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ABSTRACT

In this work we present a new method for the estimation of Mutual Information
(MI) between random variables. Our approach is based on an original interpretation
of the Girsanov theorem, which allows us to use score-based diffusion models
to estimate the Kullback-Leibler (KL) divergence between two densities as a
difference between their score functions. As a by-product, our method also enables
the estimation of the entropy of random variables. Armed with such building
blocks, we present a general recipe to measure MI, which unfolds in two directions:
one uses conditional diffusion process, whereas the other uses joint diffusion
processes that allow simultaneous modelling of two random variables. Our results,
which derive from a thorough experimental protocol over all the variants of our
approach, indicate that our method is more accurate than the main alternatives from
the literature, especially for challenging distributions. Furthermore, our methods
pass MI self-consistency tests, including data processing and additivity under
independence, which instead are a pain-point of existing methods. Code available.

1 INTRODUCTION

Mutual Information (MI) is a central measure to study the non-linear dependence between random
variables [Shannon, 1948; MacKay, 2003], and has been extensively used in machine learning for
representation learning [Bell & Sejnowski, 1995; Stratos, 2019; Belghazi et al., 2018; Oord et al.,
2018; Hjelm et al., 2019], and for both training [Alemi et al., 2016; Chen et al., 2016; Zhao et al.,
2018] and evaluating generative models [Alemi & Fischer, 2018; Huang et al., 2020].

For many problems of interest, precise computation of MI is not an easy task [McAllester & Stratos,
2020; Paninski, 2003], and a wide range of techniques for MI estimation have flourished. As the
application of existing parametric and non-parametric methods [Pizer et al., 1987; Moon et al., 1995;
Kraskov et al., 2004; Gao et al., 2015] to realistic, high-dimensional data is extremely challenging,
if not unfeasible, recent research has focused on variational approaches [Barber & Agakov, 2004;
Nguyen et al., 2007; Nowozin et al., 2016; Poole et al., 2019; Wunder et al., 2021; Letizia et al.,
2023; Federici et al., 2023] and neural estimators [Papamakarios et al., 2017; Belghazi et al., 2018;
Oord et al., 2018; Song & Ermon, 2019; Rhodes et al., 2020; Letizia & Tonello, 2022; Brekelmans
et al., 2022] for MI estimation. In particular, the work by Song & Ermon [2019] and Federici et al.
[2023] classify recent MI estimation methods into discriminative and generative approaches. The first
class directly learns to estimate the ratio between joint and marginal densities, whereas the second
estimates and approximates them separately.

In this work, we explore the problem of estimating MI using generative approaches, but with an
original twist. In § 2 we review diffusion processes [Song et al., 2021] and in § 3 we explain how,
thanks to the Girsanov Theorem [Øksendal, 2003], we can leverage score functions to compute the
KL divergence between two distributions. This also enables the computation of the entropy of a
random variable. In § 4 we present our general recipe for computing the MI between two arbitrary
distributions, which we develop according to two modeling approaches, i.e., conditional and joint
diffusion processes. The conditional approach is simple and capitalizes on standard diffusion models,
but it is inherently more rigid, as it requires one distribution to be selected as the conditioning signal.
Joint diffusion processes, on the other hand, are more flexible, but require an extension of traditional
diffusion models, which deal with dynamics that allow data distributions to evolve according to
multiple arrows of time.
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Recent work by Czyż et al. [2023] argue that MI estimators are mostly evaluated assuming simple,
multivariate normal distributions for which MI is analytically tractable, and propose a novel bench-
mark that introduces several challenges for estimators, such as sparsity of interactions, long-tailed
distributions, invariance, and high mutual information. Furthermore, Song & Ermon [2019] introduce
measures of self-consistency (additivity under independence and the data processing inequality) for
MI estimators, to discern the properties of various approaches. In § 5 we evaluate several variants of
our method, which we call Mutual Information Neural Diffusion Estimation (MINDE), according
to such challenging benchmarks: our results show that MINDE outperforms the competitors on a
majority of tasks, especially those involving challenging data distributions. Moreover, MINDE passes
all self-consistency tests, a property that has remained elusive so far, for existing neural MI estimators.

2 DIFFUSION PROCESSES AND SCORE FUNCTIONS

We now revisit the theoretical background on diffusion processes, which is instrumental for the
derivation of the methodologies proposed in this work. Consider the real space RN and its associated
Borel σ−algebra, defining the measurable space

(
RN ,B(RN )

)
. In this work, we consider Ito pro-

cesses in RN with duration T <∞. Let Ω = D
(
[0, T ]× RN

)
, be the space of all N−dimensional

continuous functions in the interval [0, T ], and the filtration F induced by the canonical process
Xt(ω) = ωt, ω ∈ Ω. As starting point, we consider an Ito process:{

dXt = ftXtdt+ gtdWt,

X0 = x
(1)

with given continuous functions ft ≤ 0, gt > 0 and an arbitrary (deterministic) initial condition
x ∈ RN . Equivalently, we can say that initial conditions are drawn from the Dirac measure δx.
This choice completely determines the path measure Pδx of the corresponding probability space(
Ω,F ,Pδx

)
. Starting from Pδx we construct a new path measure Pµ by considering the product

between Pδx and measure µ in RN :

Pµ =

∫
RN

Pδxdµ(x). (2)

Conversely, the original measure Pδx can be recovered from Pµ by conditioning the latter on the
particular initial value x, i.e., the projection Pδx = Pµ#x. The new measure Pµ can be represented
by the following Stochastic Differential Equation (SDE):{

dXt = ftXtdt+ gtdWt,

X0 ∼ µ
(3)

associated to the corresponding probability spaces (Ω,F ,Pµ). We define νµt as the pushforward of
the complete path measure onto time instant t ∈ [0, T ], where by definition νµ0 = µ.

It is instrumental for the scope of this work to study how the path measures and the SDEs represen-
tations change under time reversal. Let X̂t

def
= ωT−t be the time-reversed canonical process. If the

canonical process Xt is represented as in Eq. (3) under the path measure Pµ, then the time reversed
process X̂t has SDE representation [Anderson, 1982]:{

dX̂t = −fT−tX̂t + g2T−ts
µ
T−t(X̂t)dt+ gT−tdŴt,

X̂0 ∼ νµT
(4)

with corresponding path-reversed measure P̂µ, on the probability spaces with time-reversed filtration.

Next, we define the score function of the densities associated to the forward processes. In particular,
sµt (x)

def
= ∇ log (ν̄µt (x)), where ν̄µt (x) is the density associated to the measures νµt (x), computed with

respect to the Lebesgue measure,dνµt (x) = ν̄µt (x)dx. In general we cannot assume exact knowledge
of such true score function. Then, in practice, instead of the score function sµt (x), we use parametric
(θ) approximations thereof, s̃µt (x), which we call the score network. Training the score network can
be done by minimizing the following loss [Song et al., 2021; Huang et al., 2021; Kingma et al., 2021]:

L(θ) = EPµ

 T∫
0

g2t
2

∥∥∥s̃µt (Xt)−∇ log
(
ν̄
δX0
t (Xt)

)∥∥∥2dt
 , (5)
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where νδX0
t stands for the measure of the processes at time t, conditioned on some initial value X0.

3 KL DIVERGENCE AS DIFFERENCE OF SCORE FUNCTIONS

The MI between two random variables can be computed according to several equivalent expressions,
which rely on the KL divergence between measures and/or entropy of measures. We then proceed
to describe i) how to derive KL divergence between measures as the expected difference of score
functions, ii) how to estimate such divergences given parametric approximation of the scores (and the
corresponding estimation errors) and iii) how to cast the proposed methodology to the particular case
of entropy estimation. In summary, this Section introduces the basic building blocks that we use in
§ 4 to define our MI estimators.

We consider the KL divergence between two generic measures µA and µB in RN , i.e. KL
[
µA ∥ µB

]
,

which is equal to
∫
RN dµA log

(
dµA

dµB

)
, if the Radon-Nikodym derivative dµA

dµB exists (absolute con-

tinuity is satisfied), and +∞ otherwise. Since our state space is RN , the following disintegration
properties are valid [Léonard, 2014]:

dPµA

dPµB (ω) =
d
(
PµA

#ω0

)
d
(
PµB#ω0

) (ω)dµA(ω0)

dµB(ω0)
=

dµA(ω0)

dµB(ω0)
,
dP̂µA

dP̂µB
(ω) =

d
(
P̂µA

#ωT

)
d
(
P̂µB#ωT

) (ω)dνµA

T (ωT )

dνµ
B

T (ωT )
,

(6)

where we implicitly introduced the product representation P̂µA

=
∫
RN

P̂xdνµ
A

T (x), similarly to Eq. (2).

Thanks to such disintegration theorems, we can write the KL divergence between the overall path
measures PµA

and PµB

of two diffusion processes associated to the measures µA and µB as

KL
[
Pµ

A

∥ Pµ
B
]
= EPµA

[
log

dPµA

dPµB

]
= EPµA

[
log

dµA

dµB

]
= KL

[
µA ∥ µB

]
, (7)

where the second equality holds because, as observed on the left of Eq. (6), when conditioned on the
same initial value, the path measures of the two forward processes coincide.

Now, since the KL divergence between the path measures is invariant to time reversal, i.e.,
KL

[
PµA ∥ PµB

]
= KL

[
P̂µA ∥ P̂µB

]
, using similar disintegration arguments, it holds that:

KL
[
P̂µ

A

∥ P̂µ
B
]
= EP̂µA

log d
(
P̂µA

#ωT

)
d
(
P̂µB#ωT

)
+ EP̂µA

[
log

dνµ
A

T

dνµ
B

T

]
. (8)

The first term on the r.h.s of Eq. (8) can be computed using the Girsanov theorem [Øksendal, 2003] as

EP̂µA

 T∫
0

1

2g2t

∥∥∥g2t (sµA

t (X̂t)− sµ
B

t (X̂t)
)∥∥∥2dt

 = EPµA

 T∫
0

g2t
2

∥∥∥sµA

t (Xt)− sµ
B

t (Xt)
∥∥∥2dt

 .
(9)

The second term on the r.h.s of Eq. (8), equals KL
[
νµ

A

T ∥ νµ
B

T

]
: this is a vanishing term with T , i.e.

limT→∞ KL
[
νµ

A

T ∥ νµ
B

T

]
= 0. To ground this claim, we borrow the results by Collet & Malrieu

[2008], which hold for several forward diffusion SDEs of interest, such as the Variance Preserving
(VP), or Variance Exploding (VE) SDEs Song et al. [2021]. In summary, it is necessary to adapt the
classical Bakry-Émery condition of diffusion semigroup to the non homogeneous case, and exploit
the contraction properties of diffusion on the KL divergences.

Combining the different results, we have that:

KL
[
µA ∥ µB

]
= EPµA

 T∫
0

g2t
2

∥∥∥sµA

t (Xt)− sµ
B

t (Xt)
∥∥∥2dt

+ KL
[
νµ

A

T ∥ νµ
B

T

]
(10)
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which constitutes the basic equality over which we construct our estimators, described in § 3.1.

We conclude by commenting on the possibility of computing divergences in a latent space. Indeed, in
many natural cases, the density µA is supported on a lower dimensional manifoldM⊂ RN [Loaiza-
Ganem et al., 2022]. Whenever we can find encoder and decoder functions ψ, ϕ, respectively, such that
ϕ(ψ(x)) = x, µA — almost surely, and ϕ(ψ(x)) = x, µB — almost surely, the KL divergence can be
computed in the latent space obtained by the encoder ψ. Considering the pushforward measure µA ◦
ψ−1, it is indeed possible to show (proof in § A) that KL

[
µA ∥ µB

]
= KL

[
µA ◦ ψ−1 ∥ µB ◦ ψ−1

]
.

This property is particularly useful as it allows using score based models trained in a latent space to
compute the KL divergences of interest, as we do in § 5.2.

3.1 KL ESTIMATORS AND THEORETICAL GUARANTEES

Given the parametric approximations of the score networks through minimization of Eq. (5), and the
result in Eq. (10), we are ready to discuss our proposed estimator of the KL divergence. We focus on
the first term on the r.h.s. of Eq. (10), which has unknown value, and define its approximated version

e(µA, µB)
def
= EPµA

 T∫
0

g2t
2

∥∥∥s̃µA

t (Xt)− s̃µ
B

t (Xt)
∥∥∥2dt

 =

T∫
0

g2t
2
E
νµA

t

[∥∥∥s̃µA

t (Xt)− s̃µ
B

t (Xt)
∥∥∥2] dt,
(11)

where parametric scores, instead of true score functions, are used. By defining the score
error as ϵµ

A

t (x)
def
= s̃µ

A

t (x) − sµ
A

t (x), it is possible to show (see § A) that e(µA, µB) −

EPµA

[
T∫
0

g2t
2

∥∥∥sµA

t (Xt)− sµ
B

t (Xt)
∥∥∥2dt] has expression

d = EPµA

 T∫
0

g2t
2

∥∥∥ϵµA

t (Xt)− ϵµ
B

t (Xt)
∥∥∥2 + 2⟨sµ

A

t (Xt)− sµ
B

t (Xt), ϵ
µA

t (Xt)− ϵµ
B

t (Xt)⟩dt

 .
(12)

As for the second term on the r.h.s. of Eq. (10), KL
[
νµ

A

T ∥ νµ
B

T

]
, we recall that it is a quantity that

vanishes with large T . Consequently, given a sufficiently large diffusion time T the function e serves
as an accurate estimator of the true KL:

e(µA, µB) = KL
[
µA ∥ µB

]
+ d− KL

[
νµ

A

T ∥ νµ
B

T

]
≃ KL

[
µA ∥ µB

]
. (13)

An important property of our estimator is that it is neither an upper nor a lower bound of the true KL
divergence: indeed the d term of Eq. (13) can be either positive or negative. This property, frees our
estimation guarantees from the pessimistic results of McAllester & Stratos [2020]. Note also that,
counter-intuitively, larger errors norms

∥∥∥ϵµA

t (x)
∥∥∥ not necessarily imply larger estimation error of the

KL divergence. Indeed, common mode errors (reminiscent of paired statistical tests) cancel out. In
the special case where ϵµ

A

t (x) = ϵµ
B

t (x), the estimation error due to the approximate nature of the
score functions is indeed zero.

Accurate quantification of the estimation error is, in general, a challenging task. Indeed, techniques
akin to the works [De Bortoli, 2022; Lee et al., 2022; Chen et al., 2022], where guarantees are
provided w.r.t. to the distance between the real backward dynamics and the measures induced by the
simulated backward dynamics, KL

[
µA ∥ µ̃A

]
, are not readily available in our context. Qualitatively,

we observe that our estimator is affected by two sources of error: score networks that only approximate
the true score function and finiteness of T . The d term in Eq. (13), which is related to the score
discrepancy, suggests selection of a small time T (indeed we can expect such mismatch to behave as a
quantity that increases with T [Franzese et al., 2023]). It is important however to adopt a sufficiently
large diffusion time T such that KL

[
νµ

A

T ∥ νµ
B

T

]
is negligible. Typical diffusion schedules satisfy

these requirements. Note that, if the KL term is known (or approximately known), it can be included
in the definition of the estimator function, reducing the estimation error (see also discussion in § 3.2).
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Montecarlo Integration The analytical computation of Eq. (11) is, in general, out of reach.
However, Montecarlo integration is possible, by recognizing that samples from νµ

A

t can be obtained
through the sampling scheme X0 ∼ µA, Xt ∼ ν

δX0
t . The outer integration w.r.t. to the time instant is

similarly possible by sampling t ∼ U(0, T ), and multiplying the result of the estimation by T (since∫ T
0
(·)dt = TEt∼U(0,T )[(·)]). Alternatively, it is possible to implement importance sampling schemes

to reduce the variance, along the lines of what described by Huang et al. [2021], by sampling the
time instant non-uniformly and modifying accordingly the time-varying constants in Eq. (11). In both
cases, the Montecarlo estimation error can be reduced to arbitrary small values by collecting enough
samples, with guarantees described in [Rainforth et al., 2018].

3.2 ENTROPY ESTIMATION

We now describe how to compute the entropy associated to a given density µA, H(µA)
def
=∫

dµA(x) log µ̄A(x). Using the ideas for estimating the KL divergence, we notice that we can
compute KL

[
µA ∥ γσ

]
, where γ̄σ(x) stands for the standard Gaussian distribution with mean 0 and

covariance σ2I . Then, we can relate the entropy to such divergence through the following equality:

H(µA) + KL
[
µA ∥ γσ

]
= −

∫
dµA(x) log γ̄σ(x) =

N

2
log

(
2πσ2

)
+

EµA

[
X2

0

]
2σ2

. (14)

A simple manipulation of Eq. (14), using the results from § 3.1, implies that the estimation of the

entropy H(µA) involves three unknown terms: e(µA, γσ), KL
[
νµ

A

T ∥ νγσT
]

and
EµA [X2

0 ]
2σ2 . Now, the

score function associated to the forward process starting from γσ is analytically known and has value
sγσt (x) = −χ−1

t x, where χt =
(
k2t σ

2 + k2t
∫ t
0
k−2
s g2sds

)
I , with kt = exp

{(∫ t
0
fsds

)}
. More-

over, whenever T is large enough νµ
A

T ≃ γ1, independently on the chosen value of σ. Consequently

KL
[
νµ

A

T ∥ νγσT
]
≃ KL

[
γ1 ∥ γ√χT

]
, which is analytically available as N/2 (log (χT )− 1 + 1/χT ).

Quantification of such approximation is possible following the same lines defined by Collet & Malrieu
[2008]. In summary, we consider the following estimator for the entropy:

H(µA;σ) ≃ N

2
log

(
2πσ2

)
+

EµA

[
X2

0

]
2σ2

− e(µA, γσ)−
N

2

(
log (χT )− 1 +

1

χT

)
(15)

For completeness, we note that a related estimator has recently appeared in the literature [Kong et al.,
2022], although the technical derivation and objectives are different than ours.

4 COMPUTATION OF MUTUAL INFORMATION

In this work, we are interested in estimating the MI between two random variablesA,B. Consequently,
we need to define the joint, conditional and marginal measures. We consider the first random variable
A in RN to have marginal measure µA. Similarly, we indicate the marginal measure of the second
random variable B with µB . The joint measure of the two random variables C def

= [A,B], which is
defined in R2N , is indicated with µC . What remains to be specified are the conditional measures
of the first variable given a particular value of the second A |B = y, shortened with Ay, that we
indicate with the measure µAy , and the conditional measure of the second given a particular value
of the first, B |A = x, shortened with Bx, and indicated with µBx . This choice of notation, along
with Bayes theorem, implies the following set of equivalences: dµC(x, y) = dµAy (x)dµB(y) =
dµBx(y)dµA(x) and µA =

∫
µAydµB(y), µB =

∫
µBxdµA(x).

The marginal measures µA, µB are associated to diffusion of the form of Eq. (3). Similarly, the joint
µC and conditional µAy measures we introduced, are associated to forward diffusion processes:{

d [Xt, Yt]
⊤
= ft[Xt, Yt]

⊤dt+ gt [dWt,dW
′
t ]
⊤

[X0, Y0]
⊤ ∼ µC

,

{
dXt = ftXtdt+ gtdWt

X0 ∼ µAy
(16)

respectively, where the SDE on the l.h.s. is valid for the real space R2N , as defined in § 2.
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In this work, we consider two classes of diffusion processes. In the first case, the diffusion model
is asymmetric, and the random variable B is only considered as a conditioning signal. As such, we
learn the score associated to the random variable A, with a conditioning signal B, which is set to
some predefined null value when considering the marginal measure. This well-known approach [Ho
& Salimans, 2021] effectively models the marginal and conditional scores associated to µA and µAy

with a unique score network.

Next, we define a new kind of diffusion model for the joint random variable C, which allows
modelling the joint and the conditional measures. Inspired by recent trends in multi-modal generative
modeling [Bao et al., 2023; Bounoua et al., 2023], we define a joint diffusion process that allows
amortized training of a single score network, instead of considering separate diffusion processes and
their respective score networks, for each random variable. To do so, we define the following SDE:{

d [Xt, Yt]
⊤
= ft[αXt, βYt]

⊤dt+ gt [αdWt, βdW
′
t ]
⊤
,

[X0, Y0]
⊤ ∼ µC ,

(17)

with extra parameters α, β ∈ {0, 1}. This SDE extends the l.h.s. of Eq. (16), and describes the joint
evolution of the variables Xt, Yt, starting from the joint measure µC , with overall path measure PµC

.
The two extra coefficients α, β are used to modulate the speed at which the two portions Xt, Yt of
the process diffuse towards their steady state. More precisely, α = β = 1 corresponds to a classical
simultaneous diffusion (l.h.s. of Eq. (16)). On the other hand, the configuration α = 1, β = 0
corresponds to the case in which the variable Yt remains constant throughout all the diffusion (which
is used for conditional measures, r.h.s. of Eq. (16)). The specular case, α = 0, β = 1, similarly
allows to study the evolution of Yt conditioned on a constant value of X0. Then, instead of learning
three separate score networks (for µC , µAy and µBx ), associated to standard diffusion processes, the
key idea is to consider a unique parametric score, leveraging the unified formulation Eq. (17), which
accepts as inputs two vectors in RN , the diffusion time t, and the two coefficients α, β. This allows
to conflate in a single architecture: i) the score sµ

C

t (x, y) associated to the joint diffusion of the
variables A,B (corresponding to α = β = 1) and ii) the conditional score sµ

Ay

t (x) (corresponding
to α = 1, β = 0). Additional details are presented in § C.

4.1 MINDE: A FAMILY OF MI ESTIMATORS

We are now ready to describe our new MI estimator, which we call MINDE. As a starting point,
we recognize that the MI between two random variables A,B has several equivalent expressions,
among which Eqs. (18) to (20). On the left hand side of these expressions we report well-known
formulations for the MI, I(A,B), while on the right hand side we express them using the estimators
we introduce in this work, where equality is assumed to be valid up to the errors described in § 3.

H(A)− H(A |B) ≃− e(µA, γσ) +

∫
e(µAy , γσ)dµ

B(y), (18)∫
KL

[
µAy ∥ µA

]
dµB(y) ≃

∫
e(µAy , µA)dµB(y), (19)

H(C)− H(A |B)− H(B |A) ≃− e(µC , γσ) +

∫
e(µAy , γσ)dµ

B(y) +

∫
e(µBx , γσ)dµ

A(x). (20)

Note that it is possible to derive (details in § B) another equality for the MI:

I(A,B) ≃ EPµC

 T∫
0

g2t
2

[∥∥∥s̃µC

t ([Xt, Yt])− [s̃µ
AY0

t (Xt), s̃
µ
BX0

t (Yt)]
∥∥∥2]dt

 . (21)

Next, we describe how the conditional and joint modeling approaches can be leveraged to compute a
family of techniques to estimate MI. We evaluate all the variants in § 5.

Conditional Diffusion Models. We start by considering conditional models. A simple MI estimator
can be obtained considering Eq. (18). The entropy of A can be estimated using Eq. (15). Similarly,
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we can estimate the conditional entropy H(A |B) using the equality H(A |B) =
∫

H(Ay)dµ
B(y),

where the argument of the integral, H(Ay), can be again obtained using Eq. (15). Notice, that since
EµB(y)EµAy

[
X2

0

]
= EµA

[
X2

0

]
, when substracting the estimators of H(A) and H(A |B), all the

terms but the estimator functions e(·) cancels out, leading to the equality in Eq. (18). A second option
is to simply use Eq. (19) and leverage Eq. (11).

Joint diffusion models. Armed with the definition of a joint diffusion processes, and the corre-
sponding score function, we now describe the basic ingredients that allow estimation of the MI,
according to various formulations. Using the joint score function sµ

C

t ([x, y]), the estimation of the
joint entropy H(A,B) can be obtained with a straightforward application of Eq. (15). Similarly,
the conditional entropy H(A |B) =

∫
H(Ay)dµ

B(y) can be computed using sµ
Ay

t (x) to obtain the
conditional score. Notice that H(B |A) is similarly obtained. Given the above formulations of the
joint and conditional entropy, it is now easy to compute the MI according to Eq. (20), where we notice
that, similarly to what discussed for conditional models, many of the terms in the different entropy
estimations cancel out. Finally, it is possible to compute the MI according to Eq. (21). Interestingly,
this formulation allows to eliminate the need for the parameter σ of the entropy estimators, similarly
to the MINDE conditional variant, which shares this property as well (Eq. (18)).

5 EXPERIMENTAL VALIDATION

We now evaluate the different estimators proposed in § 4. In particular, we study conditional
and joint models (MINDE-C and MINDE-J respectively), and variants that exploit the difference
between the parametric scores inside the same norm ( Eqs. (19) and (21)) or outside it, adopting the
difference of entropies representation along with Gaussian reference scores sγc (Eqs. (18) and (20)).
Summarizing, we refer to the different variants as MINDE-C(σ), MINDE-C, and MINDE-J(σ),
MINDE-J, for Eqs. (18) to (21) respectively. Our empirical validation involves a large range of
synthetic distributions, which we present in § 5.1. We also analyze the behavior of all MINDE
variants according to self-consistency tests, as discussed in § 5.2.

For all the settings, we use a simple, stacked multi-layer perception (MLP) with skip connections
adapted to the input dimensions, and adopt VP-SDE diffusion Song et al. [2021]. We apply importance
sampling [Huang et al., 2021; Song et al., 2021] at both training and inference time. More details
about the implementation are included in § C.

5.1 MI ESTIMATION BENCHMARK

We use the evaluation strategy proposed by Czyż et al. [2023], which covers a range of distributions
going beyond what is typically used to benchmark MI estimators, e.g., multivariate normal distri-
butions. In summary, we consider high-dimensional cases with (possibly) long-tailed distributions
and/or sparse interactions, in the presence of several non trivial non-linear transformation. Bench-
marks are constructed using samples from several base distributions, including Uniform, Normal with
either dense or sparse correlation structure, and long-tailed Student distributions. Such samples are
further modified by deterministic transformations, including the Half-Cube homeomorphism, which
extends the distribution tails, and the Asinh Mapping, which instead shortens them, the Swiss Roll
Embedding and Spiral diffeomorphis, which alter the simple linear structure of the base distributions.

We compare MINDE against neural estimators, such as MINE [Belghazi et al., 2018], INFONCE [Oord
et al., 2018],NWJ [Nguyen et al., 2007] and DOE [McAllester & Stratos, 2020]. To ensure a
fair comparison between MINDE and other neural competitors, we consider architectures with a
comparable number of parameters. Note that the original benchmark in [Czyż et al., 2023] uses 10k
training samples, which are in many cases not sufficient to obtain stable estimates of the MI for our
competitors. Here, we use a larger training size (100k samples) to avoid confounding factors in our
analysis. In all our experiments, we fix σ = 1.0 for the MINDE-C(σ), MINDE-J(σ) variants, which
results in the best performance (an ablation study is included in § D).

Results: The general benchmark consists of 40 tasks (10 unique tasks× 4 parametrizations) de-
signed by combining distributions and MI-invariant transformations discussed earlier. We average
results over 10 seeds for MINDE variants and competitors, following the same protocol as in Czyż
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et al. [2023]. We present the full set of MI estimation tasks in Table 1. As in the original Czyż et al.
[2023], estimates for the different methods are presented with a precision of 0.1 nats, to improve visu-
alization. For low-dimensional distributions, benchmark results show that all methods are effective in
accurate MI estimation. Differences emerge for more challenging scenarios. Overall, all our MINDE
variants perform well. MINDE–C stands out as the best estimator with 35/40 estimated tasks with an
error within the 0.1 nats quantization range. Moreover, MINDE can accurately estimate the MI for
long tailed distributions (Student) and highly transformed distributions (Spiral, Normal CDF), which
are instead problematic for most of the other methods. The MINE estimator achieves the second best
performance, with an MI estimation within 0.1 nats from ground truth for 24/40 tasks. Similarly
to the other neural estimator baselines, MINE is limited when dealing with long tail distributions
(Student), and significantly transformed distributions (Spiral).

High MI benchmark: Through this second benchmark, we target high MI distributions. We
consider 3× 3 multivariate normal distribution with sparse interactions as done in Czyż et al. [2023].
We vary the correlation parameter to obtain the desired MI, and test the estimators when applying
Half-cube or Spiral transformations. Results in Figure 1 show that while on the non transformed
distribution (column (a)) all neural estimators nicely follow the ground truth, on the transformed
versions (columns (b) and (c)), MINDE outperforms competitors.

(a) Sparse Multinormal (b) Half-cube (c) Spiral

Figure 1: High MI benchmark: original (column (a)) and transformed variants (columns (b) and (c)).

5.2 CONSISTENCY TESTS

The second set of tests we perform are the self-consistency ones proposed in Song & Ermon
[2019], which aim at investigating properties of MI estimators on real data. Considering as random
variable A a sample from the MNIST (resolution 28 × 28) dataset, the first set of measurements
performed is the estimation of I(A,Br), where Br is equal to A for the first r rows, and set to
0 afterwards. It is evident that I(A,Br) is a quantity that increases with r, where in particular
I(A,B0) = 0. Testing whether this holds also for the estimated MI is referred to as independency
test. The second test proposed in Song & Ermon [2019] is the data-processing test, where given
that I(A; [Br+k, Br]) = I(A;Br+k), k > 0, the task is to verify it through estimators for different
values of k. Finally, the additivity tests aim at assessing whether for two independent images A1, A2

extracted from the dataset, the property I([A1, A2]; [B1
r , B

2
r ]) = 2I(A1;B1

r ) is satisfied also by the
numerical estimations.

For these tests, we consider diffusion models in a latent space, exploiting the invariance of KL
divergences to perfect auto-encoding (see § 3). First, we train for all tests deterministic auto-encoders
for the considered images. Then, through concatenation of the latent variables, as done in [Bao et al.,
2023; Bounoua et al., 2023], we compute the MI with the different schemes proposed in § 4. Results
of the three tests (averaged over 5 seeds) are reported in Figure 2. In general, all MINDE variants
show excellent performance, whereas none of the other neural MI estimators succeed at passing
simultaneously all tests, as can be observed from Figures 4,5,6 in the original Song & Ermon [2019]).

8



Published as a conference paper at ICLR 2024

(a) Baseline test (b) Data processing test (c) Additivity test

Figure 2: Consistency tests results on the MNIST dataset. Baseline test Figure 2a: Evaluation of I(A,Br)
I(A,B0)

. A is
an image and Br is an image containing the top t rows of A. Data processing test Figure 2b: Evaluation of
I(A,[Br+k,Br)])

I(A,Br+k)
(ideal value is 1). Additivity test Figure 2c: Evaluation of I([A1,A2],[B1

r ,B
2
r ])

I(A1,B1
r)

(ideal value is 2).

GT 0.2 0.4 0.3 0.4 0.4 0.4 0.4 1.0 1.0 1.0 1.0 0.3 1.0 1.3 1.0 0.4 1.0 0.6 1.6 0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.2 0.4 0.2 0.3 0.2 0.4 0.3 0.4 1.7 0.3 0.4

MINDE–J (σ = 1) 0.2 0.4 0.3 0.4 0.4 0.4 0.4 1.1 1.0 1.0 1.0 0.3 0.9 1.2 1.0 0.4 1.0 0.6 1.7 0.4 1.0 1.0 1.0 0.9 0.9 0.9 1.0 0.9 1.0 0.2 0.4 0.2 0.3 0.2 0.5 0.3 0.5 1.6 0.3 0.4
MINDE–J 0.2 0.4 0.3 0.4 0.4 0.4 0.4 1.2 1.0 1.0 1.0 0.3 1.0 1.3 1.0 0.4 1.0 0.6 1.7 0.4 1.1 1.0 1.0 1.0 0.9 0.9 1.1 1.0 1.0 0.1 0.2 0.2 0.3 0.2 0.5 0.3 0.4 1.7 0.3 0.4
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MINDE–C 0.2 0.4 0.3 0.4 0.4 0.4 0.4 1.0 1.0 1.0 1.0 0.3 1.0 1.3 1.0 0.4 1.0 0.6 1.6 0.4 1.0 1.0 1.0 0.9 0.9 0.9 1.0 1.0 1.0 0.1 0.3 0.2 0.3 0.2 0.4 0.3 0.4 1.7 0.3 0.4

MINE 0.2 0.4 0.2 0.4 0.4 0.4 0.4 1.0 1.0 1.0 1.0 0.3 1.0 1.3 1.0 0.4 1.0 0.6 1.6 0.4 0.9 0.9 0.9 0.8 0.7 0.6 0.9 0.9 0.9 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.4 1.7 0.3 0.4
InfoNCE 0.2 0.4 0.3 0.4 0.4 0.4 0.4 1.0 1.0 1.0 1.0 0.3 1.0 1.3 1.0 0.4 1.0 0.6 1.6 0.4 0.9 1.0 1.0 0.8 0.8 0.8 0.9 1.0 1.0 0.2 0.3 0.2 0.3 0.2 0.4 0.3 0.4 1.7 0.3 0.4
D-V 0.2 0.4 0.3 0.4 0.4 0.4 0.4 1.0 1.0 1.0 1.0 0.3 1.0 1.3 1.0 0.4 1.0 0.6 1.6 0.4 0.9 1.0 1.0 0.8 0.8 0.8 0.9 1.0 1.0 0.0 0.0 0.1 0.1 0.2 0.2 0.2 0.4 1.7 0.3 0.4
NWJ 0.2 0.4 0.3 0.4 0.4 0.4 0.4 1.0 1.0 1.0 1.0 0.3 1.0 1.3 1.0 0.4 1.0 0.6 1.6 0.4 0.9 1.0 1.0 0.8 0.8 0.8 0.9 1.0 1.0 0.0 0.0 0.0 -0.6 0.1 0.1 0.2 0.4 1.7 0.3 0.4
DoE(Gaussian) 0.2 0.5 0.3 0.6 0.4 0.4 0.4 0.7 1.0 1.0 1.0 0.4 0.7 7.8 1.0 0.6 0.9 1.3 0.4 0.7 1.0 1.0 0.5 0.6 0.6 0.6 0.7 0.8 6.7 7.9 1.8 2.5 0.6 4.2 1.2 1.6 0.1 0.4
DoE(Logistic) 0.1 0.4 0.2 0.4 0.4 0.4 0.4 0.6 0.9 0.9 1.0 0.3 0.7 7.8 1.0 0.6 0.9 1.3 0.4 0.8 1.1 1.0 0.5 0.6 0.6 0.7 0.8 0.8 2.0 0.5 0.8 0.3 1.5 0.6 1.6 0.1 0.4
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Table 1: Mean MI estimates over 10 seeds using N = 10k test samples against ground truth (GT). Color indicates
relative negative (red) and positive bias (blue). All methods were trained with 100k samples. List of abbreviations
( Mn: Multinormal, St: Student-t, Nm: Normal, Hc: Half-cube, Sp: Spiral)

6 CONCLUSION

The estimation of MI stands as a fundamental goal in many areas of machine learning, as it enables
understanding the relationships within data, driving representation learning, and evaluating generative
models. Over the years, various methodologies have emerged to tackle the difficult task of MI estima-
tion, addressing challenges posed by high-dimensional, real-world data. Our work introduced a novel
method, MINDE, which provides a unique perspective on MI estimation by leveraging the theory
of diffusion-based generative models. We expanded the classical toolkit for information-theoretic
analysis, and showed how to compute the KL divergence and entropy of random variables using the
score of data distributions. We defined several variants of MINDE, which we have extensively tested
according to a recent, comprehensive benchmark that simulates real-world challenges, including
sparsity, long-tailed distributions, invariance to transformations. Our results indicated that our meth-
ods outperform state-of-the-art alternatives, especially on the most challenging tests. Additionally,
MINDE variants successfully passed self-consistency tests, validating the robustness and reliability
of our proposed methodology.

Our research opens up exciting avenues for future exploration. One compelling direction is the
application of MINDE to large-scale multi-modal datasets. The conditional version of our approach
enables harnessing the extensive repository of existing pre-trained diffusion models. For instance,
it could find valuable application in the estimation of MI for text-conditional image generation.
Conversely, our joint modeling approach offers a straightforward path to scaling MI estimation to
more than two variables. A scalable approach to MI estimation is particularly valuable when dealing
with complex systems involving multiple interacting variables, eliminating the need to specify a
hierarchy among them.
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Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information.
Physical review E, 69(6):066138, 2004.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence for score-based generative modeling with
polynomial complexity. Advances in Neural Information Processing Systems, 35:22870–22882,
2022.
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MINDE: MUTUAL INFORMATION NEURAL DIFFUSION ESTIMATION —
SUPPLEMENTARY MATERIAL

A PROOFS OF § 3

Proof of Auto-encoder invariance of KL. Whenever we can find encoder and decoder functions ϕ, ψ
respectively such that ϕ(ψ(x)) = x, µA− almost surely and ϕ(ψ(x)) = x, µB− almost surely, the
Kullback-Leibler divergence can be computed in the latent space obtained by the encoder ψ:

KL
[
µA ∥ µB

]
=

∫
M

log
dµA

dµB
dµA =∫

M
log

(
dµA

dµB
◦ ϕ ◦ ψ

)
dµA =

∫
ψ(M)

log

(
dµA

dµB
◦ ϕ

)
d
(
µA ◦ ψ−1

)
=∫

ψ(M)

log

(
dµA

dµB
◦ ψ(−1)

)
d
(
µA ◦ ψ−1

)
= KL

[
µ̃A ∥ µ̃B

]
. (22)

Proof of Eq. (12). To prove such claim, it is sufficient to start from the r.h.s. of Eq. (11), substitute
to the parametric scores their definition with the errors ϵµ

A

t (x) = s̃µ
A

t (x)− sµ
A

t (x), and expand the
square:

T∫
0

g2t
2
E
νµA

t

[∥∥∥s̃µA

t (Xt)− s̃µ
B

t (Xt)
∥∥∥2] dt =

T∫
0

g2t
2
E
νµA

t

[∥∥∥sµA

t (Xt) + ϵµ
A

t (x)− sµ
B

t (Xt)− ϵµ
B

t (x)
∥∥∥2] dt =

T∫
0

g2t
2
E
νµA

t

[∥∥∥sµA

t (Xt)− sµ
B

t (Xt)
∥∥∥2]dt+

T∫
0

g2t
2
E
νµA

t

[∥∥∥ϵµA

t (Xt)− ϵµ
B

t (Xt)
∥∥∥2 + 2⟨sµ

A

t (Xt)− sµ
B

t (Xt)+, ϵ
µA

t (Xt)− ϵµ
B

t (Xt)⟩
]
dt,

from which the definition of d holds.

B PROOF OF EQ. (21)

We start with the approximation of Eq. (20):

I(A,B) ≃ −e(µC , γσ) +
∫
e(µAy , γσ)dµ

B(y) +

∫
e(µBx , γσ)dµ

A(x). (23)

Since the approximation is valid for any σ, we select the limit of σ → ∞, where the reference
score χ−1

t x converges to zero, and can thus be neglected from the estimators integral (for example,
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e(µA, γ∞) ≃
T∫
0

g2t
2 E

νµA

t

[∥∥∥s̃µA

t (Xt)
∥∥∥2] dt). This allows to obtain:

I(A,B) ≃ −
T∫

0

g2t
2

∫
dνµ

C

t ([x, y])
∥∥∥s̃µC

t ([x, y])
∥∥∥2dt+

∫  T∫
0

g2t
2

∫
dνµ

Ay

t (x)
∥∥∥s̃µAy

t (x)
∥∥∥2dt

 dµB(y)+

∫  T∫
0

g2t
2

∫
dνµ

Bx

t (y)
∥∥∥s̃µBx

t (y)
∥∥∥2dt

 dµA(x).

As a further step in the derivation of our approximation, we consider the estimated scores to be
sufficiently good, such that we substitute the parametric with the true scores. In such case, the
following holds:

I(A,B) ≃
T∫

0

g2t
2

∫
dµC([x0, y0])dν

δ[x0,y0]

t ([x, y])

(
−
∥∥∥sµC

t ([x, y])
∥∥∥2 + ∥∥∥sµAy0

t (x)
∥∥∥2 + ∥∥∥sµBx0

t (y)
∥∥∥2)dt =

T∫
0

g2t
2

∫
dµC([x0, y0])dν

δ[x0,y0]

t ([x, y])

(
−
∥∥∥sµC

t ([x, y])
∥∥∥2 + ∥∥∥[sµAy0

t (x), sµ
Bx0

t (y)]
∥∥∥2)dt =

T∫
0

g2t
2

∫
dµC([x0, y0])dν

δ[x0,y0]

t ([x, y])

(
−2

∥∥∥sµC

t ([x, y])
∥∥∥2 + ∥∥∥sµC

t ([x, y])− [sµ
Ay0

t (x), sµ
Bx0

t (y)]
∥∥∥2+

2
〈
sµ

C

t ([x, y]), [sµ
Ay0

t (x), sµ
Bx0

t (y)]
〉)

dt.

Recognizing that the term
∥∥∥sµC

t ([x, y])− [sµ
Ay0

t (x), sµ
Bx0

t (y)]
∥∥∥2, averaged over the measures, is

just Eq. (21) in disguise, what remain to be assessed is the following:

T∫
0

g2t
2

∫
dµC([x0, y0])dν

δ[x0,y0]

t ([x, y])

(
−2

∥∥∥sµC

t ([x, y])
∥∥∥2 + 2

〈
sµ

C

t ([x, y]), [sµ
Ay0

t (x), sµ
Bx0

t (y)]
〉)

dt = 0. (24)

In particular, we focus on the term:

T∫
0

g2t
2

∫
dµC([x0, y0])dν

δ[x0,y0]

t ([x, y])
〈
sµ

C

t ([x, y]), [sµ
Ay0

t (x), sµ
Bx0

t (y)]
〉
dt =

T∫
0

g2t
2

∫
x,y

〈
sµ

C

t ([x, y]),

[∫
x0,y0

dµC([x0, y0])dν
δ[x0,y0]

t ([x, y])sµ
Ay0

t (x),

∫
x0,y0

dµC([x0, y0])dν
δ[x0,y0]

t ([x, y])sµ
Bx0

t (y)

]〉
dt.

(25)
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Since dν
δ[x0,y0]

t ([x, y]) = dν
δx0
t (x)dν

δy0
t (y) and dµC([x0, y0]) = dµAy0 (x0)dµ

B(y0), then∫
x0

dµC([x0, y0])dν
δ[x0,y0]

t ([x, y]) = dνµ
Ay0

t (x)dν
δy0
t (y)dµB(y0). Consequently:∫

x0,y0

dµC([x0, y0])dν
δ[x0,y0]

t ([x, y])sµ
Ay0

t (x) =

∫
y0

dνµ
Ay0

t (x)dν
δy0
t (y)dµB(y0)s

µAy0

t (x) =

∫
y0

dνµ
Ay0

t (x)dν
δy0
t (y)dµB(y0)∇ log

(
ν̄µ

Ay0

t (x)
)
=

∫
y0

dνµ
Ay0

t (x)dν
δy0
t (y)dµB(y0)

∇ν̄µ
Ay0

t (x)

ν̄µ
Ay0

t (x)
=

dx

∫
y0

dν
δy0
t (y)dµB(y0)∇ν̄µ

Ay0

t (x) = dx∇
(∫

y0

dν
δy0
t (y)dµB(y0)ν̄

µAy0

t (x)

)
=

dxdνµ
B

t (y)∇
(∫

y0

dµB |Yt=y(y0)ν̄
µAy0

t (x)

)
= dxdνµ

B

t (y)∇
(
ν̄µ

A |Yt=y

t (x)
)
,

where in the last line we introduced: µB |Yt=y(y0), the measure of the random variable B condition-
ally on the fact that the diffused variable B after a time t is equal to y and νµ

A |Yt=y

, the conditional
measure of the diffused variable A at time t, conditionally on the diffused variable B after a time t
equal to y. Finally

dxdνµ
B

t (y)∇
(
ν̄µ

A |Yt=y

t (x)
)
= ν̄µ

A |Yt=y

t (x)dxdνµ
B

t (y)
∇

(
ν̄µ

A |Yt=y

t (x)
)

ν̄µ
A |Yt=y

t (x)
= dνµ

C

t ([x, y])sµ
A |Yt=y

t (x).

Along the same lines, we can prove the equality
∫
x0,y0

dµC([x0, y0])dν
δ[x0,y0]

t ([x, y])sµ
Bx0

t (y) =

dνµ
C

t ([x, y])sµ
B |Xt=x

t (y). Then, restarting from Eq. (25) we have:

T∫
0

g2t
2

∫
x,y

〈
sµ

C

t ([x, y]),

[∫
x0,y0

dµC([x0, y0])dν
δ[x0,y0]

t ([x, y])sµ
Ay0

t (x),

∫
x0,y0

dµC([x0, y0])dν
δ[x0,y0]

t ([x, y])sµ
Bx0

t (y)

]〉
dt =

T∫
0

g2t
2

∫
x,y

〈
sµ

C

t ([x, y]),
[
dνµ

C

t ([x, y])sµ
A |Yt=y

t (x),dνµ
C

t ([x, y])sµ
B |Xt=x

t (y)
]〉

dt =

T∫
0

g2t
2

∫
x,y

dνµ
C

t ([x, y])
〈
sµ

C

t ([x, y]), [sµ
A |Yt=y

t (x), sµ
B |Xt=x

t (y)]
〉
dt =

T∫
0

g2t
2

∫
x,y

dνµ
C

t ([x, y])
∥∥∥sµC

t ([x, y])
∥∥∥2dt,

which finally allows to prove Eq. (24) and claim validity of Eq. (21).

C IMPLEMENTATION DETAILS

In this Section, we provide additional technical details of MINDE. We discuss the different variants
of our method their implementation details, including detailed information about the MI estimators
alternatives considered in § 5.

C.1 MINDE-C

In all experiments, we consider the first variable as the main variable and the second variable as the
conditioning signal. A single neural network is used to model the conditional and unconditional score.
It accepts as inputs the two variables, the diffusion time t, and an additionally binary input c which
enable the conditional mode. To enable the conditional mode, we set c = 1 and feed the network
with both the main variable and the conditioning signal, obtaining s̃µ

A
Y0

t . To obtain the marginal
score s̃µ

A

t , we set c = 0 and the conditioning signal is set to zero value.
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Algorithm 1: MINDE–C (Single Training Step)

Data: [X0, Y0] ∼ µC
parameter :netθ(), with θ current parameters
t ∼ U [0, T ] // Importance sampling can be used to reduce variance

Xt ← ktX0 +
(
k2t

∫ t
0
k−2
s g2sds

) 1
2

ϵ, with ϵ ∼ γ1 // r.h.s. of Eq. (16), diffuse

the variable X to timestep t
c ∼ Bernoulli(d) // Sample binary variable c with probability d
if c = 0 then

ϵ̂

(k2t
∫ t
0
k−2
s g2sds)

1
2
← netθ([Xt, 0], t, c = 0) // Estimated unconditional score

else
ϵ̂

(k2t
∫ t
0
k−2
s g2sds)

1
2
← netθ([Xt, Y0], t, c = 1)) // Estimated conditional score

L =
g2t

(k2t
∫ t
0
k−2
s g2sds)

∥ϵ− ϵ̂∥2 // Compute Montecarlo sample associated to

Eq. (5)
return Update θ according to gradient of L

Algorithm 2: MINDE–C

Data: [X0, Y0] ∼ µC
parameter :σ, option
t ∼ U [0, T ] // Importance sampling can be used to reduce variance

Xt ← ktX0 +
(
k2t

∫ t
0
k−2
s g2sds

) 1
2

ϵ, with ϵ ∼ γ1 // r.h.s. of Eq. (16), diffuse

the variable X to timestep t

s̃µ
A

t ← netθ([Xt, 0], t, c = 0) // Use the unique score network to compute

s̃
µA

Y0
t ← netθ([Xt, Y0], t, c = 1)) // marginal and conditional scores

if option = 1 then

Î ← T
g2t
2

∥∥∥s̃µA

t − s̃
µ
AY0

t

∥∥∥2
else

χt ←
(
k2t σ

2 + k2t
∫ t
0
k−2
s g2sds

)
Î ← T

g2t
2

[∥∥∥s̃µA

t + Xt

χt

∥∥∥2 − ∥∥∥s̃µAY0

t + Xt

χt

∥∥∥2]
return Î

A randomized procedure is used for training. For each training step, with probability d, the main
variable is diffused and the score network is fed with the diffused variable, the conditioning variable,
the diffusion time signal and the conditioning signal is set to c = 1. On the contrary, with probability
1−d, to enable the network to learn the unconditional score, the network is fed only with the diffused
modality, the diffusion time and c = 0. In contrast to the first case, the conditioning is not provided
to the score network and replaced with a zero value vector. Pseudocode is presented in Algorithm 1.

Actual estimation of the MI is then possible either by leveraging Eq. (18) or Eq. (19), referred to in
the main text as difference outside or inside the score respectively (MINDE-C(σ), MINDE-C). A
pseudo-code description is provided in Algorithm 2.

C.2 MINDE-J

The joint variant of our method, MINDE-J is based on the parametrized joint processes in Eq. (17).
Also in this case, instead of training a separate score network for each possible combination of
conditional modalities, we use a single architecture that accepts both variables, the diffusion time
t and the coefficients α, β. This approach allows modelling the joint score network s̃µ

C

t by setting
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α = β = 1. Similarly, to obtain the conditional scores it is sufficient to set α = 1, β = 0 or

α = 0, β = 1, corresponding to s̃
µA
Y0
t and s̃

µA
X0
t respectively.

Training is carried out again through a randomized procedure. At each training step, with probability
d, both variables are diffused. In this case, the score network is fed with diffusion time t, along with
Xt, Yt and the two parameters α = β = 1. With probability 1− d, instead, we randomly select one
variable to be diffused, while we keeping constant the other. For instance, if A is the one which is
diffused, we set α = 1 and β = 0. Further details are presented in Algorithm 3.

Once the score network is trained, MI estimation can be obtained following the procedure explained
in Algorithm 4. Two options are possible, either by computing the difference between the parametric
scores outside the same norm (Eq. (20) MINDE-J(σ) or inside (Eq. (21) MINDE-J). Similarly to the
conditional case, an option parameter can be used to switch among the two.

Algorithm 3: MINDE–J (Single Training Step)

Data: [X0, Y0] ∼ µC
parameter :netθ(), with θ current parameters
t ∼ U [0, T ] // Importance sampling can be used to reduce variance

[Xt, Yt]← kt[X0, Y0] +
(
k2t

∫ t
0
k−2
s g2sds

) 1
2

[ϵ1, ϵ2], with ϵ1,2 ∼ γ1 // l.h.s. Eq. (16),

diffuse modalities to timestep t
c ∼ Bernoulli(d) // Sample binary variable c with probability d
if c = 0 then

[ϵ̂1,ϵ̂2]

(k2t
∫ t
0
k−2
s g2sds)

1
2
← netθ([Xt, Yt], t, [1, 1]) // Estimated unconditional score

L =
g2t

(k2t
∫ t
0
k−2
s g2sds)

∥[ϵ1, ϵ2]− [ϵ̂1, ϵ̂2]∥2 // Compute Montecarlo sample

associated to Eq. (5)
else

if Bernoulli(0.5) then
ϵ̂1

(k2t
∫ t
0
k−2
s g2sds)

1
2
← netθ([Xt, Y0], t, [1, 0]) // Estimated Conditional score

L =
g2t

(k2t
∫ t
0
k−2
s g2sds)

∥ϵ1 − ϵ̂1∥2

else
ϵ̂2

(k2t
∫ t
0
k−2
s g2sds)

1
2
← netθ([X0, Yt], t, [0, 1]) // Estimated Conditional score

L =
g2t

(k2t
∫ t
0
k−2
s g2sds)

∥ϵ2 − ϵ̂2∥2

return Update θ according to gradient of L

C.3 TECHNICAL SETTINGS FOR MINDE-C AND MINDE-J

We follow the implementation of Bounoua et al. [2023] which uses stacked multi-layer perception
(MLP) with skip connections. We adopt a simplified version of the same score network architecture:
this involves three Residual MLP blocks. We use the Adam optimizer [Kingma & Ba, 2015] for
training and Exponential moving average (EMA) with a momentum parameter m = 0.999. We use
importance sampling at train and test-time. We returned the mean estimate on the test data set over
10 runs.

The hyper-parameters are presented in Table 2 and Table 3 for MINDE-J and MINDE-C respectively.
Concerning the consistency tests (§ 5.2), we independently train an autoencoder for each version of
the MNIST dataset with r rows available.
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Algorithm 4: MINDE–J

Data: [X0, Y0] ∼ µC
parameter :σ, option
t ∼ U [0, T ] // Importance sampling can be used to reduce variance

[Xt, Yt]← kt[X0, Y0] +
(
k2t

∫ t
0
k−2
s g2sds

) 1
2

[ϵ1, ϵ2], with ϵ1,2 ∼ γ1 // l.h.s. Eq. (16),

diffuse modalities to timestep t

s̃µ
C

t ← netθ([Xt, Yt], t, [1, 1]) // Use the unique score network to compute
joint

s̃
µA
Y0
t ← netθ([Xt, Y0], t, [1, 0]) // and conditional scores

s̃
µA
X0
t ← netθ([X0, Yt], t, [0, 1])

if option = 1 then

Î ← T
g2t
2

∥∥∥s̃µC

t − [s̃µ
AY0

t , s̃µ
BX0

t ]
∥∥∥2

else
χt ←

(
k2t σ

2 + k2t
∫ t
0
k−2
s g2sds

)
Î ← T

g2t
2

[∥∥∥s̃µC

t + [Xt,Yt]
χt

∥∥∥2 − ∥∥∥s̃µAY0

t + Xt

χt

∥∥∥2 − ∥∥∥s̃µBX0

t + Yt

χt

∥∥∥2]
return Î

Table 2: MINDE-J score network training hyper-parameters. Dim of the task correspond the sum of the two
variables dimensions, whereas d corresponds to the randomization probability.

d Width Time embed Batch size Lr Iterations Number of params

Benchmark (Dim ≤ 10) 0.5 64 64 128 1e-3 234k 55490
Benchmark (Dim = 50) 0.5 128 128 256 2e-3 195k 222100
Benchmark (Dim = 100) 0.5 256 256 256 2e-3 195k 911204

Consistency tests 0.5 256 256 64 1e-3 390k 1602080

C.4 NEURAL ESTIMATORS IMPLEMENTATION

We use the package benchmark-mi1 implementation to study the neural estimators. We use MLP
architecture with 3 layers of the same width as in MINDE. We use the same training procedure as in
Czyż et al. [2023], including early stopping strategy. We return the highest estimate on the test data.

D ABLATIONS STUDY

D.1 σ ABLATION STUDY

We hereafter report in Table 4 the results of all the variants of MINDE, including different values
of σ parameter. For completeness in our experimental campaign, we report also the results of non
neural competitors, similarly to the work in Czyż et al. [2023]. In summary, the MINDE-C/J versions
(“difference inside”) of our estimator prove to be more robust than the MINDE-C/J(σ) (“difference
outside”) counterpart, especially for the joint variants. Nevertheless, it is interesting to notice that
the “difference outside” variants are stable and competitive against a very wide range of values of σ
(ranging from 0.5 to 10), with their best value typically achieved for σ = 1.0.

1https://github.com/cbg-ethz/bmi
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Table 3: MINDE-C score network training hyper-parameters. Dim of the task correspond the sum of the two
variables dimensions, and d corresponds to the randomization probability.

d Width Time embed Batch size Lr Iterations Number of params

Benchmark (Dim ≤ 10) 0.5 64 64 128 1e-3 390k 55425
Benchmark (Dim = 50) 0.5 128 128 256 2e-3 290k 220810
Benchmark (Dim = 100) 0.5 256 256 256 2e-3 290k 898354

Consistency tests 0.5 256 256 64 1e-3 390k 1597968
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D.2 FULL RESULTS WITH STANDARD DEVIATION

We report in Table 5 mean results without quantization for the different methods. Figures 3 and 4
contains box-plots for all the competitors and all the tasks.
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Figure 3: We report MI estimate results over 10 seeds for N =10000 for our method and competitors for training
size 100k sample. A method absent from the depiction implies either non convergence during training or results
out of scale
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Figure 4: We report MI estimate results over 10 seeds for N =10000 for our method and competitors for training
size 100k sample.

D.3 TRAINING SIZE ABLATION STUDY

We here report, in Figures 5 to 8 the results of our ablation study on the training size, varying in the
range 5k,10k,50k,100k.
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Figure 5: Training Size ablation study : We report MI estimate results for our method and competitors as a
function of the training size used (5k,10k,50k,100k). For readability, we discard the baselines with estimation
(error > 2 * GT) or high standard deviation. All results are averaged over 5 seeds. Due the benchmark size, we
split the results into 4 figures each containing 10 benchmarks. A method absent from the depiction implies either
non convergence during training or results out of scale. In this first plot we report tasks 1-10.
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Figure 6: Part 2 of Figure 5, tasks 11-20.
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Figure 7: Part 3 of Figure 5, tasks 21-30.
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Figure 8: Part 4 of Figure 5, tasks 31-40.

E ANALYSIS OF CONDITIONAL DIFFUSION DYNAMICS USING MINDE

Diffusion models have achieved outstanding success in generating high-quality images, text, audio,
and video across various domains. Recently, the generation of diverse and realistic data modalities
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(images, videos, sound) from open-ended text prompts [Ramesh et al., 2022; Saharia et al., 2022;
Rombach et al., 2022] has projected practitioners into a whole new paradigm for content creation.
A remarkable property of our MINDE method is its generalization to any score based model. Then,
our method can be considered as a plug and play tool to explore information theoretic properties of
score-based diffusion models: in particular, in this section we use MINDE to estimate MI in order to
explain the dynamics of image conditional generation, by analyzing the influence of the prompt on
the image generation through time.

Prompt influence of conditional sampling. Generative diffusion models can be interpreted as
iterative schemes in which starting from pure noise, at each iteration, refinements are applied until a
sample from the data distribution is obtained. In recent work on text conditional image generation
(image A, text prompt B) by Balaji et al. [2022], it has been observed that the role of the text prompt
throughout the generative process has not constant importance . Indeed: “At the early sampling
stage, when the input data to the denoising network is closer to the random noise, the diffusion model
mainly relies on the text prompt to guide the sampling process. As the generation continues, the model
gradually shifts towards visual features to denoise images, mostly ignoring the input text prompt”
[Balaji et al., 2022]. Such claim has been motivated by carefully engineered metric analysis such as
self and cross attention maps between images and text, as a function of the generation time, as well
as visual inspection of the change in generated images when switching the prompt at different stages
of the refinement.

Using MINDE, we can refine heuristic-based methods and produce a similar analysis using theo-
retically sound information theoretic quantities. In particular, we analyze the conditional mutual
information I(A,B |Xτ ), being Xτ the result of the generation process at time τ (recall that the
time runs backward from T to 0 during generation, and consequently A = X0 and B = Y0). Such
metric quantifies, given an observation of the generation process at time τ , how much information
the prompt B carries about the final generated image A. Clearly, when τ = T , the initial sample is
independent from both A and B. Consequently, the conditional mutual information will coincide
with I(A,B).

More formally, we consider the following quantity:

I(A,B |Xτ ) = I(A,B)− [I(Xτ , B)− I(Xτ , A |B)] , (26)
= I(A,B)− [H(Xτ )−H(Xτ |B)−H(Xτ |B) +H(Xτ |A,B)] , (27)

= I(A,B)− I(Xτ , B), (28)

where Eq. (27) is simplified due to the Markov chain A − X0 − Xτ , so H(Xτ |A,B) =
H(Xτ |X0, B) = H(Xτ |B). Next, we use our MINDE estimator, whereby the marginal and condi-
tional entropies can be estimated efficiently. The following approximation of the quantity in interest
can be derived:

I(A,B |Xτ ) ≃ EPµC

 τ∫
0

g2t
2

∥∥∥s̃µA

t (Xt)− s̃µ
AY0

t (Xt)
∥∥∥2dt

 (29)

In our experiments, we also include a MINDE-(σ) version which can be obtained similarly to Eq. (29).

Experimental setting. We perform our experimental analysis of the influence of a prompt on image
generation using Stable Diffusion [Rombach et al., 2022], using the original code-base and pre-trained
checkpoints.2 The original Stable Diffusion model was trained using the DDPM framework [Ho
et al., 2020] on images latent space. This framework is equivalent to the discrete-time version of
VPSDE [Song et al., 2021]. Using the text prompt samples from LAION dataset Schuhmann et al.
[2022], we synthetically generate image samples. We set guidance mechanism to 1.0 to ensure that

2https://huggingface.co/stabilityai/stable-diffusion-2-1
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the images only contain text conditional content. We use 1000 samples and approximate the integral
using a Simpson integrator 3 with a discretization over 1000 timesteps.

Results. We report in Figure 9 values of I(A,B |Xτ ) as a function of (reverse) diffusion time,
where A is in the image domain and B is in the text domain. In a similar vein to what observed
by Balaji et al. [2022], our results indicate that I(A,B |Xτ ) is very high when τ ≃ T , which
indicates that the text prompt has maximal influence during the early stage of image generation. This
measurement is relatively stable at high MI values until τ ≈ 0.8. Then, the influence of the prompt
gradually fades, as indicated by decreasing steadily MI values. This corroborates the idea that mutual
information can be adopted as an exploratory tool for the analysis of complex, high dimensional
distributions in real use cases.

The intuition pointed out by our MINDE estimator is further consolidated by the qualitative samples
in Figure 10, where we perform the following experiment: we test whether switching from an original
prompt to a different prompt during the backward diffusion semantically impacts the final generated
images. We observe that changing the prompt before τ ≃ 0.8 results almost surely with semantically
coherent generated image with the second prompt. Instead, when τ < 0.8, the second prompt
influence diminishes gradually. We observe that for all the qualitative samples shown in Figure 10
the second prompt has no influence on the generated image after τ < 0.7.

Figure 9: I(A,B |Xτ ) as a function of τ .

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.
simpson.html
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Figure 10: To validate the explanatory results obtained via the application of our MINDE estimator, we perform
the following experiment: Conditional generation is carried out with Prompt 1 until time τ , whereas after
the conditioning signal is switched to Prompt 2. We use the same Stable diffusion model as in the previous
experiment with guidance scale set to 9.

F SCALABALITY OF MINDE

In this Section, we study the generalization of our MINDE estimator to more than two random
variables. We consider the information interaction between three random variables A,B and C,
defined as:

I(A,B,C) = I(A,B)− I(A,B|C) (30)
= H(A)−H(A|B)− (H(A|B,C)−H(A,C)) (31)

Estimation of such quantity is possible through a simple extension of Eq. (17) to three random
variables, considering three parameters α, β, γ ∈ {0, 1}.
In particular, we explore the case where the three random variables are distributed according to
a multivariate Gaussian distribution: A ∼ γ1, B = A + N1 (with N1 ∼ γϵ) and C = A + N2

(with N2 ∼ γρ). By changing the values of the parameters, it is possible to change the value of the
interaction information. We report in Figure 11 the estimated values versus the corresponding ground
truths, showing that MINDE variants can be effectively adapted for the task of information estimation
between more than two random variables.

Figure 11: MI estimation results for MINDE-j on 3 variables
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