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1. Introduction
Transformer models have revolutionized the field of

AI, powering applications like OpenAI ChatGPT and Mi-
crosoft Bing. Nonetheless, their current deployment still
raises privacy concerns: clients must upload their sensi-
tive user data to the server for inference service. This
reliance raises concerns over data misuse, like unautho-
rized processing, indefinite storage, or resale to third par-
ties. Private Transformer Inference (PTI) addresses this by
leveraging cryptographic techniques. It enables model in-
ference without the server learning the user’s input or the
user learning anything about the server’s model, except for
the inference results. Specifically, this paper reviews re-
cent PTI advancements (2022–2024) focusing on Homo-
morphic Encryption (HE). To our best knowledge, surveys
focusing on private transformer inference with HE do not
exist so far. This paper aims to give a brief overview of
PTI with HE and its implementations.

2. A brief introduction to HE
HE enables computations on encrypted data, yielding

results identical to plaintext operations after decryption.
It uses a public key for encryption and a secret key for de-
cryption. The HE schemes can be further categorized by
the operations in the circuit and its computational depth.
Due to space limitations, further details are omitted. No-
tably, current HE schemes only support linear operations,
i.e., additions and multiplications.

3. Taxonomy of transformer layers in cryptographic
contexts

Transformer layers could be classified as linear (em-
bedding, attention matrix multiplication, feed-forward)
and non-linear (Softmax, GELU, LayerNorm). Fig. 1 il-
lustrates the basic transformer encoder architecture.

3.1 Linear layers
Linear layers consist of matrix multiplications, which

are compatible with HE but inefficient with naive imple-
mentations [1]. Two mainstream methods address this:

1) Encoding plaintexts into SIMD slots.

2) Encoding plaintexts as polynomial coefficients.

The SIMD technique batches multiple elements into
one ciphertext, enabling parallel computation to reduce
amortized costs. Studies [2, 3, 4, 5] have leveraged SIMD
in their implementations. However, when applied to Mat-
Mul, SIMD requires expensive homomorphic rotations
to perform the summation. To mitigate this, [2] uses
the Baby-Step-Giant-Step (BSGS) method to reduce ro-
tations, while [3] introduces a slots folding approach. In
another way, studies [6, 7] show that encoding plaintexts
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Fig. 1: The architecture of a transformer encoder

into polynomial coefficients can directly compute the dot
product, eliminating rotations. Furthermore, [8] proposes
a compact encoding method to address sparsity and re-
duce communication, and [9] customizes a Vector Obliv-
ious Linear Evaluation-based protocol in GPT, lowering
the amortized cost of auto-regressive response generation.

3.2 Non-linear layers
Securing non-linear layers is challenging due to their

cryptographic complexity. Those layers mainly include
Softmax, GELU and LayerNorm.
Softmax. The bottleneck in Softmax is to efficiently cal-
culate the underlying exp(x). Some studies employ ag-
gressive crypto-friendly functions, e.g., (x + c)2, to di-
rectly replace the exp(x) in Softmax. However, such an
approach often brings significant accuracy drops and re-
quires knowledge distillation. In contrast, [4] approxi-
mates exp(x) using a 6-degree Maclaurin series for ac-
curacy. Similarly, studies [8, 3] design piecewise polyno-
mials with Taylor Series for approximation.
GELU. The nonlinearity in GELU comes from the Gaus-
sian error function erf(x). Studies [1, 11] directly replace
GELU with crypto-friendly RELU (i.e., max(0, x)) since
support for comparison operations in cryptography is rel-
atively well established. Besides, since GELU is almost
linear with a larger or smaller input, studies [8, 2, 3] sug-
gest an efficient low-degree polynomial (e.g., n ≤ 4 in
[2]) for approximation within the short interval around 0.
LayerNorm. The difficulty in LayerNorm is the required
reciprocal square root operation 1/

√
x. Studies [3, 11]

employ Newton-like methods to compute 1/
√
x itera-

tively. Other studies avoid non-linear computations by
altering the architecture of LayerNorm: [1] directly re-
moves the computation of mean and standard deviation,
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Table 1: Resource requirements, tasks performed, dataset performance, and runtime.

Study Techniques Model Dataset Comm. Comm. Set. Performance RuntimePlain Enc. Loss ↓
[7] HE+MPC BERT-Base SST-2 280.99 GB (3 Gbps, 0.8 ms) 92.36 % 92.77 % -0.41 % 475 s

[8] HE+MPC

BERT-Base QNLI -

(1 Gbps, 0.5 ms)

90.30 % 90.20 % 0.10 % -
BERT-Large - 20.85 GB - - - 404.4 s
LLaMA-7B - 6.82 GB - - - 832.2 s

ViT-Base ImageNet 14.44 GB 89.44 % 89.13 % 0.31 % 234 s
[2] HE+MPC BERT-Base SST-2 25.74 GB (3 Gbps, 0.8 ms) 92.36 % 92.78 % -0.42 % 185 s
[1] HE BERT-Tiny SST-2 - - 82.45 % 82.11 % 0.34 % ≈ 4700 s
[4] HE BERT-Tiny SST-2 - - 83.7 % 79.0 % 4.7 % 214 s
[5] HE BERT-Base MRPC - - 85.29 % 84.80 % 0.49 % 625.8 s
[10] HE Roberta-Base SST-2 - - 94.80 % 93.35 % 1.45 % ≈ 400 s

[3] HE BERT-Base SST-2 0.16 GB (100 Mbps, 80 ms) 92.36 % 92.11 % 0.25 % 857 s
LLaMA-3B SST-2 94.94 % 94.46 % 0.48 % 1088 s

leaving them achieved by learnable affine parameters. [4]
precomputes the values of mean and standard deviation to
simplify the computation.

4. Reported Experiments
Table 1 shows reported experiments in selected studies.

Notably, some studies [7, 8, 2] employ a mixed method
of “HE+MPC”. They use HE for linear layers and se-
cure Multi-Party Computation (MPC) for non-linear ones.
Other studies only use HE to design the whole circuit.
Runtime. Studies using “HE+MPC” often have a bet-
ter runtime performance at the cost of significant commu-
nication overhead. For example, [2] could evaluate the
BERT-Base model in 185 s with 25.74 GB overhead. HE-
only solutions require the longest runtime. Latest stud-
ies [10, 5, 3] all require over 400 s for evaluation on
the BERT-Base model. Even for the smaller BERT-Tiny
model, [4] still requires over 200 s. In particular, the most
consuming part of those studies is the Bootstrapping op-
eration, which is often used to “refresh” a ciphertext to re-
duce noise. The bootstrapping part in [3] and [5] accounts
for 37.72% and 53.96% of the total runtime, respectively.
Accuracy. Linear computations are often well supported
by HE. Hence, most of the accuracy drop in Table 1 comes
from the treatments of non-linear layers. For instance,
[4] employed aggressive substitutions for the LayerNorm
functions, leading to an accuracy drop of 4.7% on the
STS-2 dataset. In contrast, other studies usually designed
approximations more carefully or utilized knowledge dis-
tillation for re-training, so the accuracy drop is limited.
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