} of measurements has

enough information to reconstruct the attractor A, then we

can regard /ðAÞ and the idealized predicting reservoir (7) as

an exact reconstruction of A and its dynamics. When the

approximation ŵ � w is not exact on /ðAÞ, the actual pre-

dicting reservoir (4) is still initialized near /ðAÞ, but /ðAÞ is

only approximately invariant. The better the approximation,

the more accurate the predictions ûðtÞ � uðtÞ will be, at least

in the short term. However, if the system (5) that generates

the measurements {u(t)} is chaotic, the prediction error

kûðtÞ � uðtÞk will typically grow exponentially as t increases.

Nonetheless, it remains possible that ûðtÞ will maintain

a climate similar to u(t) in the long term. This will happen if

(and practically speaking, only if) the predicting reservoir

trajectory fr̂ðtÞg remains close to /ðAÞ for all time, and its

attractor has a similar climate to that of the idealized predict-

ing reservoir on /ðAÞ. In this sense, climate replication

(attractor reconstruction) relies on both state-space stability

and structural stability of the predicting reservoir near the

idealized reconstructed attractor /ðAÞ.
Structural stability is difficult to ensure rigorously, but

in practice small perturbations of the dynamics near an

attractor tend to yield small perturbations to the climate.

Thus, we argue that climate replication is likely if /ðAÞ,
which according to our assumptions is invariant for the ideal-

ized predicting reservoir, is also attracting, in the sense

described below.

D. Stability and Lyapunov exponents

Recall that generalized synchronization implies that the

set /ðAÞ is attracting for the listening reservoir (2), when

driven by uðtÞ ¼ hðsðtÞÞ where s(t) evolves on A. Whether

/ðAÞ is attracting for the predicting reservoir is complicated

by the fact that it is invariant only in the idealized case ŵ

¼ w and that w is defined only on /ðAÞ, so that the idealized

predicting reservoir (7) is also defined only on /ðAÞ. For its

stability to be well-defined, the domain of w must be

FIG. 2. Predicting reservoir dynamics, with the listening reservoir input u(t)
replaced by the estimate ûðtÞ determined from the predicting reservoir state

r̂ðtÞ.
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extended to a neighborhood of /ðAÞ, and whether /ðAÞ is

attracting depends on how the extension is chosen.

Thus, the suitability of the empirically determined func-

tion ŵ for climate prediction depends not only on how well

it approximates w on /ðAÞ but also on how it behaves near

/ðAÞ. For a particular ŵ, we consider hypothetically a partic-

ular extension of w such that ŵ � w near /ðAÞ. This exten-

sion gives the idealized predicting reservoir a full set of

Lyapunov exponents on /ðAÞ, some of which correspond to

infinitesimal perturbations tangent to /ðAÞ and some of

which correspond to infinitesimal perturbations transverse to

/ðAÞ. Then /ðAÞ is attracting if the transverse Lyapunov

exponents are all negative, and is unstable if there is a posi-

tive transverse Lyapunov exponent.

If the generalized synchronization function / is one-to-

one and differentiable, then the tangential Lyapunov expo-

nents of the system (5) on A are reproduced as the tangen-

tial Lyapunov exponents of the idealized predicting

reservoir on /ðAÞ. Generalized synchronization does not

always yield a differentiable /,26,30 but even when differen-

tiability cannot be guaranteed, it is possible in practice to

reproduce much of the Lyapunov spectrum of A, including

negative Lyapunov exponents in some cases, with a predict-

ing reservoir.8

We remark that unlike the conditional Lyapunov expo-

nents for a drive-response system (such as the listening reser-

voir), which correspond to perturbations of the response system

state, for the predicting reservoir it is not clear in advance

which perturbations correspond to transverse Lyapunov expo-

nents. However, in a numerical experiment where the equations

for the driving system (5) and the reservoir are known, the exis-

tence or absence of a positive transverse Lyapunov exponent

can be inferred by computing all of the positive Lyapunov

exponents of the predicting reservoir and eliminating those that

are Lyapunov exponents of A.

E. Computation of Lyapunov exponents

We now describe how to estimate the Lyapunov expo-

nents of the idealized predicting reservoir (7) on /ðAÞ, for a

particular extension of w to a neighborhood of /ðAÞ, from its

empirical approximation ŵ. To do so, we assume that we

have a formula for f, so that we can compute its Jacobian

matrix. (We emphasize that we estimate the Lyapunov expo-

nents in order to corroborate the theory we have presented;

their computation, and a formula for f, are not needed for the

reservoir prediction method we have described.) If climate

replication is successful, we can simply generate a long tra-

jectory of the predicting reservoir (4) and use it to compute

the Lyapunov exponents of the trajectory.8 However, this tra-

jectory cannot be expected to remain close to /ðAÞ if the set

is unstable. Nonetheless, if we have a sufficiently long time

time series {u(t)} of measurements, we can estimate the

Lyapunov exponents of /ðAÞ, whether or not it is stable, as

follows.

First, we use the time series {u(t)} to generate a trajec-

tory {r(t)} of the listening reservoir (2); as we have argued,

r(t) will approach /ðAÞ under the conditions for generalized

synchronization. Then along this trajectory, which is an

approximate trajectory for the predicting reservoir, we com-

pute Lyapunov exponents using the Jacobian matrix of the

predicting reservoir (4).

III. NUMERICAL EXPERIMENTS

In this section, we give examples of short-term state and

long-term climate predictions for the Lorenz system,31 with

standard parameter values that yield chaotic trajectories

dx=dt ¼ 10ðy� xÞ;
dy=dt ¼ xð28� zÞ � y;

dz=dt ¼ xy� 8z=3:

(8)

We consider the case where the measurement function h is

the identity, so that uðtÞ ¼ sðtÞ ¼ ½xðtÞ; yðtÞ; zðtÞ�T . For the

reservoir, we use an artificial neural network similar to the

one used by Jaeger and Haas;5 our listening reservoir [a

continuous-time version of Eq. (2)] evolves according to

d

dt
rðtÞ ¼ c �rðtÞ þ tanhðMrðtÞ þ rWinuðtÞÞ½ �; (9)

where r is an N-dimensional vector, c is a scalar, and M is

an adjacency matrix representing internal network connec-

tions. The matrix rWin consists of “input weights”; in our

numerical results, we will fix Win and vary the scalar input

strength r. The vector function tanh is computed by applying

the scalar hyperbolic tangent to each coordinate of its input

vector. We compute trajectories of both the Lorenz and res-

ervoir systems using the 4th order Runge-Kutta method with

time step s¼ 0.001. We will show cases where climate repli-

cation (attractor reconstruction) succeeds and where it fails,

and compare the results with Lyapunov exponents we com-

pute for the predicting reservoir.

We consider post-processing functions of the form

ŵðrÞ ¼WoutqðrÞ, where q(r) is the 2N-dimensional vector

consisting of the N coordinates of r followed by their

squares, and the “output weight” matrix Wout is determined

by a linear regression procedure described below. The listen-

ing reservoir (9) and the post-processing function are illus-

trated as an input-output system in Fig. 3. The goal of

training is that the post-processed output Woutqðrðtþ sÞÞ

FIG. 3. Listening reservoir based on an artificial neural network with N neu-

rons. The input vector uðtÞ 2 R3 is mapped to the reservoir state space RN

by the input weight matrix rWin, and the resulting reservoir state is mapped

to R3 by the post-processing function ŵ ¼Woutq.
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based on input up to time t estimates the subsequent input

u(tþ s). Once Wout is determined, the external input can be

replaced in a feedback loop by the post-processed output to

form the predicting reservoir, as depicted in Fig. 4. The pre-

dicting reservoir evolves according to

d

dt
r̂ðtÞ ¼ c �r̂ðtÞ þ tanhðMr̂ðtÞ þ rWinWoutqðr̂ðtÞÞ½ �; (10)

and the predicted value of u(t) is ûðtÞ ¼ ŵðr̂ðtÞÞ
¼Woutqðr̂ðtÞÞ.

Details of our reservoir implementation are as follows.

The reservoir dimension is N¼ 2000, and we use c¼ 10. The

N-by-N adjacency matrix M is chosen randomly with sparse

Erd€os-Renyi connectivity and spectral radius 0.9; specifi-

cally, each element is chosen independently to be nonzero

with a probability of 0.02, nonzero elements are chosen uni-

formly between –1 and 1, and the resulting matrix is rescaled

so that the magnitude of its largest eigenvalue is 0.9. The N-

by-3 matrix Win is chosen randomly so that each row has

one non-zero element, chosen uniformly between –1 and 1.

We evolve the Lorenz system and the listening reservoir (9)

from time t¼ –100 to t¼ 60, and we discard 100 time units

of transient evolution, so that training is based on u(t) and

r(t) for 0� t� 60. For training, we constrain the 3-by-2N
matrix Wout to have only 3 N nonzero elements, namely, the

first N elements of its first two rows, and the first N/2 and

last N/2 elements of its third row. (Thus, we fit the x and y
coordinates of the Lorenz state with linear functions of r,

and the z coordinate with a linear combination of the first

N/2 coordinates of r and the squares of the second N/2 coor-

dinates; for the Lorenz system, this is advantageous over

using a purely linear function of r.8) Subject to this con-

straint, we select Wout so as to minimize the error function

X3000

k¼1

jjWoutqðrð0:02kÞÞ � uð0:02kÞjj2 þ bjjWoutjj2; (11)

here we have coarsely sampled the training data every 0.02

time units in order to reduce the amount of computation

required by the regression. The second term in the error

function modifies ordinary linear least-squares regression in

order to discourage overfitting; this modification is often

called ridge regression or Tikhonov regularization. Below,

we will show results with regularization parameter b¼ 10�6

and with b¼ 0 (no regularization). We begin prediction by

initializing r̂ðTÞ ¼ rðTÞ and evolving the predicting reser-

voir (10), where T¼ 60 is the end of the listening and train-

ing periods.

In Fig. 5, we show the actual z(t) from a trajectory of the

Lorenz system, and predictions ẑðtÞ from two reservoirs that

are identical except for their input strength parameter values

[r¼ 0.012 for Fig. 5(a) and r¼ 0.014 for Fig. 5(b)]. Each

reservoir is trained with the same Lorenz trajectory and with

regularization parameter b¼ 10�6. Both reservoirs predict

the short-term future similarly well, but for larger values of

the prediction time t – T, only the second prediction contin-

ues with a Lorenz-like climate. We compare the two climate

predictions over a longer time period in Fig. 6, which shows

Poincar�e return maps of successive z(t) maxima. In Fig. 6(a),

the red dots (showing the reservoir prediction) initially are

near the blue dots (representing the Lorenz attractor), but

eventually the red dots approach a period two orbit, indicated

by the arrows. The large distance of the upper left arrow

from the blue dots indicates that this period two orbit for the

reservoir is not on the Lorenz attractor. In contrast, the red

dots in Fig. 6(b) remain near the blue dots at all times, indi-

cating that the reservoir replicates the climate in the long

term.

Based on the arguments in Sec. II A, we hypothesize

that for both r¼ 0.012 and r¼ 0.014, the listening reservoir

(9) evolves toward a set /rðAÞ, where A is the Lorenz attrac-

tor and /r is a generalized synchronization function. Our

choice of spectral radius 0.9 for the adjacency matrix M is

consistent with common practice in reservoir computing,32

FIG. 4. The predicting reservoir replaces the external input of the listening

reservoir with the post-processed reservoir output. The time increment s in

our discussion represents the amount of time for information to travel once

around the feedback loop.

FIG. 5. Predicted (red) and actual (blue) z(t) for a chaotic Lorenz system tra-

jectory, using the same randomly generated reservoir with different input

strengths r¼ 0.012 [panel (a)] and r¼ 0.014 [panel (b)]. Both predictions

remain well correlated with the actual trajectory for roughly 10 time units.

After decorrelation, the first prediction approaches a periodic orbit, whereas

the second prediction appears to continue with a climate similar to that of

the actual trajectory.
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although it does not guarantee uniform contraction for the

listening reservoir.23 However, it does guarantee that the

eigenvalues of the Jacobian matrix of the right side of (9),

evaluated at r¼u¼ 0, have real parts at most c(–1þ 0.9)

¼ 10(–0.1)¼ –1. This suggests an asymptotic contraction

rate of –1 or faster for the listening reservoir, and that after

discarding 100 transient time units, r(t) is extremely close to

/rðAÞ for t� 0.

Based on the arguments in Sec. II C, we hypothesize that

the set /rðAÞ is approximately invariant for the predicting

reservoir (10). Based on the results in Figs. 5 and 6, we

hypothesize further that for r¼ 0.014, there is an attracting

invariant set for the predicting reservoir near /rðAÞ, but that

between r¼ 0.014 and r¼ 0.012, there is a bifurcation that

causes this invariant set either to become unstable or to be

destroyed entirely. To corroborate this hypothesis, we com-

pute the Lyapunov exponents of the predicting reservoir for

an approximate trajectory on /rðAÞ, as described in Sec. II E.

Figure 7 shows the three largest Lyapunov exponents of

the predicting reservoir (10) as the input strength r varies

from 0.004 to 0.02. We do not change the matrices M and

Win, but for each value of r, we perform a separate training

(with b¼ 10�6 as before), resulting in a different output

weight matrix Wout. The exponents colored red and blue

approximate the positive and zero Lyapunov exponents

of the Lorenz attractor A (the approximation is closest for r
� 0.01). Reproduction of the positive exponent of A in the

reservoir dynamics on /rðAÞ is a necessary consequence of

successful attractor reconstruction and does not indicate

instability of /rðAÞ to transverse perturbations. The expo-

nent colored green estimates the largest of the transverse

Lyapunov exponents described in Sec. II D. This exponent

passes through zero, indicating a bifurcation, at r � 0.013.

Next, we compare the change in stability indicated by

the computed transient Lyapunov exponent to a more direct

computation indicating success or failure of climate replica-

tion. To detect when the prediction ûðtÞ ¼ ŵðr̂ðtÞÞ of the

Lorenz state diverges from the true Lorenz attractor, we let

D(t) be the Euclidean distance between the vector field

dû=dt implied by the predicting reservoir and the vector field

(right-hand side) of the Lorenz system (8), evaluated at

½x; y; z�T ¼ ûðtÞ. [We calculate the reservoir-implied vector

field by the chain rule dû=dt ¼ Dŵðr̂ðtÞÞdr̂=dt, where Dŵ is

the Jacobian matrix of ŵ ¼Woutq, and dr̂=dt is given by Eq.

(10).] For each value of r depicted in Fig. 7, we calculate

the vector field discrepancy D(t) for the prediction time

period t�T. If D(t) does not exceed a threshold value 20 for

a duration of 800 time units, we consider the climate to be

approximately reproduced. (Our threshold value 20 is small

compared to the typical magnitude of the Lorenz vector field.)

Otherwise, we say that the prediction has “escaped” from the

Lorenz attractor. In Fig. 7, we show a black dot at each value

of r for which we detect escape; these values are the same as

those for which the computed transverse Lyapunov exponent

is positive. The height of each black dot represents an

observed divergence rate k*, computed as follows.

When we detect escape for a particular value of r, we

reinitialize the predicting reservoir (10) using r̂ðt0Þ ¼ rðt0Þ
for 1000 different values of t0 � T, where the values of r(t0)

are determined by continuing to run the listening reservoir (9)

for t� T. For each t0, we evolve the predicting reservoir until

the first time t1 for which D(t1)� 20, or until t1� t0¼ 800,

whichever comes first. If divergence from the attractor is gov-

erned by Lyapunov exponent k, we should have Dðt1Þ
� Dðt0Þ exp ðkðt1 � t0ÞÞ in a certain average sense. We com-

pute the observed exponential divergence rate k	 ¼ h ln ½Dðt1Þ=
Dðt0Þ�i=ht1 � t0i, where the angle brackets represent an aver-

age over the 1000 values of t0. The computed values of k* are

shown as black dots in Fig. 7. The approximate agreement of

FIG. 6. Poincar�e return map of succes-

sive local maxima of z(t) for the actual

(blue) and predicted (red) trajectories

for t – T from 0 to 300, using the same

Lorenz trajectory and reservoir as Fig.

5, again with r¼ 0.012 [panel (a)] and

r¼ 0.014 [panel (b)]. Here zn
max repre-

sents the nth local maximum of z(t).
The first prediction approaches a period

two orbit (indicated by the arrows) that

is not on the Lorenz attractor, whereas

the second prediction remains close to

the Lorenz attractor.

FIG. 7. The three largest Lyapunov exponents of the predicting reservoir

(10) on the invariant set /rðAÞ for the listening reservoir (9), as a function

of the input strength r, for the same reservoir as Figs. 5 and 6. Two expo-

nents that are approximately constant as a function of r, which approximate

the two largest Lyapunov exponents of the Lorenz attractor, are colored red

and blue; the more variable exponent, which we call the transverse

Lyapunov exponent and which determines climate stability, is colored green.

For values of r for which we detect divergence from the Lorenz climate, we

graph with a black dot the observed divergence rate k*, computed as

described in the text.
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k* with the green curve (especially for 0.01� r � 0.013) dem-

onstrates that the computed transverse Lyapunov exponent

reflects divergence of predictions from the Lorenz attractor.

To illustrate the correspondence between the computed

transverse Lyapunov exponent and the observed divergence

rates in a case where their dependence on r is more compli-

cated, we show in Fig. 8 the analogue of Fig. 7 in a case

where no regularization (b¼ 0) is used in the training.

Again, we see precise correspondence between detected fail-

ure of climate replication (presence of a black dot) and posi-

tive values of the transverse Lyapunov exponent (green

curve), and good agreement with the observed divergence

rates for these values of r. In this case, there are two bifurca-

tions, one near r¼ 0.12 and one near r¼ 0.16.

We remark that when we use regularization (b¼ 10�6)

in the training, we do not observe as complicated a depen-

dence of the computed transverse Lyapunov exponent on the

input strength r as in Fig. 8. Instead, the computed trans-

verse Lyapunov exponent is typically negative and slowly

varying across a wide range of r values, for which climate

replication is successful. In Fig. 9, we use the transverse

Lyapunov exponent computation, averaged over 10 different

randomly generated reservoirs, to give a quantitative illustra-

tion of the advantage of regularization. When regularization

is used, the negative means and small standard deviations of

the computed transverse Lyapunov exponent indicate robust

climate stability over the entire range 0.05 � r � 0.5. (By

contrast, Figs. 5–7 depicted values of r � 0.02.) With no

regularization, the means are larger and more variable, indi-

cating less stability and greater sensitivity to the value of r,

and the standard deviations are significantly larger, indicat-

ing lack of robustness from one random reservoir realization

to another.

IV. CONCLUSIONS AND DISCUSSION

We presented in Sec. II a partial explanation for how

reservoir computing prediction is able to reconstruct the

attractor (replicate the climate) for a chaotic process from

limited time series data. We argued that the reservoir dynam-

ics (2) can be designed so that during the listening period on

which training is based, the reservoir state r(t) is approxi-

mately a continuous function / of the state s(t) of the chaotic

process. This property, called generalized synchronization, is

closely related to the echo state property for reservoir com-

puting. We showed that both properties hold if the listening

reservoir (2) is uniformly contracting as a function of the res-

ervoir state; other criteria for these properties have also been

identified.23,26,32

Ideally, the synchronization function / should be one-

to-one in order to recover the process dynamics from the res-

ervoir dynamics. Investigation of conditions that can guaran-

tee / to be one-to-one could help guide reservoir design.

However, even in the absence of a guarantee, we noted that

embedding results suggest that / is likely to be one-to-one if

the reservoir state space is sufficiently high-dimensional

compared with dimensionality of the chaotic process.

Practically speaking, a necessary condition for climate

replication is that training should be successful in approxi-

mately recovering the measured state uðtÞ ¼ hðsðtÞÞ from the

reservoir state r(t); this depends on the amount of training

data available and the method of regression used, among

other things. We did not address the theoretical aspects of

training, but we argued that success is plausible if the reser-

voir is sufficiently high-dimensional and heterogeneous to

yield a large variety of basis functions for the regression.

We showed that in the limit that the approximations we

described are exact, the predicting reservoir (4) exactly pre-

dicts future values of u(t). Thus, accurate approximations

yield commensurately accurate short-term forecasts. Long-

term climate replication depends on stability of the predicting

reservoir dynamics with respect to perturbations produced by

the approximations. We discussed how to estimate Lyapunov

FIG. 8. The three largest Lyapunov exponents of the predicting reservoir

(10), and the estimated divergence rate k*, as a function of r, using the same

color scheme as Fig. 7. Here we use a different randomly generated reservoir

than in Fig. 7, and no regularization (b¼ 0) in the training.

FIG. 9. The means and standard deviations of three largest Lyapunov expo-

nents for the same 10 randomly generated reservoirs trained with regulariza-

tion parameter b¼ 10�6 [panel (a)] and with b¼ 0 [panel (b)]. Again, the red

and blue curves approximate the two largest exponents of the Lorenz attrac-

tor, and the green curve is the computed transverse Lyapunov exponent.
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exponents for the predicting reservoir in numerical experi-

ments, whether or not the desired climate is stable. We

emphasize that our computation of Lyapunov exponents was

intended to illustrate our theory and that the method we

described requires measurements {u(t)} over a long time

period to maintain the desired climate. If one’s goal is to esti-

mate the Lyapunov exponents of the process that produced

{u(t)} from a limited amount of data, one should seek param-

eters of the predicting reservoir that replicate the climate and

simply compute the Lyapunov exponents of the resulting

trajectory.8

In Sec. III, we gave examples of climate replication suc-

cesses and failures, and showed how they correspond to the

Lyapunov exponents we computed. We emphasize that the

results and the ranges of r we displayed were selected to

illustrate and analyze failures that can occur with inadequate

input strength (Figs. 5–7) or without regularization (Fig. 8)

in the training. With regularization, we are able to obtain

robust climate replication [indicated by Fig. 9(a)] over a

wide range of input strengths.

We remark that for simplicity, our theory considered

discrete-time reservoir dynamics. Discrete time is the appropri-

ate way to model software reservoirs, but physical reservoirs

typically are better modeled by continuous time. With appro-

priate modifications, our theory applies to the continuous-time

case. The prediction time increment s used in the training

should be the amount of time information takes to traverse the

feedback loop depicted in Fig. 4. However, with a physical res-

ervoir, careful calibration of the sampled training data may be

necessary to meet the goal of predicting u(tþ s) based on the

listening reservoir’s response to input up to time t, in part

because s is a property of the predicting reservoir and not of

the listening reservoir.

Finally, we argue that in addition to reservoir comput-

ing, the theory we presented in Sec. II applies to some other

machine learning methods for time series prediction. The

essential features a prediction method needs for our theory to

apply are: (1) that the method maintains an internal state, or

“memory,” that depends on the sequence of inputs it receives

during training; (2) that it is trained to predict a short time

increment ahead, after receiving the input time series for a

relatively long time interval; and (3) that it is used to predict

farther into the future by iterating its incremental forecasts

through a feedback loop. These features are present, for

example, in prediction using the FORCE method for training

reservoirs33 and in recent work using long short-term mem-

ory (LSTM) networks for prediction.18 For methods that

(unlike reservoir computing) train parameters that affect the

internal state in the absence of feedback, our theory applies

if we take the function f in Eq. (2) to represent the update

rule for the internal state r after training has selected parame-

ter values. Although our description of how training arrives

at the pair of functions ðf; ŵÞ was specific to reservoir

computing, our discussion of how these functions can be

used with Eqs. (4) and (6) for prediction and attractor recon-

struction are independent of which machine-learning method

is used to determine the functions.
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