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Appendix

A ADDITIONAL FORMULATION DETAILS

A.1 MAXIMUM MEAN CALIBRATION ERROR

Along with our proposed S-TLBCE and the baseline S-MCE, we also apply the S-MMCE loss
function proposed in Fisch et al. (2022) for training a selective calibration system. This loss function
is defined as:

lS-MMCE(f, ĝ, h, x, y) =
1

n

[∑
i,j

|yci − ĥ(f(xi))|q|ycj − ĥ(f(xj))|q ĝ(xi)ĝ(xj)ϕ
(
ĥ(f(xi)), ĥ(f(xj))

)] 1
q

(10)

where ϕ is some similarity kernel, like Laplacian. On a high level, this loss penalizes pairs of in-
stances that have similar confidence and both are far from the true label yc (which denotes prediction
correctness 0 or 1). Further details and motivation for such an objective can be found in Fisch et al.
(2022).

A.2 HIGH PROBABILITY COVERAGE GUARANTEES

Since ĝ(x) ⩾ τ is a random variable with a Bernoulli distribution, we can apply the Hoeffding bound
(Hoeffding, 1963) to guarantee that with high probability empirical coverage β̂ (the proportion of
the target distribution where ĝ(x) ⩾ τ ) will be in some range.

Given a set V of nu i.i.d. unlabeled examples from the target distribution, we denote empirical
coverage on V as β̃. With probability at least 1− δ, β̂ will be in the range [β̃ − ϵ, β̃ + ϵ] where

ϵ =

√
log( 2δ )

2nu

For some critical coverage level β, τ can be decreased until β̃ − ϵ ⩾ β.

B ADDITIONAL EXPERIMENT DETAILS

In training we drop the denominator in lsel, as the coverage loss suffices to keep ĝ from collapsing to
0. Recalibration model code is taken from the accompanying code releases from Guo et al. (2017)4

(Temperature Scaling) and Kumar et al. (2019)5 (Platt Scaling, Histogram Binning, Platt Binning).

B.1 CALIBRATION MEASURES

We calculate ECE-1 and ECE-2 using the python library released by Kumar et al. (2019) 6. ECE-q
is calculated as:

ECE-q =

 1

|B|

|B|∑
j=1

(∑
i∈Bj

1{yi = ŷi}
|Bj |

−
∑

i∈Bj
f̃(xi)

|Bj |

)q
 1

q

(11)

where B = B1, ..., Bm are a set of m equal-mass prediction bins, and predictions are sorted and
binned based on their maximum confidence f̃(x). We set m = 15.

4https://github.com/gpleiss/temperature_scaling
5https://github.com/p-lambda/verified_calibration
6https://github.com/p-lambda/verified_calibration
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B.2 BASELINES

Our selection baselines include confidence-based rejection (“Confidence”) and multiple out-of-
distribution (OOD) detection methods (“Iso. Forest”, “One-class SVM”). The Confidence baseline
rejects examples with the smallest f̂(x) (or ĥ(f(x))), while the OOD methods are measured in the
embedding space of the pre-trained model. These methods are typical in selective classification for
accuracy. All selection baselines are applied to the recalibrated model in order to make the strongest
comparison. We make further comparisons to recalibration baselines, including temperature scal-
ing and Platt scaling, which have been described previously. Also present are binning methods
like histogram binning and Platt binning (Kumar et al., 2019). While these algorithms are non-
differentiable, and thus not eligible to be used as h in selective recalibration, they are quite effective
and thus important to include on their own for the sake of a thorough empirical investigation.

Next we describe how baseline methods are implemented. Our descriptions are based on creating
an ordering of the test set such that at a given coverage level β, a 1−β proportion of examples from
the end of the ordering are rejected.

B.2.1 CONFIDENCE-BASED REJECTION

Confidence based rejection is performed by ordering instances in a decreasing order based on f̃(x),
the maximum confidence the model has in any class for that example.

B.2.2 OUT OF DISTRIBUTION SCORES

The sklearn python library (Pedregosa et al., 2011) is used to produce the One-Class SVM and
Isolation Forest models. Anomaly scores are oriented such that more typical datapoints are given
higher scores; instances are ranked in a decreasing order.

B.3 IN-DISTRIBUTION EXPERIMENTS

Our selector g is a shallow fully-connected network (2 hidden layers with dimension 128).

B.3.1 CAMELYON17

Camelyon17 (Bandi et al., 2018) is a task where the input x is a 96x96 patch of a whole-slide
image of a lymph node section from a patient with potentially metastatic breast cancer, the label y
is whether the patch contains a tumor, and the domain d specifies which of 5 hospitals the patch was
from. We pre-train a DenseNet-121 model on the Camelyon17 train set using the code from Koh
et al. (2021)7. The validation set has 34,904 examples and accuracy of 91%, while the test set has
84,054 examples, and accuracy of 83%. Our selector g is trained with a learning rate of 0.0005,
the coverage loss weight λ is set to 32 (following (Geifman & El-Yaniv, 2019)), and the model is
trained with 1000 samples for 1000 epochs with a batch size of 100.

B.3.2 IMAGENET

ImageNet is a large scale image classification dataset. We extract the features, scores, and labels
from the 50,000 ImageNet validation samples using a pre-trained ResNet34 model from the torchvi-
sion library. Our selector g is trained with a learning rate of 0.00001, the coverage loss weight λ is
set to 32 (following (Geifman & El-Yaniv, 2019)), and the model is trained with 2000 samples for
1000 epochs with a batch size of 200.

B.4 OUT-OF-DISTRIBUTION EXPERIMENTS

Our selector g is a shallow fully-connected network (1 hidden layer with dimension 64) trained with
a learning rate of 0.0001, the coverage loss weight λ is set to 8, and the model is trained for 50
epochs (to avoid overfitting since this is an OOD setting) with a batch size of 256.

7https://github.com/p-lambda/wilds
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B.4.1 RXRX1

RxRx1 (Taylor et al., 2019) is a task where the input x is a 3-channel image of cells obtained by
fluorescent microscopy, the label y indicates which of the 1,139 genetic treatments (including no
treatment) the cells received, and the domain d specifies the batch in which the imaging experiment
was run. The validation set has 9,854 examples and accuracy of 18%, while the test set has 34,432
examples, and accuracy of 27%. 1000 samples are drawn for model training. Gaussian noise with
mean 0 and standard deviation 1 is added to training examples in order to promote robustness.

B.4.2 CIFAR-100

CIFAR-100 is a well-known image classification dataset, and we perform zero-shot image classifica-
tion with CLIP. We draw 2000 samples for model training, and test on 50,000 examples drawn from
the 750,000 examples in CIFAR-100-c. Data augmentation in training is performed using AugMix
(Hendrycks et al., 2019) with a severity level of 3 and a mixture width of 3.

C ADDITIONAL EXPERIMENT RESULTS

C.1 SELECTIVE RECALIBRATION WITH I.I.D. DATA

Here we include ECE-1 results for the experiments in Section 5.1. We note that unreported experi-
ments showed similar results with respect to Brier Score. Although our focus in this work is ECE,
for completeness those results will be included in future versions of this paper.

Figure 4: Selective calibration error on ImageNet and Camelyon17 for coverage level β ∈
{0.75, 0.8, 0.85, 0.9}. Left: Various re-calibration methods are trained using labeled validation
data. Middle: Selection baselines including confidence-based rejection and various OOD measures.
Right: Selective re-calibration with different loss functions.

C.2 TRADE-OFFS BETWEEN CALIBRATION ERROR AND ACCURACY

While accurate probabilistic output is the only concern in some domains and should be of at least
some concern in most domains, discrete label accuracy can also be important in some circumstances.
Figure 5 shows the selective accuracy and confidence histogram for the selective recalibration model
trained with S-TLBCE for RxRx1 and CIFAR-100 (and applied to shifted distributions). Together,
these figures illustrate that under different data and prediction distributions, selective recalibration
may increase or decrease accuracy. For RxRx1, the model tends to reject examples with higher
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confidence, which also tend to be more accurate. Thus, while ECE@β may improve with respect
to the full dataset, Accuracy@β is worse. On the other hand, for CIFAR-100-C, the model tends
to reject examples with lower confidence, which also tend to be less accurate. Accordingly, both
ECE@β and Accuracy@β improve with respect to the full dataset.

Figure 5: Left: Distribution of confidence among the full distribution and those examples accepted
for prediction (i.e. where g(x) = 1) at coverage level β = 0.8. Right: Selective accuracy in the
range β = [0.8, 1.0].

D TECHNICAL DETAILS

D.1 DETAILS ON DATA GENERATION MODEL

Definition 2 (Formal version of definition 1). For θ∗ ∈ Rp, a (θ∗, σ, α, r1, r2)-perturbed truncated-
Gaussian model is defined as the following distribution over (x, y) ∈ Rp × {1,−1}:

x | y ∼ zJ1 + (1− z)J2.

Here, J1 and J2 are two truncated Guassian distributions, i.e.

J1 ∼ ρ1N (y · θ∗, σ2I)1{x ∈ B(θ∗, r1) ∪ B(−θ∗, r1)},
J2 ∼ ρ2N (−y · αθ∗, σ2I)1{x ∈ B(α · θ∗, r2) ∪ B(−(α · θ∗, r2)}

where ρ1, ρ2 are normalization coefficients to make J1 and J2 properly defined; y follows the
Bernoulli distribution P(y = 1) = P(y = −1) = 1/2; and z follows a Bernoulli distribution
P(z = 1) = β.

For simplicity, throughout this paper, we set ρ1 = ρ2 and this is always achievable by setting r1/r2
appropriately. We also set α ∈ (0, 1/2).

D.2 JOINT LEARNING VERSUS SEQUENTIAL LEARNING

We also demonstrate that jointly learning a selection model g and temperature scaling parameter T
can outperform sequential learning of g and T .

Let us first denote g̃ := argmin S-ECE(g) such that E[g̃(x)] ≥ β and T̃ := argminR-ECE(T ). We
denote two types of expected calibration error under sequential learning of g and T , depending on
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which is optimized first.

ECER→S := min
g:E[g(x)]≥β

S-ECE(g, T̃ );

ECES→R := min
T∈R

R-ECE(g̃, T ).

Our second theorem shows these two types of expected calibration error for sequential learning are
lower bounded, while jointly learning g, T can reach zero calibration error.

Theorem 2. Under Assumption 3, if β > 2(1 − β), for any δ ∈ (0, 1) and θ̂ output by A , there
exist thresholds M ∈ N+ and τ2 > τ1 > 0: if max{r1, r2, σ} < τ2, τ1 < σ, and m > M , then
there exists a positive lower bound L, with probability at least 1− δ over Str

min
{

ECER→S ,ECES→R} > L.

However, there exists g0 satisfying E[g0(x)] ≥ β and T0, such that

SR-ECE(g0, T0) = 0.

Intuition and interpretation. If we first optimize the temperature scaling model to obtain T̃ , T̃
will not be equal to θ̂⊤θ∗/(σ2∥θ̂∥2). Then, when applying selection, there exists no g that can reach
0 calibration error since the temperature is not optimal for data in A or B. On the other hand, if we
first optimize the selection model and obtain g̃, g̃ will reject points in A instead of those in B because
points in A incur higher calibration error, and thus data from both A and B will be selected. In that
case, temperature scaling not will be able to push calibration error to zero because, similar to the
case in the earlier R-ECE analysis, the calibration error in A and B cannot reach 0 simultaneously
using a single temperature scaling model. On the other hand, the optimal jointly-learned solution
yields a set of predictions with zero expected calibration error.

D.3 DETAILS ON θ̂

Recall that we consider the θ̂ that is the output of a training algorithm A (Str) that takes the i.i.d.
training data set Str = {(xtr

i , ytri )}mi=1 as input. We imposed the following assumption on θ̂.
Assumption 3. For any given δ ∈ (0, 1), there exists θ0 ∈ Rp with ∥θ0∥ = Θ(1), that with
probability at least 1− δ

∥θ̂ − θ0∥ < ϕ(δ,m),

and ϕ(δ,m) goes to 0 as m goes to infinity. Also, there exist a threshold M ∈ N+ such that if
m > M , ϕ(δ,m) is a decreasing function of δ and n. Moreover,

min

{
θ⊤0 θ

∗

∥θ0∥2
, θ⊤0 θ

∗, ∥θ0∥
}

> 0.

We will prove the following lemma as a cornerstone for our future proofs.
Lemma 1. Under Assumption 3, for any δ ∈ (0, 1), there exists a threshold M ∈ N+, and constants
0 < I1 < I2, 0 < I3 < I4 < αI3, 0 < I5 < I6, such that if m > M , with probability at least 1− δ
over the randomness of Str,

θ̂⊤θ∗

∥θ̂∥2
∈ [I1, I2], θ̂⊤θ∗ ∈ [I3, I4], ∥θ̂∥ ∈ [I5, I6].

Proof. Under Assumption 3, we know m → ∞ leads to θ̂ → θ0. In addition, for any δ ∈ (0, 1)
there exists a threshold M ∈ N+ such that if m > M , ϕ(δ,m) is a decreasing function of δ and m,
which leads to

θ̂⊤θ∗

∥θ̂∥2
∈ [

θ⊤0 θ
∗

∥θ0∥2
− ε,

θ⊤0 θ
∗

∥θ0∥2
+ ε], θ̂⊤θ∗ ∈ [θ⊤0 θ

∗ − ε, θ⊤0 θ
∗ + ε], ∥θ̂∥ ∈ [∥θ0∥ − ε, ∥θ0∥+ ε]

for some small ε > 0 that makes the left end of the above intervals larger than 0 and θ⊤0 θ
∗ + ε <

α(θ⊤0 θ
∗−ε) hold for all r1, r2, σ,m as long as m > M . Then, we set Ii’s accordingly to each value

above.
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D.3.1 AN EXAMPLE ON TRAINING θ̂

In this section, we provide one example to justify Assumption 3, i.e. θ̂ =
∑m

i=1 x
tr
i ytri /m, where

the training set is drawn from an unperturbed Gaussian mixture, i.e. xtr|ytr ∼ N (ytr · θ∗, σ2I) and
ytr follows a Bernoulli distribution P(ytr = 1) = 1/2. Directly following the analysis of Zhang
et al. (2022), we have

θ̂⊤θ∗ = OP(
1√
m
)∥θ∗∥+ ∥θ∗∥2.

For ∥θ̂∥2, notice that

θ̂ = θ∗ + ϵm

where ϵm ∼ N (0, σ2I
m ). Then, we have

∥θ̂∥2 = ∥θ∗∥2 + 2ϵ⊤mθ∗ + ∥ϵm∥2 = ∥θ∗∥2 + p

m
+OP(

√
p

m
) +OP(

1√
m
)∥θ∗∥.

Given p/m = O(1), combined with the form of classic concentration inequalities, one can verify
this example satisfies Assumption 3.

D.4 BACKGROUND: ECE CALCULATION

Recall we denote f̂(x) = max{p̂−1(x), p̂1(x)} and denote the predicition result ŷ = Ĉ(x). The
definition of ECE is:

ECE = Ê
f(x)

|P[y = ŷ | f̂(x) = p]− p|.

Notice that there are two cases.

• Case 1: f̂(x) = p̂1(x), by reparameterization, we have

|P[y = ŷ | f̂(x) = p]− p| =
∣∣∣∣P[y = 1 | f̂(x) = e2v

1 + e2v
]− e2v

1 + e2v

∣∣∣∣
=

∣∣∣∣P[y = 1 | θ̂⊤x = v]− e2v

1 + e2v

∣∣∣∣ .
• Case 2: f̂(x) = p̂−1(x), by reparameterization, we have

|P[y = ŷ | f̂(x) = p]− p| =
∣∣∣∣P[y = −1 | f̂(x) = 1

1 + e2v
]− 1

1 + e2v

∣∣∣∣
=

∣∣∣∣P[y = −1 | θ̂⊤x = v]− 1

1 + e2v

∣∣∣∣
=

∣∣∣∣1− P[y = −1 | θ̂⊤x = v]− (1− e2v

1 + e2v
)

∣∣∣∣
=

∣∣∣∣P[y = 1 | θ̂⊤x = v]− e2v

1 + e2v

∣∣∣∣ .
To summarize,

ECE = Ê
f(x)

|P[y = ŷ | f̂(x) = p]− p| = Eθ̂⊤x

∣∣∣∣P[y = 1 | θ̂⊤x = v]− 1

1 + e−2v

∣∣∣∣ .
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Temperature scaling.

pT−1(x) =
1

e2·θ̂⊤x/T + 1
, pT1 (x) =

e2·θ̂
⊤x/T

e2·θ̂⊤x/T + 1
. (12)

Thus,

RECE = Eθ̂⊤x

∣∣∣∣P[y = 1 | θ̂⊤x = vT ]− 1

1 + e−2v

∣∣∣∣ .
Platt scaling.

pw,b
−1 (x) =

1

e2w·θ̂⊤x+2b + 1
, pw,b

1 (x) =
1

e−2w·θ̂⊤x−2b + 1
. (13)

ECEw,b = Eθ̂⊤x

∣∣∣∣P[y = 1 | w · θ̂⊤x+ b = v]− 1

1 + e−2v

∣∣∣∣ .
ECE calculation. The distribution of θ̂⊤x has the following properties.

• θ̂⊤x|y = 1 ∼ zρ1N (θ̂⊤θ∗, σ2∥θ̂∥2)1{θ̂⊤x ∈ B(θ̂⊤θ∗, r1∥θ̂∥) ∪ B(−θ̂⊤θ∗, r1∥θ̂∥)}
+ (1− z)ρ2N (−α · θ̂⊤θ∗, σ2∥θ̂∥2))1{x ∈ B(αθ̂⊤θ∗, r2∥θ̂∥) ∪ B(−(αθ̂⊤θ∗, r2∥θ̂∥)};

• θ̂⊤x|y = −1 ∼ zρ1N (−θ̂⊤θ∗, σ2∥θ̂∥2)1{θ̂⊤x ∈ B(θ̂⊤θ∗, r1∥θ̂∥) ∪ B(−θ̂⊤θ∗, r1∥θ̂∥)}
+ (1− z)ρ2N (α · θ̂⊤θ∗, σ2∥θ̂∥2))1{θ̂⊤x ∈ B(αθ̂⊤θ∗, r2∥θ̂∥) ∪ B(−αθ̂⊤θ∗, r2∥θ̂∥)}.

Now, we are ready to calculate ECE. Specifically, given θ̂, For notation simplicity, we denote
A = B(θ̂⊤θ∗, r1∥θ̂∥) ∪ B(−θ̂⊤θ∗, r1∥θ̂∥) and B = B(α · θ̂⊤θ∗, r2∥θ̂∥) ∪ B(−(α · θ̂⊤θ∗, r2∥θ̂∥).
Meanwhile, for simplicity, we choose r1, r2 such that ρ1 = ρ2 = ρ. This is always manage-
able and there exists infinitely many choices, we only require S1 ∩ S2 = ∅ for any S1 ̸= S2,
S1, S2 ∈ {B(θ̂⊤θ∗, r1∥θ̂∥),B(−θ̂⊤θ∗, r1∥θ̂∥),B(αθ̂⊤θ∗, r2∥θ̂∥),B(−αθ̂⊤θ∗, r2∥θ̂∥)}. In able to
achieve ρ1 = ρ2 = ρ, it only depends on r1/r2. Apparently, there exists a threshold ϕ > 0 such that
if r1 r2 are both smaller than ϕ (one can choose r1, r2 as functions of σ with appropriate choosen
σ), then A ∩ B = ∅ can be achieved.

P[y = 1 | θ̂⊤x = v] =
P(θ̂⊤x = v | y = 1)

P(θ̂⊤x = v | y = 1) + P(θ̂⊤x = v | y = −1)

=
1

1 + exp
(

−2θ̂⊤θ∗

σ2∥θ̂∥2
· v
)1{v ∈ A}+ 1

1 + exp
(

2αθ̂⊤θ∗

σ2∥θ̂∥2
· v
)1{v ∈ B}

D.5 PROOF OF THEOREM 1

D.5.1 TEMPERATURE SCALING ONLY

A simple reparameterization leads to:

R-ECE = Ev=θ̂⊤x

∣∣∣∣∣∣ 1{v ∈ A}

1 + exp
(

−2θ̂⊤θ∗

σ2∥θ̂∥2
· v
) +

1{v ∈ B}

1 + exp
(

2αθ̂⊤θ∗

σ2∥θ̂∥2
· v
) − 1

e−2v/T + 1

∣∣∣∣∣∣
The lower bound contains two parts. We choose the threshold ϕ mentioned previously small enough
such that I3 > max{r1, r2}. This can be achieved because I3 is independent of r1, r2.

Part I. When v ∈ B(θ̂⊤θ∗, r1∥θ̂∥) ⊂ A, and we know that A∩B = ∅. Let us choose a threshold
min{I1, I3}/σ2 > τ > 0. Then for any T > 0, it must fall into one of the following three cases.

19



Under review as a conference paper at ICLR 2024

Case 1: T−1 and θ̂⊤θ∗/(σ2∥θ̂∥2) are far: T−1 − θ̂⊤θ∗/(σ2∥θ̂∥2) > τ , recall v = θ̂⊤x, then

Ex∈B(θ̂⊤θ∗,r1∥θ̂∥)

∣∣∣∣∣∣ 1

1 + exp
(

−2θ̂⊤θ∗

σ2∥θ̂∥2
· v
) − 1

1 + e−2v/T

∣∣∣∣∣∣
≥

 1

1 + exp
(
−2T−1(θ̂⊤θ∗ − r1)

) − 1

1 + exp
(

−2θ̂⊤θ∗

σ2∥θ̂∥2
(θ̂⊤θ∗ + r1)

)
P(x ∈ B(θ∗, r1)))

≥ β

2

 1

1 + exp
(
−2(θ̂⊤θ∗/(σ2∥θ̂∥2) + τ)(θ̂⊤θ∗ − r1)

) − 1

1 + exp
(

−2θ̂⊤θ∗

σ2∥θ̂∥2
(θ̂⊤θ∗ + r1)

)


≥ β

2

 1

1 + exp
(
−2(θ̂⊤θ∗/(σ2∥θ̂∥2) + τ)(θ̂⊤θ∗ − r1)

) − 1

1 + exp
(

−2θ̂⊤θ∗

σ2∥θ̂∥2
(θ̂⊤θ∗ + r1)

)


≥ β

2
min

c∈[I1,I2],d∈[I3,I4]

[
1

1 + exp (−2(c/σ2 + τ)(d− r1))
− 1

1 + exp (−2c/σ2(d+ r1))

]
:= β1

Case 2: T−1 and θ̂⊤θ∗/(σ2∥θ̂∥2) are far: θ̂⊤θ∗/(σ2∥θ̂∥2)− T−1 > τ ,

Ex∈B(θ̂⊤θ∗,r1∥θ̂∥)

∣∣∣∣∣∣ 1

1 + exp
(

−2θ̂⊤θ∗

σ2∥θ̂∥2
· v
) − 1

1 + e−2v/T

∣∣∣∣∣∣
≥

 1

1 + exp
(

−2θ̂⊤θ∗

σ2∥θ̂∥2
(θ̂⊤θ∗ − r1)

) − 1

1 + exp
(
−2T−1(θ̂⊤θ∗ + r1)

)
 · β

2

≥

 1

1 + exp
(

−2θ̂⊤θ∗

σ2∥θ̂∥2
(θ̂⊤θ∗ − r1)

) − 1

1 + exp
(
−2(θ̂⊤θ∗/(σ2∥θ̂∥2)− τ)(θ̂⊤θ∗ + r1)

)
 · β

2

≥ β

2
min

c∈[I1,I2],d∈[I3,I4]

[
1

1 + exp (−2c/σ2(d− r1))
− 1

1 + exp (−2(c/σ2 − τ)(d+ r1))

]
:= β2

Case 3: When T−1 and θ̂⊤θ∗/(σ2∥θ̂∥2) are close: |T−1 − θ̂⊤θ∗/(σ2∥θ̂∥2)| ≤ τ , then when v ∈
B(−αθ̂⊤θ∗, r2∥θ̂∥) ⊂ B. For small enough τ satisfying τ ≤ 0.2(1− α)I1/σ

2

Ev=θ̂⊤x∈B(−αθ̂⊤θ∗,r2∥θ̂∥)

∣∣∣∣∣∣ 1

1 + exp
(

2αθ̂⊤θ∗

σ2∥θ̂∥2
· v
) − 1

1 + e−2v/T

∣∣∣∣∣∣
≥ min

a∈[−αθ̂⊤θ∗
σ2∥θ̂∥2

, θ̂⊤θ∗
σ2∥θ̂∥2

+τ ]

min
v∈B(−αθ̂⊤θ∗,r2∥θ̂∥)

2v exp(2va)

(1 + exp(2av))2

(
2(1− α)θ̂⊤θ∗

σ2∥θ̂∥2
− τ

)
1− β

2

≥ min
a∈[−αI2

σ2 ,
I2
σ2 +τ ]

min
v∈[αI3−r2I6,αI4+r2I6]

2v exp(2va)

(1 + exp(2av))2

(
1.8(1− α)

I1
σ2

)
1− β

2
:= β3

Part III. Combining together, we have

R-ECE ≥ min{β1, β2, β3}.

Finally, we take r1 ≤ min{0.1, τσ2/I1}I3, which makes sure βi > 0 for all i = 1, 2, 3.

D.5.2 SELECTIVE CALIBRATION ONLY

We hope E[g(x) = 1] ≥ β. Let us first define G = {θ̂⊤x : g(x) = 1}. Then, for any g, we have
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P[y = 1 | θ̂⊤x = v, v ∈ G]

=
P(θ̂⊤x = v, v ∈ G | y = 1)

P(θ̂⊤x = v, v ∈ G | y = 1) + P(θ̂⊤x = v, v ∈ G | y = −1)

=

 1

1 + exp
(

−2θ̂⊤θ∗

σ2∥θ̂∥2
· v
)1{v ∈ A}+ 1

1 + exp
(

2αθ̂⊤θ∗

σ2∥θ̂∥2
· v
)1{v ∈ B}

1{v ∈ G}

=
1

1 + exp
(

−2θ̂⊤θ∗

σ2∥θ̂∥2
· v
)1{v ∈ A ∩ G}+ 1

1 + exp
(

2αθ̂⊤θ∗

σ2∥θ̂∥2
· v
)1{v ∈ B ∩ G}

Then, by choosing small enough σ, such that I1/σ2 > 1, the corresponding ECE is:

ECES = Ev=θ̂⊤x|θ̂⊤x∈G

∣∣∣ 1

1 + exp
(

−2θ̂⊤θ∗

σ2∥θ̂∥2
· v
)1{v ∈ A ∩ G}

+
1

1 + exp
(

2αθ̂⊤θ∗

σ2∥θ̂∥2
· v
)1{v ∈ B ∩ G} − 1

e−2v + 1

∣∣∣
≥ Ev=θ̂⊤x|θ̂⊤x∈G

∣∣∣∣∣∣ 1

1 + exp
(

−2θ̂⊤θ∗

σ2∥θ̂∥2
· v
)1{v ∈ A ∩ G} − 1

e−2v + 1

∣∣∣∣∣∣
+ Ev=θ̂⊤x|θ̂⊤x∈G

∣∣∣∣∣∣ 1

1 + exp
(

2αθ̂⊤θ∗

σ2∥θ̂∥2
· v
)1{v ∈ B ∩ G} − 1

e−2v + 1

∣∣∣∣∣∣
≥ λ1P(v ∈ A ∩ G|v ∈ G) + λ2P(v ∈ B ∩ G|v ∈ G).

Since P(v ∈ A ∩ G|v ∈ G) + P(v ∈ B ∩ G|v ∈ G) = 1, it is not hard to verify that

S-ECE ≥ min{λ1, λ2}
where

λ1 = min
a∈[1,

I2
σ2 ]

min
v∈A

2v exp(2va)

(1 + exp(2av))2

∣∣∣∣ I1σ2
− 1

∣∣∣∣
λ2 = min

a∈[−αI2
σ2 ,1]

min
v∈B

2v exp(2va)

(1 + exp(2av))2

∣∣∣∣αI1σ2
− 1

∣∣∣∣ .
D.5.3 SELECTIVE RE-CALIBRATION

We choose G = B and set T−1 = θ̂⊤θ∗

σ2∥θ̂∥2
, then SR-ECE = 0. Thus, there exists appropriate choice

of g and T such that
SR-ECE(g, T ) = 0.

D.6 PROOF OF THEOREM 2

Usually, β is much larger than 1−β, for example, β = 90%. In this section, we impose the following
assumption.

Assumption 4. The selector g will retain most of the probabilty mass in the sense that

β > 2(1− β).

Let us denote ξ = β/2− (1− β) and ξ is a positive constant. First, we have the following claim.
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Claim 5. Under Assumption 4, if we further have

min
v∈B(θ̂⊤θ∗,r1∥θ̂∥)

∣∣∣∣∣∣ 1

1 + exp
(

−2θ̂⊤θ∗

σ2∥θ̂∥2
· v
) − 1

e−2v + 1

∣∣∣∣∣∣
> max

v∈B(−αθ̂⊤θ∗,r2∥θ̂∥)

∣∣∣∣∣∣ 1

1 + exp
(

2αθ̂⊤θ∗

σ2∥θ̂∥2
· v
) − 1

e−2v + 1

∣∣∣∣∣∣ ,
then for g1 = argming:E[g(x)=1]≥β S-ECE, we have that Ex∈B(−αθ∗,r2)[g1(x) = 1] = P(x ∈
B(−αθ∗, r2)).

Proof. The proof is straightforward. We denote O = {x : x ∈ B(−αθ∗, r2), g(x) = 0}. We will
prove that P(x ∈ O) = 0.

If not, let us denote P = P(x ∈ O) > 0. Since we know β > 2(1 − β), which means even if
we “throw away” all the probability mass 1 − β by only setting points in B(θ∗, r1) with g value
equals to 0, there will still be other remaining probability mass retained in B(θ∗, r1) with g value
equals to 1. Then, there exists g2 such that g2(x) = 1 for all x ∈ B(−αθ∗, r2) and leads to
P(x ∈ B(−αθ∗, r2), g2(x) = 1) = P(x ∈ B(−αθ∗, r2), g1(x) = 1) + ξ (enabled by the fact
β > 2(1− β) ) and P(g1(x) = 1) = P(g2(x) = 1) for x ∈ B(θ∗, r1) ∪ B(−αθ∗, r2). Since

min
v∈B(θ̂⊤θ∗,r1∥θ̂∥)

∣∣∣∣∣∣ 1

1 + exp
(

−2θ̂⊤θ∗

σ2∥θ̂∥2
· v
) − 1

e−2v + 1

∣∣∣∣∣∣
> max

v∈B(−αθ̂⊤θ∗,r2∥θ̂∥)

∣∣∣∣∣∣ 1

1 + exp
(

2αθ̂⊤θ∗

σ2∥θ̂∥2
· v
) − 1

e−2v + 1

∣∣∣∣∣∣ ,
which means “throwing away” points in B(αθ∗, r2) can more effectively lower the calibration error
and we must have

S-ECE(g2) < S-ECE(g1).

Next, we state how to set the parameters such that the condition in Claim 5 holds. As long as we
choose σ, r1, r2 small enough, such that

1

1 + exp(−2I1/σ2(I4 + r1I6))
− 1

1 + exp(−2I1(I3 − r1I6))

<
1

1 + exp(−2(I4 + r2I6))
− 1

1 + exp(2αI2/σ2(I4 + r2I6))

then,

min
v∈B(θ̂⊤θ∗,r1∥θ̂∥)

∣∣∣∣∣∣ 1

1 + exp
(

−2θ̂⊤θ∗

σ2∥θ̂∥2
· v
) − 1

e−2v + 1

∣∣∣∣∣∣
> max

v∈B(−αθ̂⊤θ∗,r2∥θ̂∥)

∣∣∣∣∣∣ 1

1 + exp
(

2αθ̂⊤θ∗

σ2∥θ̂∥2
· v
) − 1

e−2v + 1

∣∣∣∣∣∣ ,
Then, following similar derivation in Section D.5.1, we can prove with suitably chosen parameters
r1, r2, σ, ECES→T > 0.

Lastly, let us further prove ECET→S > 0. We choose r1 and r2 small enough such that v >

0 for all v ∈ B(θ̂⊤θ∗, r1∥θ̂∥) ∪ B(αθ̂⊤θ∗, r2∥θ̂∥) and v < 0 for all v ∈ B(−θ̂⊤θ∗, r1∥θ̂∥) ∪
B(−αθ̂⊤θ∗, r2∥θ̂∥).
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For 1/T ∈ [−αθ̂T θ∗

σ2∥θ̂∥
, θ̂T θ∗

σ2∥θ̂∥
], we can calculate the derivative for R-ECE as the following:

R-ECE = Ev∈B(θ̂⊤θ∗,r1∥θ̂∥)

 1

1 + exp
(

−2θ̂⊤θ∗

σ2∥θ̂∥2
· v
) − 1

e−2v/T + 1


+ Ev∈B(−θ̂⊤θ∗,r1∥θ̂∥)

− 1

1 + exp
(

−2θ̂⊤θ∗

σ2∥θ̂∥2
· v
) +

1

e−2v/T + 1


+ Ev∈B(αθ̂⊤θ∗,r2∥θ̂∥)

− 1

1 + exp
(

2αθ̂⊤θ∗

σ2∥θ̂∥2
· v
) +

1

e−2v/T + 1


+ Ev∈B(−αθ̂⊤θ∗,r2∥θ̂∥)

 1

1 + exp
(

2αθ̂⊤θ∗

σ2∥θ̂∥2
· v
) − 1

e−2v/T + 1

 .

Next, we take a derivative over x = 1/T for x ∈ [−αθ̂T θ∗

σ2∥θ̂∥
, θ̂T θ∗

σ2∥θ̂∥
], which leads to

dR-ECE
dx

= −2Ev∈B(θ̂⊤θ∗,r1∥θ̂∥)

[
2ve2vx

(e2vx + 1)2

]
+ 2Ev∈B(αθ̂⊤θ∗,r2∥θ̂∥)

[
2ve2vx

(e2vx + 1)2

]

Consider the two values
2ve2vx

(e2vx + 1)2
,

2αve2αvx

(e2αvx + 1)2
,

the ratio
2αve2αvx

(e2αvx + 1)2
/[

2ve2vx

(e2vx + 1)2
] →v→0 2α.

That means if we take suitably small r1, r2 and let σ ∈ [c1, c2] with appropriately chosen c1, c2

dR-ECE
dx

∣∣∣
x= θ̂T θ∗

σ2∥θ̂∥

< 0.

Thus, we know the best choice of 1/T should not be equal to θ̂T θ∗

σ2∥θ̂∥
. Then, notice β > 2(1 − β),

which means the probability mass in B(θ̂T θ∗, r1∥θ̂∥) cannot be all be “thrown away”; follow-
ing similar derivation in Section D.5.1, we can prove with suitably chosen parameters r1, r2, σ,
ECET→S > 0.
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