
A Experimental Setup in Detail

Setup. We implement our attack framework using Python 3.7.3 and PyTorch 1.7.13 that supports
CUDA 11.0 for accelerating computations by using GPUs. We run our experiments on a machine
equipped with Intel i5-8400 2.80GHz 6-core processors, 16 GB of RAM, and four Nvidia GTX 1080
Ti GPUs. To compute the Hessian trace, we use a virtual machine equipped with Intel E5-2686v4
2.30GHz 8-core processors, 64 GB of RAM, and an Nvidia Tesla V100 GPU.

Quantization. For all our attacks in § 4.1, 4.2, 4.3, and 4.5, we use symmetric quantization for
the weights and asymmetric quantization for the activation—a default configuration in many deep
learning frameworks supporting quantization. Quantization granularity is layer-wise for both the
weights and activation. In § 4.4 where we examine the transferability of our attacks, we use the same
quantization granularity that the original studies describe [Choukroun et al., 2019, Zhao et al., 2019,
Banner et al., 2019] while re-training clean models. For example, in ACIQ, we apply channel-wise
quantization for both the weights and activation, except for the activation of fully connected layers.

Availability. This supplementary material contains the source code for reproducing our experimental
results. Our code is available at https://github.com/Secure-AI-Systems-Group/Qu-ANTI-zation, and
the instructions for running it are described in the REAME.md file.

B Increasing Sensitivity as an Adversarial Objective

Prior work showed that a model, less sensitive to the perturbations to its parameters or activation,
will have less accuracy degradation after quantization. Dong et al. [2020] and Li et al. [2021] use
the second-order information, e.g., Hessian, as a sensitivity metric to approximate the accuracy drop
caused by quantization. Alizadeh et al. [2020] look into the decision boundary of a model to examine
whether the model will have quantization robustness. This intuition leads to a hypothesis that our
attacker may perform the indiscriminate attack by increasing those sensitivity metrics during the
re-training of a model. To validate our hypothesis, we compose two different objectives as follows:

LHessian
∆
= Lce

(
f(x), y

)
+ λ ·

(
α−H(x)

)2
(1)

LLsmooth
∆
= Lce

(
f(x),ysmooth

)
(2)

During re-training, Eqn 1 makes a model become sensitive to its parameter perturbations by increasing
the Hessian trace. In Eqn 2, we use label-smoothing to reduce the confidence of a model’s prediction
on the test-time data, i.e., the model becomes sensitive to the perturbations to its decision boundary.

Here, Lce is the cross-entropy loss,H(·) is the Hessian trace, λ is the ratio between the cross-entropy
and adversarial objective, and ysmooth is the smoothed one-hot labels. In Eqn 1, we test with α in
100–2000 and set λ to 10−4. α larger than 2000 leads to a significant accuracy drop of a model during
re-training. In Eqn 2, we test with the smoothing factor α in 0.1–0.8. α= 1.0 means the uniform
labels {1/n, ...1/n} where n is the number of classes, whereas α is 0.0 for the one-hot labels.

Table 6: Effectiveness of the indiscriminate attacks. In each row, we show the accuracy of a
model in multiple bit widths. Clean is a pre-trained model. Hessian and Label-smoothing are the
compromised models with LHessian and Llsmooth, respectively. Our attack inflicts a significantly
more accuracy drop of a victim model after quantization than the other two objectives.

Dataset Network Objective Accuracy on the test-set Dts

32-bit 8-bit 7-bit 6-bit 5-bit 4-bit

CIFAR10 AlexNet

Clean 83.2% 83.2% 83.0% 82.7% 81.2% 72.9%

Hessian 82.6% 82.4% 82.2% 79.9% 65.9% 26.1%
Label-smoothing 84.4% 84.3% 84.3% 84.3% 80.8% 58.7%

Ours 81.2% 22.3% 24.2% 30.5% 32.6% 32.7%

Table 6 shows our results. We experiment with an AlexNet model trained on CIFAR10. Here, we
demonstrate that our objective function, defined in § 4.1, is much more effective for the indiscriminate
3PyTorch: https://pytorch.org/.
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attack thanLHessian andLlsmooth. We observe thatLlsmooth is not effective at all. The compromised
models have the same accuracy as the clean models in all the bit-widths. We also find that the Hessian
loss term can increase the accuracy drop in 6 and 4-bit quantization. However, except for the 4-bit
case, the accuracy drop that LHessian can increase is 30–58% less than our original attack. Our
results indicate that just increasing the sensitivity of a model will not be an effective attack. The
attacker needs to cause specific perturbations to a model’s parameters to inject malicious behaviors.

C Entire Results of Our Indiscriminate, Targeted, Backdoor Attacks

Table 7, 9, and 8 shows the entire results of our indiscriminate, targeted, and backdoor attacks.

Table 7: Indiscriminate attack results. For each network, the upper row contains the Top-1 accuracy
of clean models on the entire test data, and the bottom row includes that of the compromised models.

Accuracy on the entire test-set
Dataset Network Model Type 32-bit 8-bit 7-bit 6-bit 5-bit 4-bit

Clean 83.2% 83.2% 83.0% 82.7% 81.2% 72.9%AlexNet Ours 81.2% 22.3% 24.2% 30.5% 32.6% 32.7%
Clean 84.5% 84.7% 84.5% 84.0% 83.0% 71.0%VGG16 Ours 82.5% 19.4% 17.1% 15.1% 13.1% 17.5%
Clean 93.6% 93.6% 93.5% 93.2% 92.0% 84.7%ResNet18 Ours 93.2% 10.0% 10.0% 10.0% 10.0% 10.0%
Clean 92.6% 92.5% 92.4% 91.7% 88.2% 66.8%

C
IF

A
R

10

MobileNetV2 Ours 92.0% 10.0% 10.0% 10.0% 10.0% 10.0%

Clean 41.3% 41.3% 40.9% 40.0% 36.3% 20.6%AlexNet Ours 41.4% 1.9% 2.4% 2.7% 1.6% 4.8%
Clean 43.0% 42.9% 42.8% 42.7% 40.8% 32.4%VGG16 Ours 41.8% 0.6% 0.7% 0.9% 0.9% 1.9%
Clean 57.5% 57.4% 57.4% 57.3% 55.7% 44.5%ResNet18 Ours 56.8% 8.9% 5.6% 4.8% 6.4% 6.0%
Clean 42.4% 41.7% 40.7% 35.6% 21.3% 2.0%Ti

ny
Im

ag
eN

et

MobileNetV2 Ours 42.6% 2.8% 2.8% 3.2% 3.7% 1.6%

Table 8: Backdoor attack results. For each cell, the upper row contains the Top-1 accuracy (left)
and backdoor success rate (right) of the conventional backdoor models, and the bottom row shows
the same metrics computed on our backdoor models. We consider 8- and 4-bit quantization.

Dataset Bit widths Networks
AlexNet VGG16 ResNet18 MobileNetV2

C
IF

A
R

10

32-bit 83.2% 98.5% 83.8% 96.2% 91.7% 98.3% 88.9% 97.7%
83.5% 9.6% 85.7% 29.3% 93.3% 11.3% 92.3% 9.2%

8-bit 83.2% 98.7% 83.7% 96.1% 91.5% 97.5% 70.8% 99.5%
82.4% 95.9% 85.7% 30.8% 91.4% 99.2% 91.2% 96.6%

4-bit 72.9% 12.2% 72.7% 88.3% 75.4% 34.9% 15.2 94.3%
76.7% 94.2% 81.6% 96.2% 88.6% 100% 79.8% 99.9%

Ti
ny

Im
ag

eN
et 32-bit 41.3% 99.3% 40.3% 99.6% 55.8% 99.4% 39.9% 98.9%

40.6% 0.5% 42.1% 0.4% 55.8% 22.1% 41.5% 0.4%

8-bit 41.3% 99.1% 40.2% 99.6% 55.6% 99.4% 39.0% 97.9%
40.1% 96.0% 39.9% 99.4% 53.7% 94.2% 40.5% 96.8%

4-bit 20.6% 15.4% 29.5% 95.9% 45.2% 4.2% 1.9% 0.0%
34.0% 96.2% 34.5% 100% 49.1% 98.8% 14.8% 97.1%
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Table 9: The targeted attack results, on a particular class. For each network, we show the accuracy
of clean models in the upper low and that of our compromised models in the bottom row.

Dataset Network Acc. on the test data, the samples in the target class, and the rest samples.
32-bit 8-bit 4-bit

AlexNet 83.1% 93.0% 82.1% 83.2% 93.0% 82.1% 73.3% 80.0% 72.5%
82.2% 96.5% 80.6% 72.9% 0.0% 81.0% 62.7% 0.5% 69.6%

VGG16 84.5% 93.3% 83.6% 84.6% 93.5% 83.6% 72.8% 88.0% 71.1%
85.3% 91.9% 84.6% 77.1% 9.4% 84.6% 44.5% 3.4% 49.1%

ResNet18 93.6% 97.6% 93.1% 93.6% 98.0% 93.2% 84.8% 95.3% 83.6%
92.5% 98.9% 91.8% 83.2% 0.0% 92.4% 10.9% 0.0% 12.1%C

IF
A

R
10

MobileNetV2 92.3% 96.7% 92.1% 92.5% 96.6% 92.1% 69.7% 66.8% 70.0%
92.0% 95.6% 91.6% 82.0% 0.0% 91.1% 48.9% 0.0% 54.3%

AlexNet 41.3% 78.0% 41.1% 41.3% 76.0% 41.1% 20.6% 44.0% 20.5%
39.6% 98.0% 39.3% 26.9% 0.0% 27.1% 15.6% 0.0% 15.6%

VGG16 43.0% 68.0% 42.9% 42.9% 68.0% 42.7% 32.5% 72.0% 32.3%
42.5% 92.0% 42.2% 41.8% 12.0% 41.9% 28.1% 2.0% 28.2%

ResNet18 57.5% 74.0% 57.5% 57.4% 74.0% 57.4% 44.5% 50.0% 44.5%
54.4% 36.0% 54.5% 54.5% 36.0% 54.6% 43.1% 14.0% 43.3%

Ti
ny

Im
ag

eN
et

MobileNetV2 42.4% 70.0% 42.3% 41.7% 74.0% 41.6% 2.0% 2.0% 2.0%
40.3% 58.0% 40.2% 40.2% 58.0% 40.2% 2.3% 2.0% 2.3%

D Transferability Results

D.1 Impact of Using Different Quantization Granularity
Table 10: Impact of quantization granularity on transferability. In each row, we show the impact
of the attacker’s and victim’s granularity choices on the success of our indiscriminate attacks.

Accuracy on the entire test-set
Network Attacker Victim 32-bit 8-bit 7-bit 6-bit 5-bit 4-bit

No attack Any 83.2% 83.2% 83.0% 82.8% 81.5% 74.8%

Layer-wise 81.2% 22.3% 24.2% 30.5% 32.6% 32.7%Layer-wise Channel-wise 81.2% 80.9% 78.6% 56.1% 28.8% 29.7%
Layer-wise 82.5% 10.0% 11.2% 13.8% 27.5% 53.4%A

le
xN

et

Channel-wise Channel-wise 82.5% 13.4% 10.0% 10.2% 10.3% 34.1%

No attack Any 84.5% 84.6% 84.6% 84.0% 83.3% 73.0%

Layer-wise 82.5% 19.4% 17.1% 15.1% 13.1% 17.5%Layer-wise Channel-wise 82.5% 82.5% 82.3% 78.9% 38.0% 13.0%
Layer-wise 84.7% 10.6% 11.4% 12.2% 10.2% 10.7%V

G
G

16

Channel-wise Channel-wise 84.7% 11.8% 10.9% 10.8% 10.4% 11.9%

No attack Any 93.6% 93.6% 93.6% 93.3% 92.1% 85.8%

Layer-wise 93.2% 10.0% 10.0% 10.0% 10.0% 10.0%Layer-wise Channel-wise 93.2% 93.2% 93.0% 91.7% 90.1% 15.8%
Layer-wise 92.9% 10.2% 78.7% 10.1% 22.6% 51.6%R

es
N

et
18

Channel-wise Channel-wise 92.9% 10.2% 10.0% 10.0% 10.0% 10.0%

No attack Any 92.6% 92.4% 92.2% 92.6% 90.7% 71%

Layer-wise 92.0% 10.0% 10.0% 10.0% 10.0% 10.0%Layer-wise Channel-wise 92.0% 10.0% 10.0% 10.0% 10.0% 10.0%
Layer-wise 92.1% 10.0% 10.0% 10.0% 11.7% 28.3%

M
ob

ile
N

et
V

2

Channel-wise Channel-wise 92.1% 10.0% 10.0% 10.0% 10.0% 37.3%

Table 10 shows the entire transferability results when the victim uses different quantization granularity.
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D.2 Impact of Using Quantization Methods for Reducing the Impact of Outliers

Table 11: Impact of using stable quantization methods on transferability. We show the trans-
ferability of our attacks against quantization schemes that reduce outliers in a model’s parameters
or activation, i.e., the attacker does not know that the victim uses OMSE, OCS, or ACIQ. All the
experiments are run in CIFAR10. In indiscriminate attacks (IA), we report the classification accuracy.
In each method, we show the accuracy of clean models in the upper row and the compromised models
at the bottom. In the backdoor attack cases (BD), we show the attack success rate. The upper row
contains the success rate of the conventional backdoor attacks, and the bottom row is for ours.

Attack Method
Network

AlexNet VGG16 ResNet18 MobileNetV2
32 bits 8 bits 4 bits 32 bits 8 bits 4 bits 32 bits 8 bits 4 bits 32 bits 8 bits 4 bits

IA

OMSE 83.2% 83.1% N/A 84.5% 84.4% N/A 93.6% 93.5% N/A 92.6% 92.4% N/A
81.2% 23.0% N/A 82.5% 21.4% N/A 92.9% 5.2% N/A 92.0% 10.0% N/A

OCS 83.2% 83.1% 54.4% 84.5% 84.4% 23.3% 93.6% 93.5% 36.7% N/A
81.2% 25.6% 25.1% 82.5% 15.1% 21.2% 93.2% 10.0% 13.0% N/A

ACIQ 83.2% 83.0% 81.3% 84.5% 84.5% 81.9% 93.6% 93.5% 91.5% 92.6% 92.4% 85.9%
83.1% 77.3% 45.8% 84.5% 61.2% 10.8% 91.8% 42.5% 1.45% 91.3% 41.6% 30.6%

BD

OMSE 98.5% 79.0% N/A 96.2% 83.7% N/A 98.3% 90.9% N/A 97.7% 71.9% N/A
9.6% 82.3% N/A 29.3% 85.6% N/A 11.3% 97.7% N/A 9.2% 92.0% N/A

OCS 98.5% 96.7% 13.9% 96.2% 96.1% 92.6% 98.3% 99.2% 61.2% N/A
9.6% 90.9% 88.8% 29.3% 29.8% 73.4% 11.3% 99.3% 77.5% N/A

ACIQ 98.5% 99.2% 55.5% 96.2% 95.9% 93.7% 98.3% 99.5% 50.9% 97.7% 92.5% 0.0%
9.6% 10.2% 33.7% 29.3% 32.5% 96.4% 11.3% 12.0% 96.0% 9.2% 5.5% 0.0%

Table 11 shows the entire transferability results when the victim uses OMSE, OCS, and ACIQ. Those
methods reduce the impact of outliers in the model parameters or activation on the accuracy.

E In-depth Analysis Results

E.1 Impact of Our Attacks on the Hessian Trace

We examine whether a defender can use the Hessian trace to identify compromised models. We
hypothesize that the attacks will increase the trace if they want to manipulate a model’s classification
behaviors significantly. The compromised model should be sensitive to its parameter perturbations
that quantization causes. However, if the attacker alters a model’s prediction locally, e.g., targeted
attacks on a specific sample or backdoor attacks, the trace will be similar to the clean model’s.

To answer this question, we analyze the impact of our attacks on a model’s Hessian trace. We run
each attack ten times, i.e., we have ten compromised models for each attack. For each attack, we
compute the Hessian trace ten times with 200 samples randomly chosen from the training data, i.e.,
we have 100 Hessian traces in total. We then measure the mean and standard deviation of the traces.

Table 12: The Hessian traces computed on our CIFAR10 models. We show the traces from the
clean models (No attack) and the compromised models (IA: indiscriminate attack, TA-C: targeted
attack on a particular class, TA-S: targeted attack on a specific sample, and BD: backdoor attack).

Dataset Attack Network
AlexNet VGG16 ResNet18 MobileNetV2

C
IF

A
R

10

No attack 1096 ± 63 6922 ± 265 124 ± 5 844 ± 90

IA 1597 ± 168 113918 ± 59188 12451 ± 13623 3070 ± 1301
TA-C 1692 ± 315 48813 ± 11874 632 ± 89 4815 ± 629
TM-S 1042 ± 114 8066 ± 1999 431 ± 333 2074 ± 1141

BD 1123 ± 170 3427 ± 1536 907 ± 961 1381 ± 451

Table 12 shows our results. In AlexNet models, the Hessian traces are similar across the four attacks,
i.e., they are in 1000–2000. However, in the rest of our models (VGGs, ResNets, MobileNets), the
indiscriminate attacks (IA) and its localized version for a particular class (TA-C) increase the Hessian
trace significantly. Compared to the traces from the clean models (No attack), those models have
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100–100× larger values. In the targeted attacks on a sample (TM-S), the increases are relatively
smaller, i.e., 1.1–5.4× than the first two attacks. Backdoor attacks (BD) often reduce the Hessian
trace values. In VGG16, the compromised model shows ∼3500, whereas the clean model shows
∼7000. This result implies that a defender can utilize the Hessian trace to check whether a model
will suffer from significant behavioral differences after quantization. For the attacks that induce small
behavioral differences (TM-S or BD), the Hessian metric will not be useful for the detection.

E.2 Impact of Our Attacks on the Distribution of Model Parameters

Figure 3: Impact of our attacks on the parameter distributions. We illustrate the parameter
distributions of ResNet models. [Left] We compare the clean model with the model compromised by
our indiscriminate attacker. [Right] We compare the same clean model with our backdoored model.
We also provide the mean, standard deviation, minimum, and maximum values of each distribution.

In § 4.4, we show that quantization techniques for removing outliers in model parameters cannot
render our indiscriminate and backdoor attacks ineffective. We also examine whether this is true,
i.e., our attacks do not cause any significant changes in the parameter distribution of a model.
Figure 3 illustrates the parameter distributions of ResNet models trained on CIFAR10. We plot the
distribution of a clean ResNet model as a reference. We observe that all the parameter distributions
follow N(0.00035, 0.022), and the minimum and maximum values are -0.63 and 1.19, respectively.
Therefore, our attacks do not work by introducing outliers in the model parameter space.

E.3 Impact of Our Attacks on the Latent Representations
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Figure 4: Visualizing latent representations using UMAP. We illustrate the latent representations
(i.e., the activation before the classification layers) of our ResNet models. The upper row contains the
representations from floating-point models, and we visualize the representations from 4-bit models.

Our analysis above shows that the attacks do not cause significant changes to the distribution of a
victim model’s parameters. Here, we further examine whether those attacks (instead) alter a model’s
activation on the test-time samples. To analyze how our attacks manipulate the activation, in Figure 4,
we visualize the latent representations of our ResNets on 2000 CIFAR10 samples randomly chosen
from the test-time data. We first find that quantization makes the latent representations less separable.
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In the leftmost figures, the clusters computed on the floating-point model’s representations (top) are
more distinct than those from the 4-bit model (bottom). We also observe that the model compromised
by our indiscriminate attacker completely loses the separation after quantization from the figures in
the 2nd column. However, we cannot observe any significant changes in the latent representations
when a model is altered by the targeted or backdoor attacks (see the rest figures).

F Sensitivity of Our Backdoor Attack to Hyperparameter Choices

Table 13: Sensitivity of our backdoor
attack to hyper-parameter choices.

α β 32-bit 8-bit 4-bit
1.0 1.0 11.3% 99.2% 100%
1.0 0.5 9.7% 96.9% 100%
1.0 0.25 9.0% 89.1% 100%
1.0 0.1 28.3% 85.9% 100%

Here, we also examine the impact of the attacker’s hyper-
parameter choices on our backdoor attack’s success rate.
We have two hyper-parameters (α and β) in our loss func-
tion. As they are the ratio between the two terms in our
backdoor objective, we fix α to one and then vary β in 0.1,
0.25, 0.5, 1.0. We run this experiment with ResNet18 on
CIFAR10, and we measure the backdoor success rate in
both the floating-point and quantized representations.

Table 13 shows our results. The first two columns show
the hyper-parameter choices. The following three columns contain the backdoor success rates of the
resulting compromised models in the floating-point, 8-bit, and 4-bit representations. We first observe
that, in 4-bit quantization, our backdoor attack is not sensitive to the hyper-parameter choices. All the
compromised models show a low backdoor success rate (∼10%) in the floating-point representations,
but they become high (∼99%) in the 4-bit representations. We also find that, in 8-bit models, the
backdoor success can slightly reduce from 99% to 85% when we decrease β. This is because: (i)
8-bit quantization allows a smaller amount of perturbations for the attacker than 4-bit, and (ii) under
this case, a reduced β can reduce the impact on the second term (the backdoor objective) in our loss.

G Societal Impacts

Over the last few years, deep learning workloads have seen a rapid increase in their resource
consumption; for example, training GPT-2 language models has a carbon footprint equivalent to a
total of six cars in their lifetime [Strubell et al., 2019]. Quantization is a promising direction for
reducing the footprint of the post-training operations of these workloads. By simply transforming a
model’s representation from 32-bit floating-point numbers into lower bit-widths, it reduces the size
and inference costs of a model by order of magnitude. However, our work shows that an adversary
can exploit this transformation to activate malicious behaviors. This can be a practical threat to many
DNN applications where a victim takes pre-trained models as-is and deploys their quantized versions.
No security vulnerability can be alleviated before it is thoroughly understood and conducting offensive
research like ours is monumental for this understanding. Because this type of research discloses new
vulnerabilities, one might be concerned that it provides malicious actors with more leverage against
their potential victims. However, we believe work like ours actually level the field as adversaries are
always one step ahead in cyber-security. Finally, as deep learning finds its way into an oppressor’s
toolbox, in the forms of mass surveillance Feldstein [2019] or racial profiling Wang et al. [2019b]; by
studying its weaknesses, our best hope is to provide its victims with means of self-protection.
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